Structural Control of Scarps in the Rembrandt Region of Mercury
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Copyrighted Material
Index Abulfeda crater chain (Moon), 97 Aphrodite Terra (Venus), 142, 143, 144, 145, 146 Acheron Fossae (Mars), 165 Apohele asteroids, 353–354 Achilles asteroids, 351 Apollinaris Patera (Mars), 168 achondrite meteorites, 360 Apollo asteroids, 346, 353, 354, 361, 371 Acidalia Planitia (Mars), 164 Apollo program, 86, 96, 97, 101, 102, 108–109, 110, 361 Adams, John Couch, 298 Apollo 8, 96 Adonis, 371 Apollo 11, 94, 110 Adrastea, 238, 241 Apollo 12, 96, 110 Aegaeon, 263 Apollo 14, 93, 110 Africa, 63, 73, 143 Apollo 15, 100, 103, 104, 110 Akatsuki spacecraft (see Venus Climate Orbiter) Apollo 16, 59, 96, 102, 103, 110 Akna Montes (Venus), 142 Apollo 17, 95, 99, 100, 102, 103, 110 Alabama, 62 Apollodorus crater (Mercury), 127 Alba Patera (Mars), 167 Apollo Lunar Surface Experiments Package (ALSEP), 110 Aldrin, Edwin (Buzz), 94 Apophis, 354, 355 Alexandria, 69 Appalachian mountains (Earth), 74, 270 Alfvén, Hannes, 35 Aqua, 56 Alfvén waves, 35–36, 43, 49 Arabia Terra (Mars), 177, 191, 200 Algeria, 358 arachnoids (see Venus) ALH 84001, 201, 204–205 Archimedes crater (Moon), 93, 106 Allan Hills, 109, 201 Arctic, 62, 67, 84, 186, 229 Allende meteorite, 359, 360 Arden Corona (Miranda), 291 Allen Telescope Array, 409 Arecibo Observatory, 114, 144, 341, 379, 380, 408, 409 Alpha Regio (Venus), 144, 148, 149 Ares Vallis (Mars), 179, 180, 199 Alphonsus crater (Moon), 99, 102 Argentina, 408 Alps (Moon), 93 Argyre Basin (Mars), 161, 162, 163, 166, 186 Amalthea, 236–237, 238, 239, 241 Ariadaeus Rille (Moon), 100, 102 Amazonis Planitia (Mars), 161 COPYRIGHTED -
Ices on Mercury: Chemistry of Volatiles in Permanently Cold Areas of Mercury’S North Polar Region
Icarus 281 (2017) 19–31 Contents lists available at ScienceDirect Icarus journal homepage: www.elsevier.com/locate/icarus Ices on Mercury: Chemistry of volatiles in permanently cold areas of Mercury’s north polar region ∗ M.L. Delitsky a, , D.A. Paige b, M.A. Siegler c, E.R. Harju b,f, D. Schriver b, R.E. Johnson d, P. Travnicek e a California Specialty Engineering, Pasadena, CA b Dept of Earth, Planetary and Space Sciences, University of California, Los Angeles, CA c Planetary Science Institute, Tucson, AZ d Dept of Engineering Physics, University of Virginia, Charlottesville, VA e Space Sciences Laboratory, University of California, Berkeley, CA f Pasadena City College, Pasadena, CA a r t i c l e i n f o a b s t r a c t Article history: Observations by the MESSENGER spacecraft during its flyby and orbital observations of Mercury in 2008– Received 3 January 2016 2015 indicated the presence of cold icy materials hiding in permanently-shadowed craters in Mercury’s Revised 29 July 2016 north polar region. These icy condensed volatiles are thought to be composed of water ice and frozen Accepted 2 August 2016 organics that can persist over long geologic timescales and evolve under the influence of the Mercury Available online 4 August 2016 space environment. Polar ices never see solar photons because at such high latitudes, sunlight cannot Keywords: reach over the crater rims. The craters maintain a permanently cold environment for the ices to persist. Mercury surface ices magnetospheres However, the magnetosphere will supply a beam of ions and electrons that can reach the frozen volatiles radiolysis and induce ice chemistry. -
Book of Abstracts: Studying Old Master Paintings
BOOK OF ABSTRACTS STUDYING OLD MASTER PAINTINGS TECHNOLOGY AND PRACTICE THE NATIONAL GALLERY TECHNICAL BULLETIN 30TH ANNIVERSARY CONFERENCE 1618 September 2009, Sainsbury Wing Theatre, National Gallery, London Supported by The Elizabeth Cayzer Charitable Trust STUDYING OLD MASTER PAINTINGS TECHNOLOGY AND PRACTICE THE NATIONAL GALLERY TECHNICAL BULLETIN 30TH ANNIVERSARY CONFERENCE BOOK OF ABSTRACTS 1618 September 2009 Sainsbury Wing Theatre, National Gallery, London The Proceedings of this Conference will be published by Archetype Publications, London in 2010 Contents Presentations Page Presentations (cont’d) Page The Paliotto by Guido da Siena from the Pinacoteca Nazionale of Siena 3 The rediscovery of sublimated arsenic sulphide pigments in painting 25 Marco Ciatti, Roberto Bellucci, Cecilia Frosinini, Linda Lucarelli, Luciano Sostegni, and polychromy: Applications of Raman microspectroscopy Camilla Fracassi, Carlo Lalli Günter Grundmann, Natalia Ivleva, Mark Richter, Heike Stege, Christoph Haisch Painting on parchment and panels: An exploration of Pacino di 5 The use of blue and green verditer in green colours in seventeenthcentury 27 Bonaguida’s technique Netherlandish painting practice Carole Namowicz, Catherine M. Schmidt, Christine Sciacca, Yvonne Szafran, Annelies van Loon, Lidwein Speleers Karen Trentelman, Nancy Turner Alterations in paintings: From noninvasive insitu assessment to 29 Technical similarities between mural painting and panel painting in 7 laboratory research the works of Giovanni da Milano: The Rinuccini -
Bepicolombo - a Mission to Mercury
BEPICOLOMBO - A MISSION TO MERCURY ∗ R. Jehn , J. Schoenmaekers, D. Garc´ıa and P. Ferri European Space Operations Centre, ESA/ESOC, Darmstadt, Germany ABSTRACT BepiColombo is a cornerstone mission of the ESA Science Programme, to be launched towards Mercury in July 2014. After a journey of nearly 6 years two probes, the Magneto- spheric Orbiter (JAXA) and the Planetary Orbiter (ESA) will be separated and injected into their target orbits. The interplanetary trajectory includes flybys at the Earth, Venus (twice) and Mercury (four times), as well as several thrust arcs provided by the solar electric propulsion module. At the end of the transfer a gravitational capture at the weak stability boundary is performed exploiting the Sun gravity. In case of a failure of the orbit insertion burn, the spacecraft will stay for a few revolutions in the weakly captured orbit. The arrival conditions are chosen such that backup orbit insertion manoeuvres can be performed one, four or five orbits later with trajectory correction manoeuvres of less than 15 m/s to compensate the Sun perturbations. Only in case that no manoeuvre can be performed within 64 days (5 orbits) after the nominal orbit insertion the spacecraft will leave Mercury and the mission will be lost. The baseline trajectory has been designed taking into account all operational constraints: 90-day commissioning phase without any thrust; 30-day coast arcs before each flyby (to allow for precise navigation); 7-day coast arcs after each flyby; 60-day coast arc before orbit insertion; Solar aspect angle constraints and minimum flyby altitudes (300 km at Earth and Venus, 200 km at Mercury). -
The Search for Another Earth – Part II
GENERAL ARTICLE The Search for Another Earth – Part II Sujan Sengupta In the first part, we discussed the various methods for the detection of planets outside the solar system known as the exoplanets. In this part, we will describe various kinds of exoplanets. The habitable planets discovered so far and the present status of our search for a habitable planet similar to the Earth will also be discussed. Sujan Sengupta is an 1. Introduction astrophysicist at Indian Institute of Astrophysics, Bengaluru. He works on the The first confirmed exoplanet around a solar type of star, 51 Pe- detection, characterisation 1 gasi b was discovered in 1995 using the radial velocity method. and habitability of extra-solar Subsequently, a large number of exoplanets were discovered by planets and extra-solar this method, and a few were discovered using transit and gravi- moons. tational lensing methods. Ground-based telescopes were used for these discoveries and the search region was confined to about 300 light-years from the Earth. On December 27, 2006, the European Space Agency launched 1The movement of the star a space telescope called CoRoT (Convection, Rotation and plan- towards the observer due to etary Transits) and on March 6, 2009, NASA launched another the gravitational effect of the space telescope called Kepler2 to hunt for exoplanets. Conse- planet. See Sujan Sengupta, The Search for Another Earth, quently, the search extended to about 3000 light-years. Both Resonance, Vol.21, No.7, these telescopes used the transit method in order to detect exo- pp.641–652, 2016. planets. Although Kepler’s field of view was only 105 square de- grees along the Cygnus arm of the Milky Way Galaxy, it detected a whooping 2326 exoplanets out of a total 3493 discovered till 2Kepler Telescope has a pri- date. -
Shallow Crustal Composition of Mercury As Revealed by Spectral Properties and Geological Units of Two Impact Craters
Planetary and Space Science 119 (2015) 250–263 Contents lists available at ScienceDirect Planetary and Space Science journal homepage: www.elsevier.com/locate/pss Shallow crustal composition of Mercury as revealed by spectral properties and geological units of two impact craters Piero D’Incecco a,n, Jörn Helbert a, Mario D’Amore a, Alessandro Maturilli a, James W. Head b, Rachel L. Klima c, Noam R. Izenberg c, William E. McClintock d, Harald Hiesinger e, Sabrina Ferrari a a Institute of Planetary Research, German Aerospace Center, Rutherfordstrasse 2, D-12489 Berlin, Germany b Department of Geological Sciences, Brown University, Providence, RI 02912, USA c The Johns Hopkins University Applied Physics Laboratory, Laurel, MD 20723, USA d Laboratory for Atmospheric and Space Physics, University of Colorado, Boulder, CO 80303, USA e Westfälische Wilhelms-Universität Münster, Institut für Planetologie, Wilhelm-Klemm Str. 10, D-48149 Münster, Germany article info abstract Article history: We have performed a combined geological and spectral analysis of two impact craters on Mercury: the Received 5 March 2015 15 km diameter Waters crater (106°W; 9°S) and the 62.3 km diameter Kuiper crater (30°W; 11°S). Using Received in revised form the Mercury Dual Imaging System (MDIS) Narrow Angle Camera (NAC) dataset we defined and mapped 9 October 2015 several units for each crater and for an external reference area far from any impact related deposits. For Accepted 12 October 2015 each of these units we extracted all spectra from the MESSENGER Atmosphere and Surface Composition Available online 24 October 2015 Spectrometer (MASCS) Visible-InfraRed Spectrograph (VIRS) applying a first order photometric correc- Keywords: tion. -
Mariner to Mercury, Venus and Mars
NASA Facts National Aeronautics and Space Administration Jet Propulsion Laboratory California Institute of Technology Pasadena, CA 91109 Mariner to Mercury, Venus and Mars Between 1962 and late 1973, NASA’s Jet carry a host of scientific instruments. Some of the Propulsion Laboratory designed and built 10 space- instruments, such as cameras, would need to be point- craft named Mariner to explore the inner solar system ed at the target body it was studying. Other instru- -- visiting the planets Venus, Mars and Mercury for ments were non-directional and studied phenomena the first time, and returning to Venus and Mars for such as magnetic fields and charged particles. JPL additional close observations. The final mission in the engineers proposed to make the Mariners “three-axis- series, Mariner 10, flew past Venus before going on to stabilized,” meaning that unlike other space probes encounter Mercury, after which it returned to Mercury they would not spin. for a total of three flybys. The next-to-last, Mariner Each of the Mariner projects was designed to have 9, became the first ever to orbit another planet when two spacecraft launched on separate rockets, in case it rached Mars for about a year of mapping and mea- of difficulties with the nearly untried launch vehicles. surement. Mariner 1, Mariner 3, and Mariner 8 were in fact lost The Mariners were all relatively small robotic during launch, but their backups were successful. No explorers, each launched on an Atlas rocket with Mariners were lost in later flight to their destination either an Agena or Centaur upper-stage booster, and planets or before completing their scientific missions. -
Case Fil Copy
NASA TECHNICAL NASA TM X-3511 MEMORANDUM CO >< CASE FIL COPY REPORTS OF PLANETARY GEOLOGY PROGRAM, 1976-1977 Compiled by Raymond Arvidson and Russell Wahmann Office of Space Science NASA Headquarters NATIONAL AERONAUTICS AND SPACE ADMINISTRATION • WASHINGTON, D. C. • MAY 1977 1. Report No. 2. Government Accession No. 3. Recipient's Catalog No. TMX3511 4. Title and Subtitle 5. Report Date May 1977 6. Performing Organization Code REPORTS OF PLANETARY GEOLOGY PROGRAM, 1976-1977 SL 7. Author(s) 8. Performing Organization Report No. Compiled by Raymond Arvidson and Russell Wahmann 10. Work Unit No. 9. Performing Organization Name and Address Office of Space Science 11. Contract or Grant No. Lunar and Planetary Programs Planetary Geology Program 13. Type of Report and Period Covered 12. Sponsoring Agency Name and Address Technical Memorandum National Aeronautics and Space Administration 14. Sponsoring Agency Code Washington, D.C. 20546 15. Supplementary Notes 16. Abstract A compilation of abstracts of reports which summarizes work conducted by Principal Investigators. Full reports of these abstracts were presented to the annual meeting of Planetary Geology Principal Investigators and their associates at Washington University, St. Louis, Missouri, May 23-26, 1977. 17. Key Words (Suggested by Author(s)) 18. Distribution Statement Planetary geology Solar system evolution Unclassified—Unlimited Planetary geological mapping Instrument development 19. Security Qassif. (of this report) 20. Security Classif. (of this page) 21. No. of Pages 22. Price* Unclassified Unclassified 294 $9.25 * For sale by the National Technical Information Service, Springfield, Virginia 22161 FOREWORD This is a compilation of abstracts of reports from Principal Investigators of NASA's Office of Space Science, Division of Lunar and Planetary Programs Planetary Geology Program. -
Picturing France
Picturing France Classroom Guide VISUAL ARTS PHOTOGRAPHY ORIENTATION ART APPRECIATION STUDIO Traveling around France SOCIAL STUDIES Seeing Time and Pl ace Introduction to Color CULTURE / HISTORY PARIS GEOGRAPHY PaintingStyles GOVERNMENT / CIVICS Paris by Night Private Inve stigation LITERATURELANGUAGE / CRITICISM ARTS Casual and Formal Composition Modernizing Paris SPEAKING / WRITING Department Stores FRENCH LANGUAGE Haute Couture FONTAINEBLEAU Focus and Mo vement Painters, Politics, an d Parks MUSIC / DANCENATURAL / DRAMA SCIENCE I y Fontainebleau MATH Into the Forest ATreebyAnyOther Nam e Photograph or Painting, M. Pa scal? ÎLE-DE-FRANCE A Fore st Outing Think L ike a Salon Juror Form Your Own Ava nt-Garde The Flo ating Studio AUVERGNE/ On the River FRANCHE-COMTÉ Stream of Con sciousness Cheese! Mountains of Fra nce Volcanoes in France? NORMANDY “I Cannot Pain tan Angel” Writing en Plein Air Culture Clash Do-It-Yourself Pointillist Painting BRITTANY Comparing Two Studie s Wish You W ere Here Synthétisme Creating a Moo d Celtic Culture PROVENCE Dressing the Part Regional Still Life Color and Emo tion Expressive Marks Color Collectio n Japanese Prin ts Legend o f the Château Noir The Mistral REVIEW Winds Worldwide Poster Puzzle Travelby Clue Picturing France Classroom Guide NATIONAL GALLERY OF ART, WASHINGTON page ii This Classroom Guide is a component of the Picturing France teaching packet. © 2008 Board of Trustees of the National Gallery of Art, Washington Prepared by the Division of Education, with contributions by Robyn Asleson, Elsa Bénard, Carla Brenner, Sarah Diallo, Rachel Goldberg, Leo Kasun, Amy Lewis, Donna Mann, Marjorie McMahon, Lisa Meyerowitz, Barbara Moore, Rachel Richards, Jennifer Riddell, and Paige Simpson. -
Mercury Redux
FEATURE Mercury redux In January 2008, 33 years after Mariner 10 fl ew past the solar system’s innermost planet, MESSENGER crossed Mercury’s magnetosphere. Ancient volcanoes, contractional faults, and a rich soup of exospheric ions give clues to Mercury’s structure and dynamical evolution. Th e Mercury fl yby of the MESSENGER two have not been ruled out, but for those (Mercury surface, space environment, mechanisms shorter-wavelength magnetic geochemistry and ranging) probe was the features would be expected, which were not fi rst of three braking manoeuvres for the observed during the MESSENGER fl yby1. spacecraft , in preparation for its insertion Recent libration observations that require into a polar orbit in 2011. Th e probe a partially molten core11, and the limited achieved the closest approach (201 km) of contraction of Mercury, which implies a Mercury’s surface yet, and took a variety largely molten core, favour a convective of measurements in the magnetosphere, dynamo origin for Mercury’s magnetic fi eld. exosphere and on Mercury’s surface. Some Although Mercury’s magnetosphere of the fi rst results of the MESSENGER looks like a miniature version of Earth’s, mission1–6 reveal Mercury as a planet with Mercury’s relatively weak magnetic richly interconnected dynamics, from fi eld implies that its dynamo must work the dynamo in its molten outer core, a diff erently from that of the Earth. Th e crust and surface with great lobate faults geodynamo, which gives the Earth its and relatively young volcanoes, to a strong magnetic fi eld, is thought to operate magnetosphere that interacts with the core in a magnetostrophic regime in which the dynamo and the interplanetary solar wind. -
Open Research Online Oro.Open.Ac.Uk
Open Research Online The Open University’s repository of research publications and other research outputs Late movement of basin-edge lobate scarps on Mercury Journal Item How to cite: Fegan, E. R.; Rothery, D. A.; Marchi, S.; Massironi, M.; Conway, S. J. and Anand, M. (2017). Late movement of basin-edge lobate scarps on Mercury. Icarus, 288 pp. 226–324. For guidance on citations see FAQs. c 2017 Elsevier Inc https://creativecommons.org/licenses/by-nc-nd/4.0/ Version: Accepted Manuscript Link(s) to article on publisher’s website: http://dx.doi.org/doi:10.1016/j.icarus.2017.01.005 Copyright and Moral Rights for the articles on this site are retained by the individual authors and/or other copyright owners. For more information on Open Research Online’s data policy on reuse of materials please consult the policies page. oro.open.ac.uk 1 Late movement of basin-edge lobate scarps on Mercury 2 Fegan E.R.1*, Rothery D.A.1, Marchi S.2, Massironi M.3, Conway S.J.1,4, Anand M.1,5, 3 1Department of Physical Sciences, The Open University, Walton Hall, Milton Keynes, MK7 6AA, UK. 2NASA 4 Lunar Science Institute, Southwest Research Institute, Boulder, Colorado 80302, USA. 3Dipartimento di 5 Geoscienze, Università di Padova, Via Giotto 1, 35137 Padova, Italy. 4LPG Nantes - UMR CNRS 6112, 2 rue de la 6 Houssinière - BP 92208, 44322 Nantes Cedex 3, France 5Department of Earth Science, The Natural History 7 Museum, Cromwell Road, London, SW7 5BD, UK. 8 9 *Corresponding author (email: [email protected]) 10 Keywords: Planetary; geology; Mercury; tectonics; model ages; lobate scarps; planetary volcanism. -
CRATER IMAGE METADATA EARTH IMAGES Country Or BMM Date Camera/ Lens Focal Image Image ID# LAT
CRATER IMAGE METADATA EARTH IMAGES Country or BMM Date Camera/ Lens Focal Image Image ID# LAT. LONG. Crater Name Geographic Acquired Instrument Length # Region E4: Kodak ISS006-E-16068 27.8S 16.4E Roter Kamm Namibia 12/28/2002 400 mm 1 DCS760C E4: Kodak ISS012-E-15881 51.5N 68.5W Manicouagan Canada 1/24/2006 50 mm 2 DCS760C E4: Kodak ISS014-E-11841 24.4N 24.4E Oasis Libya 1/13/2007 400 mm 3 DCS760C E4: Kodak ISS014-E-15775 35N 111W Barringer United States 3/1/2007 400 mm 4 DCS760C E4: Kodak ISS014-E-19496 29N 7.6W Ouarkziz Algeria 4/16/2007 800 mm 5 DCS760C E4: Kodak ISS015-E-17360 23.9S 132.3E Gosses Bluff Australia 7/13/2007 400 mm 6 DCS760C ISS018-E-14908 22.9N 10.4W Tenoumer Mauritania 12/20/2008 Nikon D2X 800 mm 7 ISS018-E-23713 20N 76.5E Lonar India 1/28/2009 Nikon D2X 800 mm 8 STS51I-33-56AA 27S 27.3E Vredefort South Africa 8/29/1985 Hasselblad 250 mm Clearwater STS61A-35-86 56.5N 74.7W Lakes Canada 11/1/1985 Hasselblad 250 mm (East & West) ISS028-E-14782 25.52S 120.53E Shoemaker Australia 7/6/2011 Nikon D2X 200 mm ISS034-E-29105 17.32S 128.25E Piccaninny Australia 1/15/2013 Nikon D2X 180 mm CRATER IMAGE METADATA MARS IMAGES BMM Geographic *Date or Camera/ Image Image ID# LAT. LONG. Crater Name Approx. YR Mission Name Region Instrument # Acquired PIA14290 5.4S 137.8E Gale Aeolis Mensae 2000's THEMIS IR Odyssey THEMIS IR Aeolis 14.5S 175.4E Gusev 2000's THEMIS IR Odyssey MOSAIC Quadrangle Mars Orbiter Colorized MOLA 42S 67E Hellas Basin Hellas Planitia 2000's Laser Altimeter Global Surveyor (MOLA) Viking Orbiter Margaritifer Visual