ANDJUS, L. & Z.ADAMOV1C, 1986. IS&Zle I Ogrozene Vrste Odonata U Siroj Okolin

Total Page:16

File Type:pdf, Size:1020Kb

ANDJUS, L. & Z.ADAMOV1C, 1986. IS&Zle I Ogrozene Vrste Odonata U Siroj Okolin OdonatologicalAbstracts 1985 NIKOLOVA & I.J. JANEVA, 1987. Tendencii v izmeneniyata na hidrobiologichnoto s’soyanie na (12331) KUGLER, J., [Ed.], 1985. Plants and animals porechieto rusenski Lom. — Tendencies in the changes Lom of the land ofIsrael: an illustrated encyclopedia, Vol. ofthe hydrobiological state of the Rusenski river 3: Insects. Ministry Defence & Soc. Prol. Nat. Israel. valley. Hidmbiologiya, Sofia 31: 65-82. (Bulg,, with 446 col. incl. ISBN 965-05-0076-6. & Russ. — Zool., Acad. Sei., pp., pis (Hebrew, Engl. s’s). (Inst. Bulg. with Engl, title & taxonomic nomenclature). Blvd Tzar Osvoboditel 1, BG-1000 Sofia). The with 48-56. Some Lists 7 odon. — Lorn R. Bul- Odon. are dealt on pp. repre- spp.; Rusenski valley, sentative described, but checklist is spp. are no pro- garia. vided. 1988 1986 (12335) KOGNITZKI, S„ 1988, Die Libellenfauna des (12332) ANDJUS, L. & Z.ADAMOV1C, 1986. IS&zle Landeskreises Erlangen-Höchstadt: Biotope, i okolini — SchrReihe ogrozene vrste Odonata u Siroj Beograda. Gefährdung, Förderungsmassnahmen. [Extinct and vulnerable Odonata species in the broader bayer. Landesaml Umweltschutz 79: 75-82. - vicinity ofBelgrade]. Sadr. Ref. 16 Skup. Ent. Jugosl, (Betzensteiner Str. 8, D-90411 Nürnberg). 16 — Hist. 41 recorded 53 localities in the VriSac, p. [abstract only]. (Serb.). (Nat. spp. were (1986) at Mus., Njegoseva 51, YU-11000 Beograd, Serbia). district, Bavaria, Germany. The fauna and the status of 27 recorded in the discussed, and During 1949-1950, spp. were area. single spp. are management measures 3 decades later, 12 spp. were not any more sighted; are suggested. they became either locally extinct or extremely rare. A list is not provided. (12336) KOGNITZKI, S„ 1988. Untersuchungen zur Libellenfauna von neugeschaffenen Sekundärge- in (12333) RUSEV. B.K. [spelt also as Russev] & I.J. wässem Nürnberg und Umgebung. SchrReihebayer. Landesaml 79: 137-141. — JANEVA, 1986. Hidrobiologichenpregled na desniya Umweltschutz (Betzen- dunavski pritok Cibrica. — Hydrobiological review steiner Str. 8, D-90411 Nürnberg). of the right tributary ofthe Danube, the river Cibrica. In Reichswald nr Nürnberg, Bavaria, Germany, 7 Hidmbiologiya, Sofia28: 36-45. (Bulg., with Engl. & freshly created and 2 older man-made aquatic habitats Russ. s’s). — (Inst. Zool., Bulg. Acad. Sei., BlvdTzar were odonatol. exploredduring 1983-1985. Their fauna Osvoboditel I, BG-1000 Sofia). is assessed and discussed, and the impact of the envi- 6 odon. spp. are listed, from 9 sampling stations; — ronmental features of the habitats is pointed out. Cibrica R„ Bulgaria. (12337) PRASAD, M. & S.K. GHOSH, 1988. A contri- 1987 bution on the estuarine Odonata of East India. Rec. Tool. Surv. India 85(2): 197-216. - (Zool. Surv. In- B.K. M.I M New (12334) RUSEV. [spelt also as Russev], dia, Block, Alipore, Calcutta-700053, India). 294 Odonatological Abstracts 42 listed, of which 7 records for and danae the considered. spp, are spp. are new Sympetrum are among spp. the estuarine West and that area of Bengal, 3 spp. for of Orissa. Field notes on adult behaviour are provided 1990 for some of them. (12342) BREJCHA.L., 1990. Pfispßvek k poznäni väzek Ceskomoravske — 1989 vrchoviny. Beitrag zur Kenntnis der Libellenfauna in der Umgebungvon Hlinsko-Velke (12338) ARORA, G.S. & M.Z. ANSARI, 1989. Bibli- Däfko, Böhmischmährisches Bergland.Zpr. isl. Spot, ography ofIndian zoology, Vol. 24. Zool. Surv. India, enl. 26: 61-65. (Czech, with Germ. s.). - (Erbenova Calcutta, viii+208 3, CZ-78701 pp. Sumperk). Lists the 1981 titles, and includes 10 odonatol. en- 33 spp., evidenced at 4 localities during 1962-1969, tries, some with abstracts. Hindi (devanagari) titles are are listed and concise habitat descriptionsare provided; transliterated, but not translated. — Czech Republic. (12339) JANEVA, U. & B.K. RUSEV, 1989. Sapro- (12343) CARVALHO, A.L., 1990.Aspectos de biologia, biologichno s’stoyanie na r. Isk'r v p’rvite godinisled morfologia e ontogenia da larva de Coryphaeschna vlizane v eksploataciya na Sofiyskata prechistvatelna perrensi (MeLachlan,, 1887) (Insecla, Odonata), com slanciya. — Saprobiological state of the Iskar River algumas consider{desfilogeneticas.Diss. de mestrado, in the initial the into Univ. Fed. Rio de Janeiro. — years following putting opera- x+108 pp. (Port.). (Depto tion of the Sofia purifying station. Hidrobiologiya, Ent., Mus. Nac., UFRJ, Caixa Postal 68044, BR- Sofia 34: 3-19. (Bulg., with Engl. & Russ. s’s). - -21944-970 Cidade Universitaria, Rio de Janeiro,RJ). Osvoboditel For based this work 04 (Inst. Zool., Bulg. Acad. Sei., Blvd Tzar a journal paper on see 8943. 1, BG-1000 Sofia). The Iskar R. has been studied at 11 stations, above (12344) KULSHRESTHA, Anil K. & Ajay K. and below the city of Sofia. 6 odon. spp. are listed, all KULSHRESTHA, 1990. On a collection of damsel- from the lower stns. flies (Coenagrionidae: Odonata) from district Bharatpur (Rajasthan). Rec. zool. Surv. India 87(1): (12340) KUMAR, Arun, 1989. Studies on the life history 11-14. — (Dept Zool., Narain Coll., Shikohabad- ofIndian dragonflies: Orthetrum sabina sabina (Drury) -205135, U.P., India). Zool. Surv. list of 8 erubescens (Odonata: Libellulidae). Rec. India 85(4): A commented spp. Ceriagrion is 573-581. — (Northern Regn. Stn, Zool. Surv. India, for the first time recorded from India. Dehra Dun-248195, India). Reared from from E. & E. eggs, obtained a S at Gorakhpur (12345) SANDBERG, BONSDORFF, 1990. On (Dehra Dun, Uttar Pradesh; 26-111-1976), the princi- the structuring role of Saduria entomon (L.) on shal- pal changes in larval morphology duringthe develop- low water zoobenthos. Annls zool.fenn. 27: 279-284, described and illustrated. lasts — Zool. ment are Egg stage 10 (Tvärminne Stn, FIN-10900 Manko). Based the research OA days, there are 13 larval instars (prolarva inch), and on same as 12347, with com- in -99 In the field, statistical data Libellula the emergence took place 91 days. parative on quadrimaculata. the larval duration of summer generations(III-VI, VI- of winter 1991 -IX) is ca90 days, that the generation (X-V) ca 200 days. 1991. All (12346) MOFFETT, M.W., eyes on jumping (12341) WARREN, P.H., 1989. Spatial and temporal spiders. Nam. geogr. 180(3): 42-63. — (Author’s ad- variation in the structure of a freshwater food web. dress not stated). Oikos 55(3): 299-311. — (Dept Anim. & Plant Sei., A series ofphotographs, with comprehensive captions. Univ. Sheffield, Sheffield, SIO 2TN, UK). A 2-page photo shows the predation of Mopsus in identified Trophic interactions between benthic invertebrates mormon on a not zygopt. sp. in North a large freshwater pond Yorkshire, England labo- 1992 were established using analyses of gut contents, ratory feeding trails and published information. festes Aeshna SANDBERG, E. & E. BONSDORFF, 1992. Enallagma cyathigerum, sponsa, juncea (12347) Odonatological Abstracts 295 Competitionfor food between predators ofmarine and A detailed review of records (42 spp.) from 59 locali- with limnic origin; experiments with Saduria entomon ties, brought togetherduring 1992-1995, a brief (Isopoda) and Libellula quadrimaculata(Odonata). analysis ofthe fauna ofthe Podblanickoregion, Czech Proc. 12th Baltic Marine Biot. Symp., pp. 141-144. Republic. — (First Author: Tvärminne Zool. Stn, FIN-10900 Hanko). (12352) MOCEK, B„ M. KUDYN, L. CERVINKA, J. As and field enclosure J. evidenced by laboratory ex- HARTL, SUMPICH, J. ZELENY& L. BREJCHA, k entomofaunistickemu periments (Aland, N Baltic Sea), there are no signifi- 1995, Pfispevek vyzkumu in the in shallow — cant differences predationefficiency CHKO Zelezne hory. Contribution to the know- brackish waters between these 2 predators. The possi- ledge of insect fauna in Zelezne Hory Mts, Acta Mas. bility ofcompetition isevident, since they exhibit simi- reginaehradecensis (A) 24: 135-153. (Czech, with lar prey choice, and co-occur during some seasons. Engl, title). — (First Author: Muzeum vychodnich Cech, Eliscino nabr. 465, CZ-500-39 Hradec Krälove). 1994 Includes odon. records from 5 localities; — Zelezne Hory, Czech Republic. B.K. also 1994. (12348) RUSSEV, [spelt as Rusev], [Ed.], — 1995. Kilka odonatolo- Limnologiya na b’lgarskite dunavski pritoci. (12353) TONCZYK, G„ porad der Limnologie bulgarischen Donauzufliisse. Paper gicznych czyli o tym, jak zbierac, przechowywac, ISBN with Tiger, Sofia. 255 pp. none. (Bulg., Germ. hodowac i opracowywac wazki (Odonata). 2. Jak s.). zbierac larwy wazek — [Collecting the larvae]; — 3. 26 odon. spp. are listed from 13 Danube tributaries in Przechowywanie zbioröw [Specimen preservation]; — Bulgaria. 4. Hodowla wazek [Dragonfly breeding]. Biul. ent. 3(1): 4-5; (2): 2-4; (3): 4-5. (Pol.). — (Inst. Invert. (12349) TONCZYK, G„ 1994. Kilka porad odonato- Zool, & Hydrobiol., Lodz Univ., Ul, S. Banacha 12/ logicznych czyli o tym, jak zbierac, przechowywac, 16, PO-90-237 Lodz). hodowac i wazki 1. Jak Continuation of the series from OA 12349. opracowywac (Odonata). zbierac owady doskonale? — [Some odonatological how 1995. suggestions, as to collect, preserve specimens, (12354) TONCZYK, G., Owady prawnie breed and work out the dragonflies. I. Collecting the chronione: jak chronic wazki (Odonata). — [Legal in- adults].Biul. ent. 2(2): 2-4. (Pol.). — (Inst. Invert. Zool. sect protection: how to protect dragonflies(Odonata)]. & Hydrobiol., Lodz Univ., Ul. S. Banacha 12/16, PO- Biul. ent. 3(5): 6-7. (Pol.). — (Inst. Invert. Zool. & -90-237 Lodz). Hydrobiol., Lodz Univ., Ul. S. Banacha 12/16, PO- Practical hints and suggestions, directed at
Recommended publications
  • 1 June 2021 Researchgate: Researchgate.Net/Profile
    DAVID OUTOMURO PRIEDE, PH.D. CURRICULUM VITAE June 2021 Researchgate: researchgate.net/profile/David_Outomuro ORCID: orcid.org/0000-0002-1296-7273 EDUCATION Ph.D. 2011 University of Oviedo, Spain (Biology). Summa cum laude. (Dr. Francisco J. Ocharan) B.S. 2005 University of Oviedo, Spain (Biology). Valedictorian. PROFESSIONAL EXPERIENCE Aug 2017- Aug 2021 Postdoctoral researcher, Dept. Biological Sciences, University of Cincinnati, USA (Dr. Nathan Morehouse) Jul 2015-Jun 2017 Postdoctoral researcher, Evolutionary Biology Centre, Uppsala University, Sweden (Drs. Frank Johansson, Anders Ödeen, & Karin Nordström) Jul 2014-Jul 2015 Visiting Professor, Dept. Ciencias Biológicas, Universidad de los Andes, Colombia Nov 2011-Dec 2013 Postdoctoral researcher, Evolutionary Biology Centre, Uppsala University, Sweden (Dr. Frank Johansson) Jun 2006-May 2010 Graduate researcher and Teaching assistant, Dept. Biología de Organismos y Sistemas, University of Oviedo, Spain (Dr. Francisco J. Ocharan) Jul 2005-Aug 2005 Intern, Servicio Regional de Investigación y Desarrollo Agroalimentario de Asturias (SERIDA), Spain (Dr. Isabel Feito Díaz) Sep 2004-Jun 2005 Undergraduate research fellow, Dept. Biología de Organismos y Sistemas, University of Oviedo, Spain (Dr. Francisco J. Ocharan) RESEARCH INTERESTS I am a behavioral ecologist, interested in the micro- and macroevolutionary processes that promote diversity. My research has explored questions on the evolution of color signals, color vision, and flight morphology. I am particularly interested in understanding the evolution of color signals, how they are perceived by intended and unintended receivers and the role of these audiences in driving population and species divergence. I also study the evolution of flight morphology because wings are large conspicuous body surfaces that can be also used as motion signal vehicles for intra- and interspecific communication.
    [Show full text]
  • The Japanese Dragonfly-Fauna of the Family Libellulidae
    ZOBODAT - www.zobodat.at Zoologisch-Botanische Datenbank/Zoological-Botanical Database Digitale Literatur/Digital Literature Zeitschrift/Journal: Deutsche Entomologische Zeitschrift (Berliner Entomologische Zeitschrift und Deutsche Entomologische Zeitschrift in Vereinigung) Jahr/Year: 1922 Band/Volume: 1922 Autor(en)/Author(s): Oguma K. Artikel/Article: The Japanese Dragonfly-Fauna of the Family Libellulidae. 96-112 96 Deutsch. Ent. Zeitschr. 1922. The Japanese Dragonfly-Fauna of the FamilyLibellulidae. By K. Oguina, Sapporo. (With Plate 2.) Concerning our fundamental knowledge of the Japanese fauna of dragonflies, we owe to the works of De Selys-Longchamps. His first work appeared some thirty years ago under the title „Les Odonates du Japon“ *); in this monographic list the author enumerates 67 species, of which 27 are represented by Libellulidae. This publication was followed by a second paper entitled „Les Odonates recueillis aux iles Loo-Choo“ 2),* in which 10 additional species are described , and of these 6 are Libellulidae. Needham, Williamson, and Foerster published some studies on Japanese dragonflies in several papers. Quite recently Prof. Matsumura 3) des­ cribes the dragonflies from Saghalin together with other insects occuring on that island. An elaborate work on Libellulidae is in the course of publication4), by which our knowledge on this fauna is widely extended, though I find that many species of this family are yet spared in this work. So far as I am aware, in these works are represented those Japanese dragonflies which are hitherto known. They are 48 species in number. At present our empire is greatly added in its area, so that it is extended from the high parallel of 50° north to the tropic cancer, containing those various parts of locality which are almost not yet explored.
    [Show full text]
  • Diversity and Distribution of Odonata in University Sumatera Utara, Medan, Indonesian
    INTERNATIONAL JOURNAL OF SCIENTIFIC & TECHNOLOGY RESEARCH VOLUME 5, ISSUE 05, MAY 2016 ISSN 2277-8616 Diversity And Distribution Of Odonata In University Sumatera Utara, Medan, Indonesian Ameilia Zuliyanti Siregar, Darma Bakti Abstract: A total of nine stations randomly selected study sites around the University Sumatera Utara area conducted during a month (16 January 2016 until 16 February 2016) for identified of Odonata. Odonata are insect which function as bioindicator and conservation of an environment status in the area. The sampled were collected using a sweep net (400 μm mesh, 60 cm x 90 cm) with six times the swing starts at 0900 until 1200 noon hour and identified in the laboratory. Consist of two sub-orders, 4 families, 24 genera, 32 species and 156 individuals identified dragonfly. Orthetrum sabina, Pantala flavescens and Agriocnemis femina are the kinds of dragonflies dominant, while two types of Vestalis/Arethystira amoena and Tholymis aurora is found only in the Station 3. As much as 54% relative abundance of family Coenagrionidae dominated, followed by Libellulidae (35%), Gomphidae (8%) and the smallest recorded from family Calopterygidae (35). The calculation of the value of the index is done, includes diversity Shannon, eveness and varied of Jaccard index (H'=2.48-3.79, E=0.70-0.85, CJ=0.45 to 1.00). Based on the conservation status, calculated the percentage of attendance dragonfly, divided into four groups of species that are rare (6.28%), there are species (54.24%), many species (24.78%) and very many species (14.70%). This study shows diversity and distribution of Odonata can used as potential as predators and conservation status of ecosystem University of Sumatera Utara areas.
    [Show full text]
  • Conducting Baseline Studies for Thane Creek
    Conducting baseline studies for Thane Creek Project report submitted to Mangrove Cell, Maharashtra & GIZ, Mumbai Office. by Sálim Ali Centre for Ornithology and Natural History (SACON) Anaikatty (PO), Coimbatore - 641108, Tamil Nadu In collaboration with B.N. Bandodkar College of Science, Thane Conducting baseline studies for Thane Creek Project report submitted to Mangrove Cell, Maharashtra & GIZ, Mumbai Office. Project Investigator Dr. Goldin Quadros Co-Investigators Dr. P.A. Azeez, Dr. Mahendiran Mylswamy, Dr. Manchi Shirish S. In Collaboration With Prof. Dr. R.P. Athalye B.N. Bandodkar College of Science, Thane Research Team Mr. Siddhesh Bhave, Ms. Sonia Benjamin, Ms. Janice Vaz, Mr. Amol Tripathi, Mr. Prathamesh Gujarpadhaye Sálim Ali Centre for Ornithology and Natural History (SACON) Anaikatty (PO), Coimbatore - 641108, Tamil Nadu 2016 Acknowledgement Thane creek has been an ecosystem that has held our attention since the time we have known about its flamingos. When we were given the opportunity to conduct The baseline study for Thane creek” we felt blessed to learn more about this unique ecosystem the largest creek from asia. This study was possible due to Mr. N Vasudevan, IFS, CCF, Mangrove cell, Maharashtra whose vision for the mangrove habitats in Maharashtra has furthered the cause of conservation. Hence, we thank him for giving us this opportunity to be a part of his larger goal. The present study involved interactions with a number of research institutions, educational institutions, NGO’s and community, all of whom were cooperative in sharing information and helped us. Most important was the cooperation of librarians from all the institutions who went out of their way in our literature survey.
    [Show full text]
  • Distribution Patterns of Odonate Assemblages in Relation to Environmental Variables in Streams of South Korea
    insects Article Distribution Patterns of Odonate Assemblages in Relation to Environmental Variables in Streams of South Korea Da-Yeong Lee 1, Dae-Seong Lee 1, Mi-Jung Bae 2, Soon-Jin Hwang 3 , Seong-Yu Noh 4, Jeong-Suk Moon 4 and Young-Seuk Park 1,5,* 1 Department of Biology, Kyung Hee University, Seoul 02447, Korea; [email protected] (D.-Y.L.); [email protected] (D.-S.L.) 2 Freshwater Biodiversity Research Bureau, Nakdonggang National Institute of Biological Resources, Sangju, Gyeongsangbuk-do 37242, Korea; [email protected] 3 Department of Environmental Health Science, Konkuk University, Seoul 05029, Korea; [email protected] 4 Water Environment Research Department, Watershed Ecology Research Team, National Institute of Environmental Research, Incheon 22689, Korea; [email protected] (S.-Y.N.); [email protected] (J.-S.M.) 5 Department of Life and Nanopharmaceutical Sciences, Kyung Hee University, Seoul 02447, Korea * Correspondence: [email protected]; Tel.: +82-2-961-0946 Received: 20 September 2018; Accepted: 25 October 2018; Published: 29 October 2018 Abstract: Odonata species are sensitive to environmental changes, particularly those caused by humans, and provide valuable ecosystem services as intermediate predators in food webs. We aimed: (i) to investigate the distribution patterns of Odonata in streams on a nationwide scale across South Korea; (ii) to evaluate the relationships between the distribution patterns of odonates and their environmental conditions; and (iii) to identify indicator species and the most significant environmental factors affecting their distributions. Samples were collected from 965 sampling sites in streams across South Korea. We also measured 34 environmental variables grouped into six categories: geography, meteorology, land use, substrate composition, hydrology, and physicochemistry.
    [Show full text]
  • Pan-African Sympetrine Libellulid Brachythemis Leucosticta
    Odonalologica 20(1): 29-36 March I, 1991 ‘Accompanying’ behaviouras a means of prey acquisition by Brachythemis leucosticta (Burmeister) and other Anisoptera P.S. Corbet¹ and P.L. Miller² 'Department of Zoology, University of Edinburgh, West Mains Road, Edinburgh, EH9 3JT, United Kingdom department of Zoology, University of Oxford, South Parks Road, Oxford, OXI 3PS, United Kingdom Received November 14, 1990 / Accepted November 29, 1990 Adults of the B. leucosticta often pan-African sympetrine accompany large vertebrates moving slowly through open grassland or, less often, through shallow water. Such ‘accompanying’ behaviour, which is shown by solitary individuals and varies with groups, males and females, and immature and mature adults, respect to wind direction and substrate in ways that indicate that the vertebrate is usually the perceived as a token stimulus attracting dragonflies to places where small flying rendered of insects are accessible as prey. Certain and probable examples accom- panying behaviour in other Anisoptera are discussed. INTRODUCTION Adults of the pan-African sympetrine libellulid Brachythemis leucosticta insect with of animals appear to associate prey the presence large that thereby serve as ‘token stimuli’(CORBET, 1962). Both sexes are attracted towards, and fly close to, large vertebrates such as cattle, hippopotamuses and humans as they the often abundant. move slowly through open grassland where dragonflies are Such ‘following’ behaviour presumably enables the dragonflies to feed on the small insects that are made to fly up by the vertebrates’ movement. Noting ‘following’ behaviour near Lake Victoria at Entebbe, Uganda (0° S'N., 32° 29'E), inferred that the CORBET (1962, p. 154) initially dragonflies were responding and the view directly to a large moving object not to prey dislodged by it, a expressed also by WORTH (1962) from observations made in Natal, South Africa.
    [Show full text]
  • Development of Encyclopedia Boyong Sleman Insekta River As Alternative Learning Resources
    PROC. INTERNAT. CONF. SCI. ENGIN. ISSN 2597-5250 Volume 3, April 2020 | Pages: 629-634 E-ISSN 2598-232X Development of Encyclopedia Boyong Sleman Insekta River as Alternative Learning Resources Rini Dita Fitriani*, Sulistiyawati Biological Education Faculty of Science and Technology, UIN Sunan Kalijaga Jl. Marsda Adisucipto Yogyakarta, Indonesia Email*: [email protected] Abstract. This study aims to determine the types of insects Coleoptera, Hemiptera, Odonata, Orthoptera and Lepidoptera in the Boyong River, Sleman Regency, Yogyakarta, to develop the Encyclopedia of the Boyong River Insect and to determine the quality of the encyclopedia developed. The method used in the research inventory of the types of insects Coleoptera, Hemiptera, Odonata, Orthoptera and Lepidoptera insects in the Boyong River survey method with the results of the study found 46 species of insects consisting of 2 Coleoptera Orders, 2 Hemiptera Orders, 18 orders of Lepidoptera in Boyong River survey method with the results of the research found 46 species of insects consisting of 2 Coleoptera Orders, 2 Hemiptera Orders, 18 orders of Lepidoptera in Boyong River survey method. odonata, 4 Orthopterous Orders and 20 Lepidopterous Orders from 15 families. The encyclopedia that was developed was created using the Adobe Indesig application which was developed in printed form. Testing the quality of the encyclopedia uses a checklist questionnaire and the results of the percentage of ideals from material experts are 91.1% with very good categories, 91.7% of media experts with very good categories, peer reviewers 92.27% with very good categories, biology teachers 88, 53% with a very good category and students 89.8% with a very good category.
    [Show full text]
  • Nansei Islands Biological Diversity Evaluation Project Report 1 Chapter 1
    Introduction WWF Japan’s involvement with the Nansei Islands can be traced back to a request in 1982 by Prince Phillip, Duke of Edinburgh. The “World Conservation Strategy”, which was drafted at the time through a collaborative effort by the WWF’s network, the International Union for Conservation of Nature (IUCN), and the United Nations Environment Programme (UNEP), posed the notion that the problems affecting environments were problems that had global implications. Furthermore, the findings presented offered information on precious environments extant throughout the globe and where they were distributed, thereby providing an impetus for people to think about issues relevant to humankind’s harmonious existence with the rest of nature. One of the precious natural environments for Japan given in the “World Conservation Strategy” was the Nansei Islands. The Duke of Edinburgh, who was the President of the WWF at the time (now President Emeritus), naturally sought to promote acts of conservation by those who could see them through most effectively, i.e. pertinent conservation parties in the area, a mandate which naturally fell on the shoulders of WWF Japan with regard to nature conservation activities concerning the Nansei Islands. This marked the beginning of the Nansei Islands initiative of WWF Japan, and ever since, WWF Japan has not only consistently performed globally-relevant environmental studies of particular areas within the Nansei Islands during the 1980’s and 1990’s, but has put pressure on the national and local governments to use the findings of those studies in public policy. Unfortunately, like many other places throughout the world, the deterioration of the natural environments in the Nansei Islands has yet to stop.
    [Show full text]
  • The Superfamily Calopterygoidea in South China: Taxonomy and Distribution. Progress Report for 2009 Surveys Zhang Haomiao* *PH D
    International Dragonfly Fund - Report 26 (2010): 1-36 1 The Superfamily Calopterygoidea in South China: taxonomy and distribution. Progress Report for 2009 surveys Zhang Haomiao* *PH D student at the Department of Entomology, College of Natural Resources and Environment, South China Agricultural University, Guangzhou 510642, China. Email: [email protected] Introduction Three families in the superfamily Calopterygoidea occur in China, viz. the Calo- pterygidae, Chlorocyphidae and Euphaeidae. They include numerous species that are distributed widely across South China, mainly in streams and upland running waters at moderate altitudes. To date, our knowledge of Chinese spe- cies has remained inadequate: the taxonomy of some genera is unresolved and no attempt has been made to map the distribution of the various species and genera. This project is therefore aimed at providing taxonomic (including on larval morphology), biological, and distributional information on the super- family in South China. In 2009, two series of surveys were conducted to Southwest China-Guizhou and Yunnan Provinces. The two provinces are characterized by karst limestone arranged in steep hills and intermontane basins. The climate is warm and the weather is frequently cloudy and rainy all year. This area is usually regarded as one of biodiversity “hotspot” in China (Xu & Wilkes, 2004). Many interesting species are recorded, the checklist and photos of these sur- veys are reported here. And the progress of the research on the superfamily Calopterygoidea is appended. Methods Odonata were recorded by the specimens collected and identified from pho- tographs. The working team includes only four people, the surveys to South- west China were completed by the author and the photographer, Mr.
    [Show full text]
  • Anax Ephippiger
    25. D ESCRIPTIVE C ATALOGUE : F AMILY AESHNIDAE Anax ephippiger Photo: Pablo Martínez-Darve Sanz Length: From 61 to 70 mm. Hindwing spam: From 43 to 48 mm. Male: 1. Two black bold lines on the frons. 2. The upper part of the eyes is brown and the lower green. 3. Brown thorax. 4. Only the upper part of the S2 is blue, and this colour spreads up to the middle of the sides. 5. Abdomen is light brown or yellowish with a black stripe that stretches across it. 6. Long pointed anal appendages. 7. There is a yellow spot on the hindwing. Female: They are similar to males in patterns, but S2 is normally duller and the blue colour on S2 is not as bright or it does not exist. There is a black stripe that goes across the abdomen. (8) Photo: Roberto Scherini 102 DRAGONFLIES • GR - 249 Great Málaga Path in Málaga and the Province D ESCRIPTIVE C ATALOGUE : F AMILY AESHNIDAE 25. HABITAT It can be found in all kinds of habitats, whether they are bodies of water or not, as this is a migratory species. It is unknown if there is a breeding spot this species has in the Province of Málaga, but they are likely to mate in standing water bodies with plenty of vegetation on the riverbank (above all rushes and bulrushes). These can be perennial or temporary, such as small reservoirs and dams, artificial ponds, deserted quarries and polls in rivers and streams. WAY OF LIFE This species migrates from Africa and the Mediterranean to a large part of Europe, where it reaches Iceland (only this Odonata from that country has been seen here).
    [Show full text]
  • The Impacts of Urbanisation on the Ecology and Evolution of Dragonflies and Damselflies (Insecta: Odonata)
    The impacts of urbanisation on the ecology and evolution of dragonflies and damselflies (Insecta: Odonata) Giovanna de Jesús Villalobos Jiménez Submitted in accordance with the requirements for the degree of Doctor of Philosophy (Ph.D.) The University of Leeds School of Biology September 2017 The candidate confirms that the work submitted is her own, except where work which has formed part of jointly-authored publications has been included. The contribution of the candidate and the other authors to this work has been explicitly indicated below. The candidate confirms that appropriate credit has been given within the thesis where reference has been made to the work of others. The work in Chapter 1 of the thesis has appeared in publication as follows: Villalobos-Jiménez, G., Dunn, A.M. & Hassall, C., 2016. Dragonflies and damselflies (Odonata) in urban ecosystems: a review. Eur J Entomol, 113(1): 217–232. I was responsible for the collection and analysis of the data with advice from co- authors, and was solely responsible for the literature review, interpretation of the results, and for writing the manuscript. All co-authors provided comments on draft manuscripts. The work in Chapter 2 of the thesis has appeared in publication as follows: Villalobos-Jiménez, G. & Hassall, C., 2017. Effects of the urban heat island on the phenology of Odonata in London, UK. International Journal of Biometeorology, 61(7): 1337–1346. I was responsible for the data analysis, interpretation of results, and for writing and structuring the manuscript. Data was provided by the British Dragonfly Society (BDS). The co-author provided advice on the data analysis, and also provided comments on draft manuscripts.
    [Show full text]
  • Div Style="Position:Absolute;Top:381;Left:96"
    :ŽƵƌŶĂůŽĨdŚƌĞĂƚĞŶĞĚdĂdžĂͮǁǁǁ͘ƚŚƌĞĂƚĞŶĞĚƚĂdžĂ͘ŽƌŐͮϮϲ^ĞƉƚĞŵďĞƌϮϬϭϱͮϳ;ϭϭͿ͗ϳϳϵϱʹϳϴϬϰ Ù¦ÊÄ¥½®ÝÄÃݽ¥½®Ý;/ÄÝã͗KÊÄãͿʥ㫠ÄÊÙã«ÝãÙÄÙ¦®ÊÄʥĦ½Ý«ó®ã«¥®òÄó®ã®ÊÄÝ ãÊã«KÊÄã¥çÄʥĦ½Ý« ISSN 0974-7907 (Online) ISSN 0974-7893 (Print) ^«ÊÙãÊÃÃçÄ®ã®ÊÄ D͘<ĂǁƐĂƌ<ŚĂŶ KWE^^ Department of Biochemistry and Molecular Biology, School of Life Sciences, Shahjalal University of Science and Technology, Sylhet 3114, Bangladesh [email protected] ďƐƚƌĂĐƚ͗KĚŽŶĂƚĂǁĞƌĞƐƵƌǀĞLJĞĚŝŶŽŶĞƌĞƐĞƌǀĞĨŽƌĞƐƚ͕ƚǁŽŶĂƟŽŶĂů KĚŽŶĂƚĂ;ĚƌĂŐŽŶŇŝĞƐĂŶĚĚĂŵƐĞůŇŝĞƐͿĂƌĞŐŽƌŐĞŽƵƐ ƉĂƌŬƐ͕ ŽŶĞ ĐŽ WĂƌŬ͕ ŽŶĞ ůĂŬĞ ĂŶĚ ŽŶĞ hŶŝǀĞƌƐŝƚLJ ĐĂŵƉƵƐ ŝŶ ƚŚĞ ĂƋƵĂƟĐ ŝŶƐĞĐƚƐ ĚŝƐƚƌŝďƵƚĞĚ ƚŚƌŽƵŐŚŽƵƚ ƚŚĞ ǁŽƌůĚ͘ ŶŽƌƚŚĞĂƐƚĞƌŶƌĞŐŝŽŶŽĨĂŶŐůĂĚĞƐŚĨƌŽŵDĂƌĐŚϮϬϭϰƚŽDĂƌĐŚϮϬϭϱ͘ ƚŽƚĂů ŽĨ ϲϰ ƐƉĞĐŝĞƐ ŽĨ ŶŝƐŽƉƚĞƌĂ ĂŶĚ LJŐŽƉƚĞƌĂ ďĞůŽŶŐŝŶŐ ƚŽ ϰϭ KĚŽŶĂƚĞƐ ĂƌĞ ŚŝŐŚůLJ ƐƉĞĐŝĮĐ ƚŽ ƚŚĞŝƌ ŶŝĐŚĞ͕ ĚĞƉĞŶĚ ŐĞŶĞƌĂƵŶĚĞƌƐĞǀĞŶĨĂŵŝůŝĞƐǁĞƌĞƌĞĐŽƌĚĞĚ͘ŵŽŶŐƚŚĞŵϰϱƐƉĞĐŝĞƐ heavily on water bodies for feeding and breeding and and 19 genera were new records for the study area. Two species of ŶŝƐŽƉƚĞƌĂ͕ŝ͘Ğ͕͘Anax indicus>ŝĞŌŝŶĐŬ͕ϭϵϰϮĂŶĚGynacantha khasiaca ĂƌĞ ĞdžƚƌĞŵĞůLJ ƐĞŶƐŝƟǀĞ ƚŽ ƚŚĞ ĂůƚĞƌĂƟŽŶ ŽĨ ƚŚĞ ůŽĐĂůĞ DĂĐ>ĂĐŚůĂŶ͕ ϭϴϵϲ͕ ĂŶĚ ƚŚƌĞĞ ƐƉĞĐŝĞƐ ŽĨ LJŐŽƉƚĞƌĂ ŝ͘Ğ͕͘ Matrona ;ƌŽǁůĞLJΘ:ŽŚŶƐŽŶϭϵϴϮ͖ƵƚůĞƌϮϬϬϴ͖^ŝůǀĂĞƚĂů͘ϮϬϭϬͿ͘ nigripectus Selys, 1879, Agriocnemis kalinga EĂŝƌ Θ ^ƵďƌĂŵĂŶŝĂŶ͕ ,ĞŶĐĞ͕ ĚƌĂŐŽŶŇŝĞƐ ĂŶĚ ĚĂŵƐĞůŇŝĞƐ ĂƌĞ ĐŽŶƐŝĚĞƌĞĚ ϮϬϭϰ͕ĂŶĚ Prodasineura laidlawii &ŽƌƐƚĞƌ͕ϭϵϬϳǁĞƌĞƌĞĐŽƌĚĞĚĨŽƌƚŚĞ ĮƌƐƚƟŵĞĨƌŽŵĂŶŐůĂĚĞƐŚ͘ indicators of wetland health. Besides, they are important elements of the food chain; many birds feed <ĞLJǁŽƌĚƐ͗ Agriocnemis kalinga, Anax indicus, ŶŝƐŽƉƚĞƌĂ͕ĂŶŐůĂĚĞƐŚ͕
    [Show full text]