Characterization and Recovery of Copper from Smelting Slag

Total Page:16

File Type:pdf, Size:1020Kb

Characterization and Recovery of Copper from Smelting Slag CHARACTERIZATION AND RECOVERY OF COPPER FROM SMELTING SLAG A. P. GABRIEL*, L. R. SANTOS*, A.C. KASPER*, H. M. VEIT* * Materials Engineering Department, Engineering School, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, Brazi SUMMARY: 1. INTRODUCTION. 2. EXPERIMENTAL. 2.1 Hazardousness test. 2.2 Chemical and mineralogical characterization. 2.3 Leaching 3. RESULTS AND DISCUSSION 3.1 Hazardousness Test. 3.2 Chemical and mineralogical characterization. 3.3 Leaching. 4. CONCLUSION. REFERENCES. 1. INTRODUCTION The generation of industrial solid waste constitutes an environmental problem that requires efforts for adequate disposal. Currently, in Brazil, solid waste management is standardized, with a classification determining the management according to its hazardous characteristics. ABNT NBR 10004 is a Brazilian Standard to solid waste and classifies its as: Class I (hazardous), Class II - A (non - hazardous and non - inert) and Class II - B (non - hazardous and inert) according to the concentration of elements that have potential risks to the environment and public health (ABNT NBR 10,004, 2004) A process with a large generation of wastes is the production of copper. Several studies in the last decades investigated routes to recovery copper and other metals of interest from the slag (solid waste from the foundry). In the case of primary production, the slag has copper contents between 0.5 and 2% and the volume generated is twice the refined metal (Schlesinger et al., 2011) In addition to primary copper production, there is a significant rate of the copper production from scrap/waste metal. Secondary copper production in Brazil in 2014 reached 23,600 tons, representing around 9% of domestic production. This secondary slag presents, due to its great generation, the potential to be recycled as a secondary source of copper (Departamento Nacional de Produção Mineral, 2016) Copper is a metal of high value and of great importance for several industrial sectors, especially the electrical and electronic sector, due to its properties such as excellent conductivity and resistance to corrosion. However, obtaining copper from ores requires high energy resources, have great environmental impacts, besides what, the existing mines have lower copper contents, between 1 and 2%, which makes the extraction more expensive (Schlesinger et al. 2011). On the other hand, the copper recycling process allows to obtain a material with the same properties as obtained by the primary extraction, not involving great complexity, being basically a fusion process and later refined by pyrometallurgy or electrolysis. In the recycling process, during the smelting stage, there is the generation of waste, especially a secondary slag with high levels of copper. In the secondary slag it is estimated that the copper content is high, because the input is Proceedings Sardinia 2017 / Sixteenth International Waste Management and Landfill Symposium/ 2 - 6 October 2017 S. Margherita di Pula, Cagliari, Italy / © 2017 by CISA Publisher, Italy Sardinia 2017 / Sixteenth International Waste Management and Landfill Symposium / 2 - 6 October 2017 basically copper, with characteristic impurities of the scrap, but predominantly the metal is concentrated, which makes this residue very attractive for recovery of copper. The extraction of metals from the foundry slag has several studies using leaching at atmospheric pressure using different leaching agents such as acids, bases and salts (Albrecht et al., 2004), and also with the use of high pressures in oxidative leaching (Curling et al., 2004; 2007, Li et al., 2008, 2009;). Banza et. al (2002) studied the recovery of copper from a primary copper smelter slag using sulfuric acid with hydrogen peroxide, obtaining a recovery of about 95% copper. Abdel Basir et. al. (1999) and Ahmed and Nayl (2016) evaluated the recovery of copper from brass smelter slag, with copper contents averaging 20%, using leaching with sulfuric, nitric and hydrochloric acids with hydrogen peroxide and the recovery was above 98% Cu. Yang Zhang et. al (2010) used sulfuric acid and sodium chloride to extract copper, zinc and cobalt from copper smelting slag (1.35% Cu) obtaining a recovery of 98, 97 and 89% respectively. Nadirov R. et. al, using ammonium chloride at 320°C, extracted 91.5, 89.7 and 88.9% of Zn, Cu and Fe respectively, leaching a primary copper smelting slag. In this context, the present work aims to characterize chemically, mineralogically and dangerousness a slag from secondary copper smelting and study the leaching technique to extract the copper. 2. EXPERIMENTAL The slag used in this work was collected from a copper scrap smelter used in the production of copper electrolytic powder. Currently, the waste is stored inside the company, in large "bags" that correspond to different batches of foundry. Samples of different bags were collected, thus reproducing the random characteristics of the process. The flowchart of the steps of this study are shown in Figure 1. First, the samples were comminuted in a hammer mill and a knife mill. For the mineralogical analysis, the manual grinding step, using a mortar and pistil, was also performed. Sardinia 2017 / Sixteenth International Waste Management and Landfill Symposium / 2 - 6 October 2017 Figure 1 - Flowchart of the experimental stages 2.1 Hazardousness test The hazard assessment of the samples was carried out according to Brazilian Standard ABNT NBR 10.004 which classifies solid waste according to its potential risks to the environment in the following classes: hazardous (Class I) non-inert (Class II-A) and inert (Class II-B). The Brazilian Standard NBR 10.005 described the procedures to obtain the leached extract. The potential toxic elements investigated were: barium (Ba), cadmium (Cd), lead (Pb) and chromium (Cr). The equipment and the configuration of the hazard test are shown in Figure 2. Sardinia 2017 / Sixteenth International Waste Management and Landfill Symposium / 2 - 6 October 2017 Figure 2- Toxicity test equipment 2.2 Chemical and mineralogical characterization For the chemical analysis, samples with a particle size <2.0 mm were used previously. A 10 g aliquot was leached with 100 ml of nitric (p.a) and hydrochloric acid (p.a) in a ratio of 1: 3 respectively (aqua regia) for 2 hours at 70°C. The solution was filtered and the leached extract was sent for ICP-OES analysis. For the mineralogical analysis a particle size less than 0.074 mm (250 mesh) was used, homogenized and submitted to X-ray diffraction (XRD) analysis. 2.3 Leaching After the characterization of the material, the leaching was started in order to extract the copper. The leaching agent chosen was sulfuric acid (98% w / w H2SO4) isolated or mixed with hydrogen peroxide (3% w / w H2O2) based on previous works cited in the literature about extraction of copper from metallic slag. The leaching was performed using a condenser and magnetic stirrer with heating, as shown in Figure 3. Figure 3- Leaching test configuration. The first tests were performed using only a solution of sulfuric acid at low concentrations (5 - 30%), prepared in a liquid solid ratio of 1:10, for 120 minutes. The parameters tested are shown in Table 1. Sardinia 2017 / Sixteenth International Waste Management and Landfill Symposium / 2 - 6 October 2017 Table 1 - Parameters used in leaching with diluted H2SO4 Sample Temperature [°C] Concentraation H2SO4 (% v.v.) A1 5 A2 25 15 A3 30 A4 5 A5 70 15 A6 30 After, a concentrated sulfuric acid (p.a.), prepared in a liquid solid ratio of 1: 5, was used. The parameters evaluated are shown in Table 2. Table 2 - Parameters used in leaching with concentrated H2SO4. Sample Temperature[°C] Time [min] L1 120 L2 70 240 L3 360 L4 25 120 L5 240 In sequence, tests were carried out with a solution of sulfuric acid and hydrogen peroxide, prepared in a liquid solid ratio of 1:10 at a temperature of 70°C. The evaluated parameters are shown in Table 3. Table 3 - Parameters used in the leaching with H2SO4 and H2O2. Sample Concentration Concentration Time H2SO4 [%v.v.] H2O2 [% v.v.] [Min] H1/H10 5 1 120/360 H2/H11 15 1 120/360 H3/H12 30 1 120/360 H4/H13 5 2 120/360 Sardinia 2017 / Sixteenth International Waste Management and Landfill Symposium / 2 - 6 October 2017 H5/H14 15 2 120/360 H6/H15 30 2 120/360 H7/H16 5 5 120/360 H8/H17 15 5 120/360 H9/H18 30 5 120/360 3. RESULTS AND DISCUSSION 3.1 Hazardousness Test The results of the analysis of the extract obtained through NBR 10005 are presented in Table 4. Table 4 - Results of hazardousness analysis Parameter Unit Results MDL A B Barium mg/L 0,102 ND 0.023 Cadmium % ND ND 0.003 Lead mg/L 1,65 1,92 0.042 Chrome mg/L ND ND 0.009 MDL = maximum detection limit - ND = not detected The limits of maximum concentration allowed by the Brazilian standard, to the elements evaluated in the slag, in the extract obtained by the leaching test are presented in table 5. Comparing Tables 4 and 5, it is possible to verified that the lead concentration is above tha the maximum limit of the standard. Since this parameter (lead) the waste (slag) should be classified as: Class I - Hazardous. Table 5 - Limit concentration fixed in standard NBR 10004 Parameter Allowed limit mg/L Barium 70.0 Cadmium 0.5 Lead 1.0 Chrome 5.0 3.2 Chemical and mineralogical characterization The results from the chemical analysis are presented in Table 6. Sardinia 2017 / Sixteenth International Waste Management and Landfill Symposium / 2 - 6 October 2017 Table 6 - Composition of slag Component Al Ca Cu Fe Pb Si % 0.1 0.21 23 3.1 1.3 1.7 The elements shown in Table 6 are those that are present in greater quantity or which are of interest forrecycling.
Recommended publications
  • Principles of Extractive Metallurgy Lectures Note
    PRINCIPLES OF EXTRACTIVE METALLURGY B.TECH, 3RD SEMESTER LECTURES NOTE BY SAGAR NAYAK DR. KALI CHARAN SABAT DEPARTMENT OF METALLURGICAL AND MATERIALS ENGINEERING PARALA MAHARAJA ENGINEERING COLLEGE, BERHAMPUR DISCLAIMER This document does not claim any originality and cannot be used as a substitute for prescribed textbooks. The information presented here is merely a collection by the author for their respective teaching assignments as an additional tool for the teaching-learning process. Various sources as mentioned at the reference of the document as well as freely available material from internet were consulted for preparing this document. The ownership of the information lies with the respective author or institutions. Further, this document is not intended to be used for commercial purpose and the faculty is not accountable for any issues, legal or otherwise, arising out of use of this document. The committee faculty members make no representations or warranties with respect to the accuracy or completeness of the contents of this document and specifically disclaim any implied warranties of merchantability or fitness for a particular purpose. BPUT SYLLABUS PRINCIPLES OF EXTRACTIVE METALLURGY (3-1-0) MODULE I (14 HOURS) Unit processes in Pyro metallurgy: Calcination and roasting, sintering, smelting, converting, reduction, smelting-reduction, Metallothermic and hydrogen reduction; distillation and other physical and chemical refining methods: Fire refining, Zone refining, Liquation and Cupellation. Small problems related to pyro metallurgy. MODULE II (14 HOURS) Unit processes in Hydrometallurgy: Leaching practice: In situ leaching, Dump and heap leaching, Percolation leaching, Agitation leaching, Purification of leach liquor, Kinetics of Leaching; Bio- leaching: Recovery of metals from Leach liquor by Solvent Extraction, Ion exchange , Precipitation and Cementation process.
    [Show full text]
  • Calcium-Looping Performance of Steel and Blast Furnace Slags for Thermochemical Energy Storage in Concentrated Solar Power Plants
    View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by idUS. Depósito de Investigación Universidad de Sevilla Calcium-Looping performance of steel and blast furnace slags for Thermochemical Energy Storage in Concentrated Solar Power plants Jose Manuel Valverde a*, Juan Miranda-Pizarroa,c, Antonio Perejónb,c, Pedro E. Sánchez-Jiménezc, Luis A. Pérez-Maquedac aFacultad de Fisica, Universidad de Sevilla, Avenida Reina Mercedes s/n, 41012 Sevilla, Spain. bDepartamento de Química Inorgánica, Facultad de Química, Universidad de Sevilla, C. Prof. García González 1, Sevilla 41071, Spain. cInstituto de Ciencia de Materiales de Sevilla (C.S.I.C. - Universidad de Sevilla). C. Américo Vespucio 49, Sevilla 41092, Spain. Abstract The Calcium Looping (CaL) process, based on the carbonation/calcination of CaO, has been proposed as a feasible technology for Thermochemical Energy Storage (TCES) in Concentrated Solar Power (CSP) plants. The CaL process usually employs limestone as CaO precursor for its very low cost, non-toxicity, abundance and wide geographical distribution. However, the multicycle activity of limestone derived CaO under relevant CaL conditions for TCES in CSP plants can be severely limited by pore plugging. In this work, the alternative use of calcium-rich steel and blast furnace slags after treatment with acetic acid is investigated. A main observation is that the calcination temperature to regenerate the CaO is significantly reduced as compared to limestone. Furthermore, the multicycle activity of some of the slags tested at relevant CaL conditions for TCES remains high and stable if the treated samples are subjected to filtration. This process serves to remove silica grains, which helps decrease the porosity of the CaO resulting from calcination thus mitigating pore plugging.
    [Show full text]
  • Effects of Copper on the Cupellation of Silver
    Scholars' Mine Bachelors Theses Student Theses and Dissertations 1908 Effects of copper on the cupellation of silver Charles A. Baker Miles Sedivy Follow this and additional works at: https://scholarsmine.mst.edu/bachelors_theses Part of the Mining Engineering Commons Department: Mining Engineering Recommended Citation Baker, Charles A. and Sedivy, Miles, "Effects of copper on the cupellation of silver" (1908). Bachelors Theses. 240. https://scholarsmine.mst.edu/bachelors_theses/240 This Thesis - Open Access is brought to you for free and open access by Scholars' Mine. It has been accepted for inclusion in Bachelors Theses by an authorized administrator of Scholars' Mine. This work is protected by U. S. Copyright Law. Unauthorized use including reproduction for redistribution requires the permission of the copyright holder. For more information, please contact [email protected]. bl.':~M J1IJ!(JWI.'.~1.. ""'~tlION T ,~~. ][VI'ECTS Ol~ COPP}1~H OU TIm CUPlilJJJAT Ion OF SI J~VER • Charles A. Baker Miles Sedivy. MSM til~ t~lCrlt. \lYj,M.cmloi\l (1) ::.:.. :.. : -~..-. : ...... "' .. " : .. ~ --- The ob~iect of this work is to rind--t-he effec't o~ coppa- in - .. = : : .... : - - .. tbe cupellation of silver. - .. Our Method of attack was: 1st. To find the effect of varying the amount of copper with constant lead and constant temperature. 2nd. Effect in cupel"' ation of varying the temperature and the lead in the presence of a constant amount of copper. 3rd. To detecnine the rate at which the copper is removed during cupellation. R.W.Lodge in his book on Assaying states,"If a lead button contains much copper,CuO will be formed with the PbO and this,when absorbed by the cupel,seems to take silver with it into the cupe1.· 2 ~ a....
    [Show full text]
  • Hydrometallurgy – the Basis of Radiochemistry
    The Interaction Between Nuclear Chemistry and Hydrometallurgy A Strategy for the Future By Tor Bjørnstad and Dag Øistein Eriksen April 2013 A short history of radiochemistry • 1898: Marie and Pierre Curie discovered Po and Ra by chemical separations of dissolved uranium ore • 1923: de Hevesy uses 212Pb as a tracer to follow the absorption in the roots, stems and leaves of the broad bean • 1929: Ellen Gleditsch appointed professor in inorganic chemistry. Established radiochemistry in Norway in 1916. • 1938: Hahn proves fission of uranium as Ba is separated from irradiated uranium solution • 1940: First transurane produced: Np by McMillan and Abelson • Nuclear power requires separation of fission products Primus.inter.pares AS Nuclear chemistry has contributed to the development of hydrometallurgy The need for safe, remote handling of the laborious separations required in the nuclear sector boosted innovation in: • Solvent extraction: – Continuous, counter current process enabled large quantities to be processed – Contactors like mixer-settlers were developed • Ion exchange to perform difficult purifications Primus.inter.pares AS Hydrometallurgy and nuclear chemistry Nuclear (radio-)chemistry offers special methods useful in hydrometallurgy: • Use of radioactive tracers, i.e. radioactive isotopes of the elements studied – Particularly important in liquid-liquid extraction • Neutron activation can be used on all phases: solid, aqueous-, organic phases (and gas) • AKUFVE-method very efficient in measuring extraction kinetics • Many "hydrometallurgical" elements have suitable isotopes for use as tracers – In addition, e.g. Eu(III) can be used as tracer for Am(III), and 3+ 3+ Nd has equal ionic radius as Am Primus.inter.pares AS Some strategic metals • Lithium for batteries – Scarcity of Li may be a reality.
    [Show full text]
  • Enhancing the Flotation Recovery of Copper Minerals in Smelter Slags
    Heliyon 6 (2020) e03135 Contents lists available at ScienceDirect Heliyon journal homepage: www.cell.com/heliyon Research article Enhancing the flotation recovery of copper minerals in smelter slags from Namibia prior to disposal V. Sibanda a, E. Sipunga a, G. Danha b, T.A. Mamvura b,* a School of Chemical and Metallurgical Engineering, University of the Witwatersrand, Johannesburg, Private Bag 3, Wits, 2050, South Africa b Department of Chemical, Materials and Metallurgical Engineering, Faculty of Engineering and Technology, Botswana International University of Science and Technology, Plot 10071, Boseja Ward, Private Bag 16, Palapye, Botswana ARTICLE INFO ABSTRACT Keywords: Namibia Custom Smelters (NCS) process a range of copper concentrates in their three furnaces, namely; top Metallurgical engineering submerged lance, copper converter and reverberatory furnaces, in order to produce mattes and fayalitic slags. The Materials characterization copper content of the slags range between 0.8 to 5 wt. % and this is considered too high for disposal to the Degradation environment. Currently, the slags are sent to a milling and flotation plant for liberation and recovery of residual Metallurgical process copper. The copper recoveries realized in the plant are much lower than expected and it has been postulated that Metallurgy fi fl fi Materials property some copper minerals may be occurring in forms that are more dif cult to oat like oxides or ne disseminations Top submerged lance in the gangue matrix. Mineralogical analysis of the slag samples was done using X-Ray Diffraction (XRD) and Converter slag Scanning Electron Microscopy (SEM) techniques. The analysis did not reveal the presence of copper oxide min- Reverbetory furnace slag erals, however most scans showed copper sulphide minerals as free grains and some finely disseminated in Copper recovery fayalite gangue.
    [Show full text]
  • Flotation of Copper Sulphide from Copper Smelter Slag Using Multiple Collectors and Their Mixtures
    International Journal of Mineral Processing 143 (2015) 43–49 Contents lists available at ScienceDirect International Journal of Mineral Processing journal homepage: www.elsevier.com/locate/ijminpro Flotation of copper sulphide from copper smelter slag using multiple collectors and their mixtures Subrata Roy a,⁎, Amlan Datta b, Sandeep Rehani c a Aditya Birla Science and Technology Company Ltd., Taloja, Maharashtra, India b Formerly with Aditya Birla Science and Technology Company Ltd., Taloja, Maharashtra, India. c Birla Copper, Dahej, Gujarat, India article info abstract Article history: Present work focuses on the differences in the performances obtained in the froth flotation of copper smelter Received 14 August 2014 slag with multiple collector viz. sodium iso-propyl xanthate (SIPX), sodium di-ethyl dithiophosphate (DTP) Received in revised form 11 February 2015 and alkyl hydroxamate at various dosages. Flotation tests were carried out using single collectors as well as var- Accepted 20 August 2015 ious mixtures of the two collectors at different but constant total molar concentrations. Flotation performances Available online 28 August 2015 were increased effectively by the combination of collectors. The findings show that a higher copper recovery (84.82%) was obtained when using a 40:160 g/t mixture of sodium iso-propyl xanthate (SIPX) with di-ethyl Keywords: Flotation dithiophosphate compared to 78.11% with the best single collector. Similar recovery improvement (83.07%) Copper slag was also observed by using a 160:40 g/t mixture of sodium iso-propyl xanthate (SIPX) with alkyl hydroxamate. Sodium isobutyl xanthate The results indicate that in both cases DTP and alkyl hydroxamate played important role as co-collector with SIPX Hydroxamate for the recovery of coarse interlocked copper bearing particles and has an important effect on the behaviour of Dithiophosphate the froth phase.
    [Show full text]
  • Xstrata Technology Update Edition 13 – April 2012 Building Plants That Work
    xstrata technology update Edition 13 – April 2012 Building plants that work You have to get a lot of things it takes another operator to get them right to build a plant that works. right. Someone who has lived through the problems, had to do the maintenance, operated during a midnight power Of course the big picture must be right – doing the right project, in the right place, failure, cleaned up the spill. Someone at the right time. who has “closed the loop” on previous designs; lived with previous decisions After that, the devil is in the detail. You and improved them, over and over. need a sound design, good execution, good commissioning, and ongoing This is why Xstrata Technology provides support after commissioning. You need a technology “package”. Just as a car to operate and maintain your plant in is more than an engine, technology is the long run, long after the construction more than a single piece of equipment. company has left. That’s when all the Technology is a system. All the elements “little” details become important – how of the system have to work with each easy is it to operate, how good is the other and with the people in the plant. maintenance access, what happens in We want our cars designed by people a power failure, where are the spillage who love cars and driving. So should points and how do we clean them our plants be designed by people with up? Are the instruments reliable and experience and passion to make each is the process control strategy robust one work better than the last.
    [Show full text]
  • Bioleaching for Copper Extraction of Marginal Ores from the Brazilian Amazon Region
    metals Article Bioleaching for Copper Extraction of Marginal Ores from the Brazilian Amazon Region Dryelle Nazaré Oliveira do Nascimento 1,†, Adriano Reis Lucheta 1,† , Maurício César Palmieri 2, Andre Luiz Vilaça do Carmo 1, Patricia Magalhães Pereira Silva 1, Rafael Vicente de Pádua Ferreira 2, Eduardo Junca 3 , Felipe Fardin Grillo 3 and Joner Oliveira Alves 1,* 1 SENAI Innovation Institute for Mineral Technologies, National Service for Industrial Training (SENAI), Belém, PA 66035-405, Brazil; [email protected] (D.N.O.d.N.); [email protected] (A.R.L.); [email protected] (A.L.V.d.C.); [email protected] (P.M.P.S.) 2 Itatijuca Biotech, São Paulo, SP 05508-000, Brazil; [email protected] (M.C.P.); [email protected] (R.V.d.P.F.) 3 Graduate Program in Materials Science and Engineering, Universidade do Extremo Sul Catarinense (Unesc), Criciúma, SC 88806-000, Brazil; [email protected] (E.J.); [email protected] (F.F.G.) * Correspondence: [email protected] † These authors contributed equally to this work. Received: 5 December 2018; Accepted: 8 January 2019; Published: 14 January 2019 Abstract: The use of biotechnology to explore low-grade ore deposits and mining tailings is one of the most promising alternatives to reduce environmental impacts and costs of copper extraction. However, such technology still depends on improvements to be fully applied in Brazil under industrial scale. In this way, the bioleaching, by Acidithiobacillus ferrooxidans, in columns and stirred reactors were evaluated regarding to copper extraction of a mineral sulfide and a weathered ore from the Brazilian Amazon region.
    [Show full text]
  • Hydrometallurgical Processing of Manganese Ores: a Review
    Journal of Minerals and Materials Characterization and Engineering, 2014, 2, 230-247 Published Online May 2014 in SciRes. http://www.scirp.org/journal/jmmce http://dx.doi.org/10.4236/jmmce.2014.23028 Hydrometallurgical Processing of Manganese Ores: A Review Alafara A. Baba1,2*, Lateef Ibrahim1*, Folahan A. Adekola1, Rafiu B. Bale2, Malay K. Ghosh3, Abdul R. Sheik3, Sangita R. Pradhan3, Olushola S. Ayanda4, Ismail O. Folorunsho2 1Department of Industrial Chemistry, University of Ilorin, Ilorin, Nigeria 2Department of Geology and Mineral Sciences, University of Ilorin, Ilorin, Nigeria 3Hydro & Electrometallurgy Department, Institute of Minerals and Materials Technology, Bhubaneswar, India 4Department of Chemistry, Faculty of Applied Sciences, Cape Peninsula University of Technology, Cape Town, South Africa Email: *[email protected], *[email protected] Received 26 January 2014; revised 2 March 2014; accepted 12 March 2014 Copyright © 2014 by authors and Scientific Research Publishing Inc. This work is licensed under the Creative Commons Attribution International License (CC BY). http://creativecommons.org/licenses/by/4.0/ Abstract Hydrometallurgy is the most suitable extractive technique for the extraction and purification of manganese as compared to all other techniques including biometallurgy and pyrometallurgical processes. In the hydrometallurgical processing of manganese from its ore, the leach liquors often contain divalent ions such as iron, manganese, copper, nickel, cobalt and zinc along with other impurities which make manganese very difficult to separate. The processes employed for solu- tion concentration and purification in the hydrometallurgical processing of manganese include precipitation, cementation, solvent extraction and ion exchange. Solvent extraction also proves more efficient and it plays vital roles in the purification and separation of the manganese as com- pared to all other techniques.
    [Show full text]
  • REFERENCE GUIDE to Treatment Technologies for Mining-Influenced Water
    REFERENCE GUIDE to Treatment Technologies for Mining-Influenced Water March 2014 U.S. Environmental Protection Agency Office of Superfund Remediation and Technology Innovation EPA 542-R-14-001 Contents Contents .......................................................................................................................................... 2 Acronyms and Abbreviations ......................................................................................................... 5 Notice and Disclaimer..................................................................................................................... 7 Introduction ..................................................................................................................................... 8 Methodology ................................................................................................................................... 9 Passive Technologies Technology: Anoxic Limestone Drains ........................................................................................ 11 Technology: Successive Alkalinity Producing Systems (SAPS).................................................. 16 Technology: Aluminator© ............................................................................................................ 19 Technology: Constructed Wetlands .............................................................................................. 23 Technology: Biochemical Reactors .............................................................................................
    [Show full text]
  • Extraction of Copper at Elevated Feed Concentrations R.E
    SGS MINERALS SERVICES TECHNICAL PAPER 2003-07 2003 EXTRACTION OF COPPER AT ELEVATED FEED CONCENTRATIONS R.E. MOLNAR, N. VERBAAN –– SGS ABSTRACT A number of flowsheets have been designed and operated, or are currently being considered, to extract copper from leach solutions having much more copper than the 4 g/L levels typically found in heap leach liquors. Dealing with these solutions has required that the envelope for “normal” copper solvent extraction be pushed beyond the usually considered limits. Others have published information on flowsheets to recover copper from leach liquors containing over 25 g/L copper. Secondary solvent extraction circuits are often required to attain satisfactory overall recoveries. This paper reviews some of the issues faced in three pilot plant circuits that were operated by SGS Lakefield Research to produce cathode copper from solutions containing 8 to 20 g/L Cu. The primary objective was to maximize copper extraction using one solvent extraction circuit. The role of feed acidity and the disposition of impurities such as iron and chloride are considered. The challenges of running short SX piloting campaigns are discussed. INTRODUCTION In more recent years hydrometallurgy is finding wider application in the treatment of complex ores that contain copper. Very often, the plant will need to process a Copper solvent extraction was originally sulphide concentrate rather than an oxidised copper ore that is readily leached at developed in the 1960’s to recover ambient conditions. It is probably going to be using more aggressive oxidative leaching copper from relatively dilute leach methods, for example, oxygen pressure leaching. Higher percent solids are employed solutions, typically heap leach liquors in the leaching stages both to keep plant sizes as small as practically possible, and to with copper tenors in the 1 to 4 g/L ensure that the heating requirements of the process are being fully met by oxidising range.
    [Show full text]
  • Lecture 12 Converter Steelmaking Practice & Combined Blowing
    Lecture 12 Converter Steelmaking Practice & combined blowing Contents: Refining of hot metal Composition and temperature during the blow Physico-chemical interactions Developments in Top blown steelmaking practice Concept of bottom stirring in top blowing Top blowing attributes Characteristic feature of converter steelmaking Environmental issues in oxygen steelmaking Causes of high turnover rates of BOF Key words: Top blown steelmaking, combined blowing, bottom stirring, hot metal refining Refining of hot metal After the previous heat is tapped and slag is drained, lining is inspected. Scrap and hot metal are charged. Converter is tilted into the vertical position and the lance is lowered in the vessel to start the blowing. Selection of the starting lance distance is such that the concentration of the force at the bath level should not cause ejection of tiny iron particles (sparking) and at the same time maximum bath surface area is covered by the oxygen jet. The starting lance distance(Xi) for specific oxygen blowing Nm 3 3 rate ton ×min can be calculated by 1.04 Xi = 0.541(db) db is bath diameter in meter. For 150 Tons converter, db = 4.87 m and Xi = 2.8 m, when oxygen flow rate in approximately 450 Nm3/min. Initially oxygen is blown soft by keeping lance distance higher to promote slag formation and to avoid ejection of small particles, because hot metal is not covered by slag. Lime may be added either at the beginning of the blow or in portion during the blow. Oxygen is blown for nearly 15-20 minutes by progressively decreasing the lance distance such that slag foaming remains under control and oxidation reactions occur uninterruptedly.
    [Show full text]