Lolliguncula) Brevis (Blainville, 1823
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Caribbean Reef Squid)
UWI The Online Guide to the Animals of Trinidad and Tobago Ecology Sepioteuthis sepioidea (Caribbean Reef Squid) Order: Teuthida (Squid) Class: Cephalopoda (Octopuses, Squid and Cuttlefish) Phylum: Mollusca (Molluscs) Fig. 1. Caribbean reef squid, Sepioteuthis sepioidea. [http://www.arkive.org/caribbean-reef-squid/sepioteuthis-sepioidea/image-G76785.html, downloaded 10 March 2016] TRAITS. The mantle (body mass) is wide and relatively flattened, with a length of 114mm in adult males and 120 mm in adult females (Moynihan and Rodaniche, 1982). A skeleton is absent but a cartilaginous layer is normally found beneath the surface of the mantle which enables movement (Mather et al., 2010).Two fins span the length of the lateral mantle margins (Fig. 1). The head is slightly pointed to its anterior end, with eight arms and two tentacles which encircle the mouth (Mather et al., 2010). Suckers are positioned along the inner region of arms and tentacle clubs. The mantle is fleshy when relaxed and the skin is very fragile (Moynihan and Rodaniche, 1982). The colour patterns of the skin can change periodically, due to the existence of light-reflective and iridescence-inducing cells (Mather, 2010). DISTRIBUTION. Distributed throughout the West Indian islands, including Trinidad and Tobago; widespread along the Central and South American coasts adjacent to the Caribbean Sea and also found in Bermuda and Florida (Moynihan and Rodaniche, 1982). UWI The Online Guide to the Animals of Trinidad and Tobago Ecology HABITAT AND ACTIVITY. Found in highly saline, clear waters of marine habitats at varying depths and distances from shoreline (Wood et al., 2008). The depth and habitat they are observed at depends on their growth stage (Mather et al., 2010). -
St. Kitts Final Report
ReefFix: An Integrated Coastal Zone Management (ICZM) Ecosystem Services Valuation and Capacity Building Project for the Caribbean ST. KITTS AND NEVIS FIRST DRAFT REPORT JUNE 2013 PREPARED BY PATRICK I. WILLIAMS CONSULTANT CLEVERLY HILL SANDY POINT ST. KITTS PHONE: 1 (869) 765-3988 E-MAIL: [email protected] 1 2 TABLE OF CONTENTS Page No. Table of Contents 3 List of Figures 6 List of Tables 6 Glossary of Terms 7 Acronyms 10 Executive Summary 12 Part 1: Situational analysis 15 1.1 Introduction 15 1.2 Physical attributes 16 1.2.1 Location 16 1.2.2 Area 16 1.2.3 Physical landscape 16 1.2.4 Coastal zone management 17 1.2.5 Vulnerability of coastal transportation system 19 1.2.6 Climate 19 1.3 Socio-economic context 20 1.3.1 Population 20 1.3.2 General economy 20 1.3.3 Poverty 22 1.4 Policy frameworks of relevance to marine resource protection and management in St. Kitts and Nevis 23 1.4.1 National Environmental Action Plan (NEAP) 23 1.4.2 National Physical Development Plan (2006) 23 1.4.3 National Environmental Management Strategy (NEMS) 23 1.4.4 National Biodiversity Strategy and Action Plan (NABSAP) 26 1.4.5 Medium Term Economic Strategy Paper (MTESP) 26 1.5 Legislative instruments of relevance to marine protection and management in St. Kitts and Nevis 27 1.5.1 Development Control and Planning Act (DCPA), 2000 27 1.5.2 National Conservation and Environmental Protection Act (NCEPA), 1987 27 1.5.3 Public Health Act (1969) 28 1.5.4 Solid Waste Management Corporation Act (1996) 29 1.5.5 Water Courses and Water Works Ordinance (Cap. -
Global Seagrass Distribution and Diversity: a Bioregional Model ⁎ F
Journal of Experimental Marine Biology and Ecology 350 (2007) 3–20 www.elsevier.com/locate/jembe Global seagrass distribution and diversity: A bioregional model ⁎ F. Short a, , T. Carruthers b, W. Dennison b, M. Waycott c a Department of Natural Resources, University of New Hampshire, Jackson Estuarine Laboratory, Durham, NH 03824, USA b Integration and Application Network, University of Maryland Center for Environmental Science, Cambridge, MD 21613, USA c School of Marine and Tropical Biology, James Cook University, Townsville, 4811 Queensland, Australia Received 1 February 2007; received in revised form 31 May 2007; accepted 4 June 2007 Abstract Seagrasses, marine flowering plants, are widely distributed along temperate and tropical coastlines of the world. Seagrasses have key ecological roles in coastal ecosystems and can form extensive meadows supporting high biodiversity. The global species diversity of seagrasses is low (b60 species), but species can have ranges that extend for thousands of kilometers of coastline. Seagrass bioregions are defined here, based on species assemblages, species distributional ranges, and tropical and temperate influences. Six global bioregions are presented: four temperate and two tropical. The temperate bioregions include the Temperate North Atlantic, the Temperate North Pacific, the Mediterranean, and the Temperate Southern Oceans. The Temperate North Atlantic has low seagrass diversity, the major species being Zostera marina, typically occurring in estuaries and lagoons. The Temperate North Pacific has high seagrass diversity with Zostera spp. in estuaries and lagoons as well as Phyllospadix spp. in the surf zone. The Mediterranean region has clear water with vast meadows of moderate diversity of both temperate and tropical seagrasses, dominated by deep-growing Posidonia oceanica. -
Comparative Life History of Tropical and Temperate Sepioteuthis Squids in Australian Waters
ResearchOnline@JCU This file is part of the following reference: Pecl, Gretta T. (2000) Comparative life history of tropical and temperate Sepioteuthis squids in Australian waters. PhD thesis, James Cook University. Access to this file is available from: http://eprints.jcu.edu.au/24094/ If you believe that this work constitutes a copyright infringement, please contact [email protected] and quote http://eprints.jcu.edu.au/24094/ CHAPTER 4: FLEXIBLE REPRODUCTIVE STRATEGIES IN TROPICAL AND TEMPERATE SEPIOTEUTIDS SQUIDS 4.1 INTRODUCTION An individuals' "fitness" in the evolutionary sense, is determined by both absolute fecundity and generation interval (Roff 1986). Both of these life history traits are dependent on the reproductive strategy of a species, and indeed are likely to be divergent between those species or individuals that breed once and die, and those that breed over an extended time frame. Optimal age or size at maturity and the associated age- and size specific schedules of reproductive investment are just some of the life history characteristics that are also intimately related to the reproductive strategy of a species (Stearns 1977). As a consequence of the very short life span typical of most cephalopods, annual recruitment is essential to sustain populations (Boyle 1990). and as such an understanding of the reproductive strategy of a cephalopod fisheries resource is crucial. Determining how long an individual takes to complete egg maturation and deposition, and assessing what portion of the life span this period represents, is a major difficulty confronting detailed examinations of cephalopod reproductive biology in field populations (Collins el at. 1995b). Although coleoid cephalopods have traditionally been viewed as semelparous organisms that reproduce once and die (Arnold & Williams-Arnold 1977; Calow 1987; eg: lllex illecebrosus O'Dor 1983; Todarodes pacijicus Okutani 1983), it is becoming increasingly apparent that many species are not restricted to thi s strategy. -
Revisión Del Género Lolliguncula Steenstrup, 1881 (Cephalopoda: Loliginidae) Frente a La Costa Del Pacífico De América Del Sur
Rev. peru. biol. 20(2): 129 - 136 (Diciembre 2013) the genus LOLLIGUNCULA off the Pacific Coast of South America FACULTAD DE CIENCIAS BIOLÓGICAS UNMSM ISSN-L 1561-0837 TRABAJOS ORIGINALES Revision of the genus Lolliguncula Steenstrup, 1881 (Cephalopoda: Loliginidae) off the Pacific Coast of South America Revisión del género Lolliguncula Steenstrup, 1881 (Cephalopoda: Loliginidae) frente a la costa del Pacífico de América del Sur Franz Cardoso1 and Frederick G. Hochberg2 1 Laboratorio de Biología y Sistemática de Invertebrados Marinos, Facultad de Ciencias Biológicas, Universidad Na- Abstract cional Mayor de San Marcos, Apdo. 11-0058, Lima 11, Perú. In the present paper the species from the genus Lolliguncula Steentrup, 1881 (Cephalopo- 2 Department of Invertebrate Zoology, Santa Barbara Museum of Natural History, 2559 Puesta del Sol, Santa da: Loliginidae) in Southeastern Pacific Ocean are reviewed. The presence of Lolliguncula Barbara, California 93105-2936, USA. (Lolliguncula) panamensis Berry, 1911, Lolliguncula (Loliolopsis) diomedeae Hoyle, 1911 and Email Franz Cardoso: [email protected] Lolliguncula (Lolliguncula) argus Brakoniecki and Roper, 1985 are confirmed from Mexican waters to Perú and the species Lolliguncula (Lolliguncula) argus collected during a cruise of the R/V Anton Bruun from 1966 off the coast of South America is recorded for the first time in Peruvian waters. A key to identification of Pacific species is given. We report a diagnostic feature with taxonomic remarks of these species. Updated information on the distribution, biology, and fisheries of each species also is discussed. Keywords: Lolliguncula; taxonomy; distribution; biology; Southeastern Pacific. Resumen En el presente trabajo las especies del género Lolliguncula Steentrup, 1881 (Cephalopoda: Loliginidae) en el Océano Pacífico Sudeste son revisados. -
<I>Lolliguncula Brevis</I>
OCCURRENCE OF THE SQUID, LOLLIGUNCULA BREVIS, IN SOME COASTAL WATERS OF WESTERN FLORIDN ALEXANDER DRAGOVICH Tropical Atlantic Biological Laboratory, Bureau of Commercial Fisheries, lVfiami AND JOHN A. KELLY, JR. Biological Laboratory, Bureau of Commercial Fisheries, St. Petersburg Beach, Florida ABSTRACT Lolliguncula brevis (Blainville) is the dominant cephalopod in the Tampa Bay and Charlotte Harbor-Pine Island Sound areas of west Florida. Distribution and seasonal occurrence of the species are discussed. The temperature and salinity ranges at which squid occurred were 12.6 to 31.6°C and 18.19 to 36.15%c. The majority of the squid collected were immature. This note presents information on the occurrence and distribution of squid in bays of the central west coast of Florida and adjacent neritic waters of the Gulf of Mexico. Published material pertaining to the systemat- ics and geographical distribution of cephalopods in the Gulf of Mexico is limited to the work of Voss (1950, 1954, 1955, 1956a, 1956b). Little is known about the distribution of squid in Florida estuaries and adjoining marine waters (Tabb & Manning, 1961; Dragovich & Kelly, 1963). In Florida, squid is used extensively as bait by commercial and sport fisher- men (Dragovich & Kelly, 1963), and small amounts are consumed by humans. Samples were collected from September, 1962, through December, 1962, with a ten-foot, shrimp try-net, and from January, 1963, through Decem- ber, 1964, with a 16-foot, semi-balloon trawl. Both nets had one-inch, stretch mesh. Most of the stations in Tampa Bay and the adjacent oceanic waters were sampled semimonthly during 1962, monthly during 1963, and in alternate months during 1964. -
Life History, Mating Behavior, and Multiple Paternity in Octopus
LIFE HISTORY, MATING BEHAVIOR, AND MULTIPLE PATERNITY IN OCTOPUS OLIVERI (BERRY, 1914) (CEPHALOPODA: OCTOPODIDAE) A DISSERTATION SUBMITTED TO THE GRADUATE DIVISION OF THE UNIVERSITY OF HAWAI´I AT MĀNOA IN PARTIAL FULFILLMENT OF THE REQUIREMENTS FOR THE DEGREE OF DOCTOR OF PHILOSOPHY IN ZOOLOGY DECEMBER 2014 By Heather Anne Ylitalo-Ward Dissertation Committee: Les Watling, Chairperson Rob Toonen James Wood Tom Oliver Jeff Drazen Chuck Birkeland Keywords: Cephalopod, Octopus, Sexual Selection, Multiple Paternity, Mating DEDICATION To my family, I would not have been able to do this without your unending support and love. Thank you for always believing in me. ii ACKNOWLEDGMENTS I would like to thank all of the people who helped me collect the specimens for this study, braving the rocks and the waves in the middle of the night: Leigh Ann Boswell, Shannon Evers, and Steffiny Nelson, you were the hard core tako hunters. I am eternally grateful that you sacrificed your evenings to the octopus gods. Also, thank you to David Harrington (best bucket boy), Bert Tanigutchi, Melanie Hutchinson, Christine Ambrosino, Mark Royer, Chelsea Szydlowski, Ily Iglesias, Katherine Livins, James Wood, Seth Ylitalo-Ward, Jessica Watts, and Steven Zubler. This dissertation would not have happened without the support of my wonderful advisor, Dr. Les Watling. Even though I know he wanted me to study a different kind of “octo” (octocoral), I am so thankful he let me follow my foolish passion for cephalopod sexual selection. Also, he provided me with the opportunity to ride in a submersible, which was one of the most magical moments of my graduate career. -
Husbandry Manual for BLUE-RINGED OCTOPUS Hapalochlaena Lunulata (Mollusca: Octopodidae)
Husbandry Manual for BLUE-RINGED OCTOPUS Hapalochlaena lunulata (Mollusca: Octopodidae) Date By From Version 2005 Leanne Hayter Ultimo TAFE v 1 T A B L E O F C O N T E N T S 1 PREFACE ................................................................................................................................ 5 2 INTRODUCTION ...................................................................................................................... 6 2.1 CLASSIFICATION .............................................................................................................................. 8 2.2 GENERAL FEATURES ....................................................................................................................... 8 2.3 HISTORY IN CAPTIVITY ..................................................................................................................... 9 2.4 EDUCATION ..................................................................................................................................... 9 2.5 CONSERVATION & RESEARCH ........................................................................................................ 10 3 TAXONOMY ............................................................................................................................12 3.1 NOMENCLATURE ........................................................................................................................... 12 3.2 OTHER SPECIES ........................................................................................................................... -
Giant Pacific Octopus (Enteroctopus Dofleini) Care Manual
Giant Pacific Octopus Insert Photo within this space (Enteroctopus dofleini) Care Manual CREATED BY AZA Aquatic Invertebrate Taxonomic Advisory Group IN ASSOCIATION WITH AZA Animal Welfare Committee Giant Pacific Octopus (Enteroctopus dofleini) Care Manual Giant Pacific Octopus (Enteroctopus dofleini) Care Manual Published by the Association of Zoos and Aquariums in association with the AZA Animal Welfare Committee Formal Citation: AZA Aquatic Invertebrate Taxon Advisory Group (AITAG) (2014). Giant Pacific Octopus (Enteroctopus dofleini) Care Manual. Association of Zoos and Aquariums, Silver Spring, MD. Original Completion Date: September 2014 Dedication: This work is dedicated to the memory of Roland C. Anderson, who passed away suddenly before its completion. No one person is more responsible for advancing and elevating the state of husbandry of this species, and we hope his lifelong body of work will inspire the next generation of aquarists towards the same ideals. Authors and Significant Contributors: Barrett L. Christie, The Dallas Zoo and Children’s Aquarium at Fair Park, AITAG Steering Committee Alan Peters, Smithsonian Institution, National Zoological Park, AITAG Steering Committee Gregory J. Barord, City University of New York, AITAG Advisor Mark J. Rehling, Cleveland Metroparks Zoo Roland C. Anderson, PhD Reviewers: Mike Brittsan, Columbus Zoo and Aquarium Paula Carlson, Dallas World Aquarium Marie Collins, Sea Life Aquarium Carlsbad David DeNardo, New York Aquarium Joshua Frey Sr., Downtown Aquarium Houston Jay Hemdal, Toledo -
Comparative Life History of Tropical and Temperate Sepioteuthis Squids in Australian Waters
ResearchOnline@JCU This file is part of the following reference: Pecl, Gretta T. (2000) Comparative life history of tropical and temperate Sepioteuthis squids in Australian waters. PhD thesis, James Cook University. Access to this file is available from: http://eprints.jcu.edu.au/24094/ If you believe that this work constitutes a copyright infringement, please contact [email protected] and quote http://eprints.jcu.edu.au/24094/ COMPARATIVE LIFE mSTORY OF TROPICAL AND TEMPERATE SEPIOTEUTHIS SQUIDS IN AUSTRALIAN WATERS. Thesis submitted by Gretta T. Peel (Hons.) (JeU) October 2000 for the degree of Doctor of Philosophy in Marine Biology within the School of Marine Biology and Aquaculture James Cook Uni versity STATEMENT OF ACCESS I, the undersigned, the author of this thesis, understand that James Cook University will make it available for use within the University Library and, by microfilm or other photographic means. allow access to users in other approved libraries. All users consulting this thesis will have to sign the following statement: "In consulting this thesis I agree not to copy or closely paraphrase it in whole or in part, or use the results in any other work (written or otherwise) without the signed consent of the author; and to make proper written acknowledgment for any other assistance which I have obtained from it." Beyond this, I do not wish to place any restriction on access to this thesis. ..... 9JQ:.cc .. DECLARA TION I declare that this thesis is my own work and has not been submitted in any fOIm for another degree or diploma at any university or other institution of tertiary education. -
Vertical Distribution of Pelagic Cephalopods *
* Vertical Distribution of Pelagic Cephalopods CLYDE F. E. ROPER and RICHARD E. YOUNG SMITHSONIAN CONTRIBUTIONS TO ZOOLOGY • NUMBER 209 SERIAL PUBLICATIONS OF THE SMITHSONIAN INSTITUTION The emphasis upon publications as a means of diffusing knowledge was expressed by the first Secretary of the Smithsonian Institution. In his formal plan for the Insti- tution, Joseph Henry articulated a program that included the following statement: "It is proposed to publish a series of reports, giving an account of the new discoveries in science, and of the changes made from year to year in all branches of knowledge." This keynote of basic research has been adhered to over the years in the issuance of thousands of titles in serial publications under the Smithsonian imprint, com- mencing with Smithsonian Contributions to Knowledge in 1848 and continuing with the following active series: Smithsonian Annals of Flight Smithsonian Contributions to Anthropology Smithsonian Contributions to Astrophysics Smithsonian Contributions to Botany Smithsonian Contributions to the Earth Sciences Smithsonian Contributions to Paleobiology Smithsonian Contributions to Zoology Smithsonian Studies in History and Technology In these series, the Institution publishes original articles and monographs dealing with the research and collections of its several museums and offices and of professional colleagues at other institutions of learning. These papers report newly acquired facts, synoptic interpretations of data, or original theory in specialized fields. These pub- lications are distributed by mailing lists to libraries, laboratories, and other interested institutions and specialists throughout the world. Individual copies may be obtained from the Smithsonian Institution Press as long as stocks are available. S. DILLON RIPLEY Secretary Smithsonian Institution SMITHSONIAN CONTRIBUTIONS TO ZOOLOGY • NUMBER 209 Vertical Distribution of Pelagic Cephalopds Clyde F. -
STRESSOR RESPONSE MODEL for the SEAGRASSES, Halodule Wrightii and Thalassia Testudinum
Final Report for Technical Assistance for an Ecological Evaluation of the Southwest Florida Feasibility Study STRESSOR RESPONSE MODEL FOR THE SEAGRASSES, Halodule wrightii and Thalassia testudinum By Frank J. Mazzotti, Leonard G. Pearlstine, Robert Chamberlain, Tomma Barnes, Kevin Chartier, and Donald DeAngelis Joint Ecosystem Modeling Laboratory Technical Report FINAL REPORT for Technical Assistance for an Ecological Evaluation of the Southwest Florida Feasibility Study STRESSOR RESPONSE MODELS FOR THE SEAGRASSES, Halodule wrightii and Thalassia testudinum Prepared By: Frank J. Mazzotti1, Leonard G. Pearlstine1, Robert Chamberlain 2, Tomma Barnes3, Kevin Chartier1, and Donald DeAngelis4 1University of Florida Ft. Lauderdale Research and Education Center 3205 College Ave Davie, FL 33314 (954) 577-6304 2South Florida Water Management District 3301 Gun Club Road West Palm Beach, FL 33406 3Post, Buckley, Schuh and Jernigan 3501 North Causeway Blvd., Suite 725 Metairie, LA 70001 (504) 862-1481 4United States Geological Survey University of Miami, Dept. of Biology 1301 Memorial Dr. RM 215 Coral Gables, FL 33146 Prepared For: South Florida Water Management District Fort Myers Service Center 2301 McGregor Blvd. Fort Myers, FL 33901 United States Geological Survey 1301 Memorial Dr. RM 215 Coral Gables, FL 33146 (305) 284-3974 May 2007 ii University of Florida This report should be cited as: Mazzotti, F.J., Pearlstine, L.G., Chamberlain, R., Barnes, T., Chartier, K., and DeAngelis, D. 2007, Stressor response models for Seagrasses, Halodule wrightii and Thalassia testudnium. JEM Technical Report. Final report to the South Florida Water Management District and the U.S..Geological Survey. University of Florida, Florida Lauderdale Research and Education Center, Fort Lauderdale, Florida, 19 pages.