Biohydrometallurgy| the Technological Transformation of the Mining Industry for Environmental Protection
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Bioleaching of Chalcopyrite
Bioleaching of chalcopyrite By Woranart Jonglertjunya A thesis submitted to The University of Birmingham For the degree of DOCTOR OF PHILOSOPHY Department of Chemical Engineering School of Engineering The University of Birmingham United Kingdom April 2003 University of Birmingham Research Archive e-theses repository This unpublished thesis/dissertation is copyright of the author and/or third parties. The intellectual property rights of the author or third parties in respect of this work are as defined by The Copyright Designs and Patents Act 1988 or as modified by any successor legislation. Any use made of information contained in this thesis/dissertation must be in accordance with that legislation and must be properly acknowledged. Further distribution or reproduction in any format is prohibited without the permission of the copyright holder. Abstract This research is concerned with the bioleaching of chalcopyrite (CuFeS2) by Thiobacillus ferrooxidans (ATCC 19859), which has been carried out in shake flasks (250 ml) and a 4-litre stirred tank bioreactor. The effects of experimental factors such as initial pH, particle size, pulp density and shake flask speed have been studied in shake flasks by employing cell suspensions in the chalcopyrite concentrate with the ATCC 64 medium in the absence of added ferrous ions. The characterisation of T. ferrooxidans on chalcopyrite concentrate was examined by investigating the adsorption isotherm and electrophoretic mobility. Subsequently, a mechanism for copper dissolution was proposed by employing relevant experiments, including the chemical leaching of chalcopyrite by sulphuric acid and ferric sulphate solutions, bioleaching of chalcopyrite in the presence of added ferric ions, and cell attachment analysis by scanning electron microscopy. -
Principles of Extractive Metallurgy Lectures Note
PRINCIPLES OF EXTRACTIVE METALLURGY B.TECH, 3RD SEMESTER LECTURES NOTE BY SAGAR NAYAK DR. KALI CHARAN SABAT DEPARTMENT OF METALLURGICAL AND MATERIALS ENGINEERING PARALA MAHARAJA ENGINEERING COLLEGE, BERHAMPUR DISCLAIMER This document does not claim any originality and cannot be used as a substitute for prescribed textbooks. The information presented here is merely a collection by the author for their respective teaching assignments as an additional tool for the teaching-learning process. Various sources as mentioned at the reference of the document as well as freely available material from internet were consulted for preparing this document. The ownership of the information lies with the respective author or institutions. Further, this document is not intended to be used for commercial purpose and the faculty is not accountable for any issues, legal or otherwise, arising out of use of this document. The committee faculty members make no representations or warranties with respect to the accuracy or completeness of the contents of this document and specifically disclaim any implied warranties of merchantability or fitness for a particular purpose. BPUT SYLLABUS PRINCIPLES OF EXTRACTIVE METALLURGY (3-1-0) MODULE I (14 HOURS) Unit processes in Pyro metallurgy: Calcination and roasting, sintering, smelting, converting, reduction, smelting-reduction, Metallothermic and hydrogen reduction; distillation and other physical and chemical refining methods: Fire refining, Zone refining, Liquation and Cupellation. Small problems related to pyro metallurgy. MODULE II (14 HOURS) Unit processes in Hydrometallurgy: Leaching practice: In situ leaching, Dump and heap leaching, Percolation leaching, Agitation leaching, Purification of leach liquor, Kinetics of Leaching; Bio- leaching: Recovery of metals from Leach liquor by Solvent Extraction, Ion exchange , Precipitation and Cementation process. -
NPTEL Syllabus
NPTEL Syllabus Metals Biotechnology - Web course COURSE OUTLINE Introduction to microbiology relevant to metals biotechnology – Biology-Materials interface – Biomaterials processing – Biogenesis of minerals and metals - History, status and developments in biohydrometallurgy – Bioleaching mechanisms – Metal toxicity and tolerance in Acidithiobacillus ferrooxidans – Biohydrometallurgy of copper, zinc and nickel NPTEL – Biohydrometallurgy of uranium – Biotechnology for gold – Biomineralization and http://nptel.iitm.ac.in bioprocessing of ocean manganese nodules – Bioprocessing of industrial wastes – Electrochemical aspects of bioleaching – Electrobioleaching – Biomineral beneficiation of sulfide, oxide and industrial minerals – Biofouling, biocorrosion and biomaterials – Acid Metallurgy mine drainage and bioremediation in mining – Experimental and research techniques in metals biotechnology. and Material Science COURSE DETAIL Module Sl. No. and topic Hours Pre-requisites: Module 1 Microbiology, mechanisms and methods in metals Basic knowledge of biotechnology microbiology, chemistry and Lecture 1: Biology – materials interface and biomaterials metallurgy.Mineralogy processing. and Extractive metallurgy Lecture 2: Biogenesis of metals and minerals. of ferrous and nonferrous Lecture 3: History and methods in biohydrometallurgy. metals. Lecture 4: Microorganisms in biohydrometallurgy. 9 Lecture 5: Reactor bioleaching and developments in bioleaching of concentrates Coordinators: Lecture 6: Bioleaching mechanisms. Prof. K.A. Natarajan Lecture -
Biotechnology for Metal Extraction, Mineral Beneficiation and Environmental Control
Proceedings of the International Seminar on Mineral Processing Technology - 2006, Chennai, India. pp. 68 - 81. Biotechnology for Metal Extraction, Mineral Beneficiation and Environmental Control K.A. Natarajan Department of Metallurgy, Indian Institute of Science, Bangalore 560012 Email : kan@met. iisc.ernet in Abstract With the rapid depletion of high grade ores and concerns about environmental degradation, the necessity for utilisation of lean grade mineral resources have become all the more urgent. With the advent of bioleaching since the early 1960's, possibilities of metal extraction in an environment-friendly fashion have emerged. As of now three metals namely copper, uranium and gold are commercially produced around the world using biooxidation in the presence of Acidithiobacillus ferrooxidans. Bioleaching of base metal concentrates such as those containing copper, zinc and nickel has also been proved to be commercially viable during this decade. Bioreactor technology using thermophilic bacteria holds the key for the successful and efficient bioleaching of chalcopyrite, sphalerite and pentlandite concentrates. Microorganisms find use in environmental control and mineral beneficiation as well. Microbially-induced mineral flotation and flocculation have been proved to very cost-effective and environment-friendly. In this paper, biotechnology as applied to metal extraction, mineral beneficiation and environmental control is illustrated. INTRODUCTION The microorganism, Acidithiobacillus ferrooxidans which is known to be effective in the leaching of several minerals was first isolated in the laboratory in 1947 from the acid mine drainage of bituminous coal mines. Bioleaching processes are now becoming increasingly significant due to rapid depletion of high grade ore reserves, increasing energy costs and environmental concerns. Large quantities of copper, uranium and gold ores are processed by microbial technology on an industrial scale. -
Subterranean Photobioreactors for Commercial-Industrial Scale Algal Culture
Scholars' Mine Doctoral Dissertations Student Theses and Dissertations Spring 2016 Subterranean photobioreactors for commercial-industrial scale algal culture Daniel James Vidt Follow this and additional works at: https://scholarsmine.mst.edu/doctoral_dissertations Part of the Mining Engineering Commons Department: Mining Engineering Recommended Citation Vidt, Daniel James, "Subterranean photobioreactors for commercial-industrial scale algal culture" (2016). Doctoral Dissertations. 2493. https://scholarsmine.mst.edu/doctoral_dissertations/2493 This thesis is brought to you by Scholars' Mine, a service of the Missouri S&T Library and Learning Resources. This work is protected by U. S. Copyright Law. Unauthorized use including reproduction for redistribution requires the permission of the copyright holder. For more information, please contact [email protected]. SUBTERRANEAN PHOTOBIOREACTORS FOR COMMERCIAL- INDUSTRIAL SCALE ALGAL CULTURE by DANIEL JAMES VIDT A DISSERTATION Presented to the Faculty of the Graduate School of the MISSOURI UNIVERSITY OF SCIENCE AND TECHNOLOGY In Partial Fulfillment of the Requirements for the Degree of DOCTOR OF PHILOSOPHY in MINING ENGINEERING 2016 Approved by: Lana Alagha, Adviser Melanie Mormile Samuel Frimpong Kwame Awuah-Offei Dev Niyogi @ 2016 DANIEL JAMES VIDT ALL RIGHTS RESERVED iii ABSTRACT There are many potential benefits to the mining industry accruing from the application of algal biotechnology. The main benefits are in the production of biodiesel and in the remediation of mining brownfields. The research in this study was centered in the original idea that these brownfields represent a tremendous opportunity for use as a hybrid model for redevelopment into sustainable “mines” of biomass. The ability of these underground spaces serving as bioreactors to control all aspects of the growing environment, from lighting, to temperature, to biosecurity, are key advantages that have been identified in the literature. -
Identification and Description of Mineral Processing Sectors And
V. SUMMARY OF FINDINGS As shown in Exhibit 5-1, EPA determined that 48 commodity sectors generated a total of 527 waste streams that could be classified as either extraction/beneficiation or mineral processing wastes. After careful review, EPA determined that 41 com modity sectors generated a total of 354 waste streams that could be designated as mineral processing wastes. Exhibit 5-2 presents the 354 mineral processing wastes by commodity sector. Of these 354 waste streams, EPA has sufficient information (based on either analytical test data or engineering judgment) to determine that 148 waste streams are potentially RCRA hazardous wastes because they may exhibit one or more of the RCRA hazardous characteristics: toxicity, ignitability, corro sivity, or reactivity. Exhibit 5-3 presents the 148 RCRA hazardous mineral processing wastes that will be subject to the Land Disposal Restrictions. Exhibit 5-4 identifies the mineral processing commodity sectors that generate RCRA hazardous mineral processing wastes that are likely to be subject to the Land D isposal Restrictions. Exhibit 5-4 also summarizes the total number of hazardous waste streams by sector and the estimated total volume of hazardous wastes generated annually. At this time, however, EPA has insufficient information to determine whether the following nine sectors also generate wastes that could be classified as mineral processing wastes: Bromine, Gemstones, Iodine, Lithium, Lithium Carbonate, Soda Ash, Sodium Sulfate, and Strontium. -
Bioleaching for Copper Extraction of Marginal Ores from the Brazilian Amazon Region
metals Article Bioleaching for Copper Extraction of Marginal Ores from the Brazilian Amazon Region Dryelle Nazaré Oliveira do Nascimento 1,†, Adriano Reis Lucheta 1,† , Maurício César Palmieri 2, Andre Luiz Vilaça do Carmo 1, Patricia Magalhães Pereira Silva 1, Rafael Vicente de Pádua Ferreira 2, Eduardo Junca 3 , Felipe Fardin Grillo 3 and Joner Oliveira Alves 1,* 1 SENAI Innovation Institute for Mineral Technologies, National Service for Industrial Training (SENAI), Belém, PA 66035-405, Brazil; [email protected] (D.N.O.d.N.); [email protected] (A.R.L.); [email protected] (A.L.V.d.C.); [email protected] (P.M.P.S.) 2 Itatijuca Biotech, São Paulo, SP 05508-000, Brazil; [email protected] (M.C.P.); [email protected] (R.V.d.P.F.) 3 Graduate Program in Materials Science and Engineering, Universidade do Extremo Sul Catarinense (Unesc), Criciúma, SC 88806-000, Brazil; [email protected] (E.J.); [email protected] (F.F.G.) * Correspondence: [email protected] † These authors contributed equally to this work. Received: 5 December 2018; Accepted: 8 January 2019; Published: 14 January 2019 Abstract: The use of biotechnology to explore low-grade ore deposits and mining tailings is one of the most promising alternatives to reduce environmental impacts and costs of copper extraction. However, such technology still depends on improvements to be fully applied in Brazil under industrial scale. In this way, the bioleaching, by Acidithiobacillus ferrooxidans, in columns and stirred reactors were evaluated regarding to copper extraction of a mineral sulfide and a weathered ore from the Brazilian Amazon region. -
Characterization and Recovery of Copper from Smelting Slag
CHARACTERIZATION AND RECOVERY OF COPPER FROM SMELTING SLAG A. P. GABRIEL*, L. R. SANTOS*, A.C. KASPER*, H. M. VEIT* * Materials Engineering Department, Engineering School, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, Brazi SUMMARY: 1. INTRODUCTION. 2. EXPERIMENTAL. 2.1 Hazardousness test. 2.2 Chemical and mineralogical characterization. 2.3 Leaching 3. RESULTS AND DISCUSSION 3.1 Hazardousness Test. 3.2 Chemical and mineralogical characterization. 3.3 Leaching. 4. CONCLUSION. REFERENCES. 1. INTRODUCTION The generation of industrial solid waste constitutes an environmental problem that requires efforts for adequate disposal. Currently, in Brazil, solid waste management is standardized, with a classification determining the management according to its hazardous characteristics. ABNT NBR 10004 is a Brazilian Standard to solid waste and classifies its as: Class I (hazardous), Class II - A (non - hazardous and non - inert) and Class II - B (non - hazardous and inert) according to the concentration of elements that have potential risks to the environment and public health (ABNT NBR 10,004, 2004) A process with a large generation of wastes is the production of copper. Several studies in the last decades investigated routes to recovery copper and other metals of interest from the slag (solid waste from the foundry). In the case of primary production, the slag has copper contents between 0.5 and 2% and the volume generated is twice the refined metal (Schlesinger et al., 2011) In addition to primary copper production, there is a significant rate of the copper production from scrap/waste metal. Secondary copper production in Brazil in 2014 reached 23,600 tons, representing around 9% of domestic production. -
Report on the Reserve Estimate & Feasibility Study
REPORT ON THE RESERVE ESTIMATE & FEASIBILITY STUDY FOR THE ISABELLA PEARL PROJECT, NEVADA REPORT ON THE ESTIMATE OF RESERVES and the FEASIBILITY STUDY for the ISABELLA PEARL PROJECT MINERAL COUNTY, NEVADA for WALKER LANE MINERALS CORP. Signed by: FRED H. BROWN, PGeo Senior Resource Geologist, GRC Nevada Inc. J. RICARDO GARCIA, PEng Corporate Chief Engineer, Gold Resource Corp. BARRY D. DEVLIN, PGeo Vice President, Exploration, Gold Resource Corp. JOY L. LESTER, SME-RM Chief Geologist, Gold Resource Corp. and Gold Resource Corp. and GRC Nevada Inc. Technical Staff Effective Date: December 31, 2017 REPORT ON THE RESERVE ESTIMATE & FEASIBILITY STUDY FOR THE ISABELLA PEARL PROJECT, NEVADA TABLE OF CONTENTS 1 SUMMARY …………………………………………………………………………………………………………………………14 1.1 Introduction and Purpose ...…………………………………………………………………………………14 1.2 Property Description and Ownership .………………………………………………………………………14 1.3 Geology and Mineralization …………………………………………………………………………...........15 1.4 Exploration and Mining History .…………………………………………………………………………………..15 1.5 Metallurgical Testing and Process Design Criteria .…………………………………………..…16 1.6 Economic Mineralized Material .…………………………………………………………………………………..18 1.7 Mineral Reserve Estimate .…………………………………………………………………………………..19 1.8 Mining Methods ………………………………………………………………………………………………..20 1.9 Mineral Processing and Recovery Methods …………………………………………………………..22 1.10 Project Infrastructure ………………………………………………………………………………………………..23 1.11 Environmental Studies and Permitting ……………………………………………………………………….25 1.12 Capital and Operating -
Copper Recovery Using Leach/Solvent Extraction/Electrowinning Technology
Copper recovery using leach/solvent extraction/electrowinning technology: Forty years of innovation, 2.2 million tonnes of copper annually by G.A. Kordosky* small scale in analytical chemistry3 and on a large scale for the recovery of uranium from Synopsis sulphuric acid leach solutions4. Generally Mills had already developed and commercialized The concept of selectively extracting copper from a low-grade dump Alamine® 336 as an SX reagent for the leach solution followed by stripping the copper into an acid recovery of uranium from sulphuric acid leach solution from which electrowon copper cathodes could be produced liquors5 and believed that a similar technology occurred to the Minerals Group of General Mills in the early 1960s. for copper recovery would be welcome. This simple, elegant idea has resulted in a technology by which However, an extensive market survey showed about 2.2 million tonnes of high quality copper cathode was produced in year 2000. The growth of this technology is traced over that the industry reception for copper recovery time with a discussion of the key plants, the key people and the by L/SX/EW technology was almost hostile. important advances in leaching, plant design, reagents and The R&D director of a large copper producer electrowinning that have contributed to the growth of this predicted at an AIME annual meeting that technology. Some thoughts on potential further advances in the there would never be a pound of copper technology are also given. recovered using solvent extraction and his comment prompted -
Extraction of Copper at Elevated Feed Concentrations R.E
SGS MINERALS SERVICES TECHNICAL PAPER 2003-07 2003 EXTRACTION OF COPPER AT ELEVATED FEED CONCENTRATIONS R.E. MOLNAR, N. VERBAAN –– SGS ABSTRACT A number of flowsheets have been designed and operated, or are currently being considered, to extract copper from leach solutions having much more copper than the 4 g/L levels typically found in heap leach liquors. Dealing with these solutions has required that the envelope for “normal” copper solvent extraction be pushed beyond the usually considered limits. Others have published information on flowsheets to recover copper from leach liquors containing over 25 g/L copper. Secondary solvent extraction circuits are often required to attain satisfactory overall recoveries. This paper reviews some of the issues faced in three pilot plant circuits that were operated by SGS Lakefield Research to produce cathode copper from solutions containing 8 to 20 g/L Cu. The primary objective was to maximize copper extraction using one solvent extraction circuit. The role of feed acidity and the disposition of impurities such as iron and chloride are considered. The challenges of running short SX piloting campaigns are discussed. INTRODUCTION In more recent years hydrometallurgy is finding wider application in the treatment of complex ores that contain copper. Very often, the plant will need to process a Copper solvent extraction was originally sulphide concentrate rather than an oxidised copper ore that is readily leached at developed in the 1960’s to recover ambient conditions. It is probably going to be using more aggressive oxidative leaching copper from relatively dilute leach methods, for example, oxygen pressure leaching. Higher percent solids are employed solutions, typically heap leach liquors in the leaching stages both to keep plant sizes as small as practically possible, and to with copper tenors in the 1 to 4 g/L ensure that the heating requirements of the process are being fully met by oxidising range. -
Copper Hydrometallurgy and Extraction from Chloride Media
COPPER HYDROMETALLURGY AND EXTRACTION FROM CHLORIDE MEDIA JAN SZYMANOWSKI SK96K0015 Institute of Chemical Technology and Engineering, Poznan University of Technology, PI. Sktodowskiej-Curie 2, 60-965 Poznan, Poland The development of copper hydrometallurgy is presented and various processes proposed for copper recovery from sulphide concentrates are discussed. Leaching, extraction and stripping are considered, including reagents and processes. The extraction of copper from chloride solutions is discussed. Various extractants are presented and their use for copper transfer from chloride solutions to the organic phase and back to chloride and to sulphate solutions is discussed. Hydrometallurgy is used for copper recovery for more than 300 years. Already in 1670 the mine waters were treated with iron to precipitate copper. However, two hundred years were needed to process oxide ores by vat leaching and copper cementation with iron. The development most important to copper hydrometallurgy, both with respect to the growing number of its applications and for its future potential, has been solvent extraction (SX). 1 It started in 1968 in a small scale and in about 1974 in a large scale of about 100 000 tones/year copper. These operations have served as a stimulus for at least of 30 copper plants, recovering nearly 800 000 tonnes/year of copper with the application continuing to increase. New processes are now developed to recover copper from sulphide ores and concentrates, including CLEAR Process and CUPREX Process. Chloride-based processes play a key role in the metallurgical and chemical industries. 2 One of the most important factors responsible for the significant role of chloro-based processes is the ease of chlorine recycling.