minerals Article Exploration Potential of Fine-Fraction Heavy Mineral Concentrates from Till Using Automated Mineralogy: A Case Study from the Izok Lake Cu–Zn–Pb–Ag VMS Deposit, Nunavut, Canada H. Donald Lougheed 1,*, M. Beth McClenaghan 2, Dan Layton-Matthews 1 and Matthew Leybourne 1,3 1 Queen’s Facility for Isotope Research, Department of Geological Sciences and Geological Engineering, Queen’s University, 36 Union St., Kingston, ON K7L 3N6, Canada;
[email protected] (D.L.-M.);
[email protected] (M.L.) 2 Geological Survey of Canada, 601 Booth St., Ottawa, ON K1A 0E8, Canada;
[email protected] 3 McDonald Institute, Canadian Particle Astrophysics Research Centre, Department of Physics, Engineering Physics & Astronomy, Queen’s University, 64 Bader Lane, Kingston, ON K7L 3N6, Canada * Correspondence:
[email protected] Received: 15 February 2020; Accepted: 26 March 2020; Published: 30 March 2020 Abstract: Exploration under thick glacial sediment cover is an important facet of modern mineral exploration in Canada and northern Europe. Till heavy mineral concentrate (HMC) indicator mineral methods are well established in exploration for diamonds, gold, and base metals in glaciated terrain. Traditional methods rely on visual examination of >250 µm HMC material, however this study applies modern automated mineralogical methods (mineral liberation analysis (MLA)) to investigate the finer (<250 µm) fraction of till HMC. Automated mineralogy of finer material allows for rapid collection of precise compositional and morphological data from a large number (10,000–100,000) of heavy mineral grains in a single sample. The Izok Lake volcanogenic massive sulfide (VMS) deposit, one of the largest undeveloped Zn–Cu resources in North America, has a well-documented fan-shaped indicator mineral dispersal train and was used as a test site for this study.