Analytical Techniques for Measuring Nitrous Oxide ⇑ Trevor D

Total Page:16

File Type:pdf, Size:1020Kb

Analytical Techniques for Measuring Nitrous Oxide ⇑ Trevor D Trends in Analytical Chemistry 54 (2014) 65–74 Contents lists available at ScienceDirect Trends in Analytical Chemistry journal homepage: www.elsevier.com/locate/trac Review Analytical techniques for measuring nitrous oxide ⇑ Trevor D. Rapson , Helen Dacres CSIRO Ecosystem Sciences and Food Futures Flagship, GPO Box 1700, 2601 ACT, Australia article info abstract Keywords: Nitrous oxide (N2O) is estimated to contribute about 6% of the global warming effect due to greenhouse Amperometric sensor gases. N2O is also predicted to be the single most important ozone-depleting emission in the twenty-first Emissions measurement century. Great progress has been made in N2O measurement, but there is a critical need for sensors that Fourier-transform infrared can be used to map the spatial variation of N O emissions over a wide area. In this article, we outline FTIR 2 where N O measurement is required, describe advances that have been made in developing sensitive Gas chromatography 2 Laser-absorption spectroscopy analytical techniques and review some promising new technologies. Our aim is to assist both those Nitrous oxide new to N2O measurement, enabling them to select the most appropriate of the available technology, Sensor and to inform those developing new analytical techniques. Spatial variation Ó 2013 The Authors. Published by Elsevier Ltd. Open access under CC BY license. Trace-gas analysis Contents 1. Introduction . ....................................................................................................... 66 2. Methods for measuring nitrous oxide. .................................................................................... 67 2.1. Sampling methods. .......................................................................................... 67 2.1.1. Chamber methods . ............................................................................... 67 2.1.2. Micrometeorological methods ............................................................................... 67 3. Analytical techniques currently used . .................................................................................... 68 3.1. Chromatographic techniques . .......................................................................... 68 3.2. Optical techniques. .......................................................................................... 69 3.2.1. Fourier-transform infrared spectroscopy . ............................................................ 69 3.2.2. Infrared laser-absorption spectroscopy . ............................................................ 69 3.2.3. Multipass cells . ............................................................................... 70 3.2.4. High-finesse optical cavities . ............................................................................... 70 3.2.5. Photoacoustic (PA) trace-gas detection . ............................................................ 70 3.3. Amperometric methods . .......................................................................................... 71 4. New methods under development . .................................................................................... 71 4.1. Amperometric biosensors .......................................................................................... 71 4.2. Optical fibers . .......................................................................................... 71 View metadata, citation and similar papers at core.ac.uk brought to you by CORE 4.3. Modified-SnO2 surfaces. .......................................................................................... 71 5. Conclusions. .......................................................................................................provided by Elsevier - Publisher Connector 71 Acknowledgements . .................................................................................... 71 References . ....................................................................................................... 71 Abbreviations: ECD, Electron-capture detector; QCL, Quantum-cascade laser; CRDS, Cavity ring-down spectroscopy; OA-ICOS, Off-axis integrated cavity-output spectroscopy; IRMS, Isotope-ratio mass spectrometry; PAS, Photoacoustic spectroscopy. ⇑ Corresponding author. Tel.: +61 2 62464104; Fax: +61 2 62464000 E-mail address: [email protected] (T.D. Rapson). 0165-9936 Ó 2013 The Authors. Published by Elsevier Ltd. Open access under CC BY license. http://dx.doi.org/10.1016/j.trac.2013.11.004 66 T.D. Rapson, H. Dacres / Trends in Analytical Chemistry 54 (2014) 65–74 1. Introduction processes are affected by a wide range of factors, such as tem- perature, soil pH, moisture and soil organic carbon. While cap- Nitrous oxide (N2O) is a powerful greenhouse gas. The global turing flux events is challenging, it is critical to allow for warming potential (GWP) of N2O is 298 times greater than CO2 accurate quantification of ecosystem-wide emissions [13,14]. over a 100-year time horizon, and N2O is estimated to contribute about 6% of the global warming effect due to greenhouse gases A large amount of research is being carried out on N2O fluxes [1,2] In the stratosphere, N2O is oxidized to form NO and NO2. from soils, wastewater and aquatic systems. This research aims These nitrogen oxides catalyze the destruction of ozone [3], mak- not only to improve greenhouse-gas accounting, but also to under- ing N2O the single most important ozone-depleting emission in stand the complex processes contributing to N2O fluxes, which the twenty-first century [4]. could be used to inform mitigation strategies. N2O is an intermediate in both bacterial nitrification and deni- Not only has the quantity of N2O emissions been measured, but trification pathways, so N2O emissions are mainly due to bacterial isotopic studies have also been performed, and have provided transformations of nitrogen in soils and oceans (see Figs. 1 and 2). important information about the biogeochemical cycle of N2O 14 14 16 Since the industrial revolution (1750 AD), N2O levels have in- [15–19]. Although N N O is the most abundant species (99%), creased by almost 20%, from 270 ppb to 320 ppb. This increase is both the ratio of 15N/14N and the position of 15N (either attributed to human activities, in particular, the use of synthetic 15N14N16Oor14N15N16O) provide useful information [20–23]. Pho- and organic fertilizers. Other important sources of N2O emissions tolytic decomposition of N2–O in the stratosphere, the major sink are human sewage and the burning of biomass and biofuels [5–7]. of N2O, leads to enrichment of the heavier isotopes of N2O (both 15 18 Under the Kyoto Protocol, signatory countries are required to N and O) [24,25]. Microbial sources generally emit N2O that complete an annual national greenhouse-gas inventory, which, is depleted in 15N and 18O, while site preference (15N14N16Oor 14 15 16 for completeness, should include N2O. Calculating N2O emissions N N O) can indicated whether N2O is produced by nitrifying is a complicated task. In addition to N2O emissions from agricul- or denitrifying bacteria (see Fig. 2) [20,22,26]. ture, there are indirect emissions, such as those caused by leaching To assist these studies, there is a strong need for better analyt- of nitrogen from agricultural fields to aquatic systems, which in- ical methods and cost-effective ways of measuring N2O over wide crease N2O emissions from rivers and estuaries [8,9]. Furthermore, areas and long time-frames. The World Meteorological Organiza- natural systems can act as important sources and sinks of N2O [10]. tion Global Atmosphere Watch (WMO-GAW) guidelines for the The Intergovernmental Panel on Climate Change (IPCC) has set out measurement of N2O recommend accuracy and precision of less guidelines for developing national greenhouse-gas inventories [11], whereby N2O emissions are determined from models that link emissions to activities, such as fertilizer use. Underlying the mod- els are emission factors, which are determined from experimental data. The accuracy of the models depends on the quality of the experimental data on which they are based [10,12]. Measuring N2O emissions experimentally is not a trivial matter. Two main challenges are encountered when trying to measure N2O emissions: first, the low atmospheric concentrations of N2O (320 ppb), roughly a thousand times lower than CO2, and these low con- centrations are outside the detection range of many analytical techniques; and, second, N2O fluxes are episodic and demonstrate very large Fig. 2. Microbial pathways of N2O production. (a) N2O production through temporal and spatial variations, due to the multiple processes nitrification via hydroxylamine. (b) N2O production through nitrifier denitrification. that both produce and consume N2O. The rates of these Figure modified from [19]. Fig. 1. Global sources of N2O for the 1990s. Data for the graph was obtained from [5]. T.D. Rapson, H. Dacres / Trends in Analytical Chemistry 54 (2014) 65–74 67 than 0.1 ppb [27]. This strict requirement has driven the develop- gas sensors are placed on towers that measure wind, temperature ment of new methods for measuring N2O. In addition to these and gas concentrations at one or more points above the soil or veg- accuracy requirements, the ideal N2O sensor would be cheap and etation surface [28,38]. easily deployable to allow for a large number of measurements to be taken over extensive areas [13,28]. 2.1.2.1. Eddy covariance. Eddy covariance is the most direct method Besides the interest in N2O as a greenhouse gas,
Recommended publications
  • Nitrogen Trace Gas Emissions from a Riparian Ecosystem in Sot&Em
    CHEMOSPHERE PERGAMON Chemosphere 49 (2002) 1389-l 398 www.elsevier.com/locate/chemosphere Nitrogen trace gas emissions from a riparian ecosystem in sot&em Appalachia John T. Walker aP*, Christopher D. Geron a, James M. Vose b, Wayne T. Swank b ’ US Enviromental Protection Agency, Natkmal R&k Managmt Research Laboratory, iUD-63, Research Triangk Park, NC 27711, USA b US Department of Agricdture, Forest Service, Coweeta Hydrologic Laboratory, Otto, NC 28763, USA Received 11 July 2001; received in revised form 21 May 2002; accepted 19 June 2002 Abstract In this paper, we present two years of seasonal nitric oxide (NO), ammonia (NH3), and nitrous oxide (NrO) trace gas fluxes measured in a recovering riparian zone with cattle excluded and adjacent riparian zone grazed by cattle. In the recovering riparian zone, average NO, NH3, and NrO fluxes were 5.8,2.0, and 76.7 ngNm-* s-i (1.83,0.63, and 24.19 kg N ha-’ y-t), respectively. Fluxes in the grazed riparian zone were larger, especially for NO and NHr, measuring 9.1, 4.3, and 77.6 ng Nm-* s-* (2.87, 1.35, and 24.50 kg N ha-’ y-l) for NO, NHr, and N20, respectively. On average, NzO accounted for greater than 85% of total trace gas flux in both the recovering and grazed riparian zones, though NrO fluxes were highly variable temporally. In the recovering riparian zone, variability in seasonal average fluxes was ex- plained by variability in soil nitrogen (N) concentrations. Nitric oxide flux was positively correlated with soil ammo- nium (NH:) concentration, while N20 flux was positively correlated with soil nitrate (NO;) concentration.
    [Show full text]
  • Relative Importance of Gas Uptake on Aerosol and Ground Surfaces Characterized by Equivalent Uptake Coefficients
    Atmos. Chem. Phys., 19, 10981–11011, 2019 https://doi.org/10.5194/acp-19-10981-2019 © Author(s) 2019. This work is distributed under the Creative Commons Attribution 4.0 License. Relative importance of gas uptake on aerosol and ground surfaces characterized by equivalent uptake coefficients Meng Li1,a, Hang Su1, Guo Li1, Nan Ma2, Ulrich Pöschl1, and Yafang Cheng1 1Max Planck Institute for Chemistry, Mainz, 55118, Germany 2Center for Air Pollution and Climate Change Research (APCC), Institute for Environmental and Climate Research (ECI), Jinan University, Guangzhou, 511443, China anow at: Chemical Science Division, Earth System Research Laboratory, National Oceanic and Atmospheric Administration (NOAA), Boulder, Colorado 80305, USA Correspondence: Hang Su ([email protected]) and Yafang Cheng ([email protected]) Received: 19 March 2019 – Discussion started: 2 April 2019 Revised: 9 July 2019 – Accepted: 19 July 2019 – Published: 29 August 2019 Abstract. Quantifying the relative importance of gas up- Given the fact that most models have considered the up- take on the ground and aerosol surfaces helps to determine takes of these species on the ground surface, we suggest also which processes should be included in atmospheric chem- considering the following processes in atmospheric models: istry models. Gas uptake by aerosols is often characterized N2O5 uptake by all types of aerosols, HNO3 and SO2 uptake by an effective uptake coefficient (γeff), whereas gas uptake by mineral dust and sea salt aerosols, H2O2 uptake by min- on the ground is usually described by a deposition velocity eral dust, NO2 uptakes by sea salt aerosols and O3 uptake by (Vd).
    [Show full text]
  • Inelastic Scattering in Ocean Water and Its Impact on Trace Gas Retrievals from Satellite Data
    Atmos. Chem. Phys., 3, 1365–1375, 2003 www.atmos-chem-phys.org/acp/3/1365/ Atmospheric Chemistry and Physics Inelastic scattering in ocean water and its impact on trace gas retrievals from satellite data M. Vountas, A. Richter, F. Wittrock, and J. P. Burrows Institute for Environmental Physics, University of Bremen, Bremen, Germany Received: 4 April 2003 – Published in Atmos. Chem. Phys. Discuss.: 2 June 2003 Revised: 29 August 2003 – Accepted: 4 September 2003 – Published: 15 September 2003 Abstract. Over clear ocean waters, photons scattered within 1 Introduction the water body contribute significantly to the upwelling flux. In addition to elastic scattering, inelastic Vibrational Raman Backscattered light from waters with low concentrations of Scattering (VRS) by liquid water is also playing a role and chlorophyll and gelbstoff – which are commonly referred can have a strong impact on the spectral distribution of the to as oligotrophic waters – is significantly influenced by outgoing radiance. Under clear-sky conditions, VRS has an Vibrational Raman Scattering (VRS) within the water (e.g. influence on trace gas retrievals from space-borne measure- Stavn and Weidemann, 1988; Marshall and Smith, 1990; ments of the backscattered radiance such as from e.g. GOME Haltrin and Kattawar, 1993; Sathyendranath and Platt, 1998; (Global Ozone Monitoring Experiment). The effect is par- Vasilkov et al., 2002b). ticularly important for geo-locations with small solar zenith As inelastic scattering redistributes photons over wave- angles and over waters with low chlorophyll concentration. length, VRS fills-in solar Fraunhofer lines, as well as trace gas absorption lines and therefore changes the spectral dis- In this study, a simple ocean reflectance model (Sathyen- tribution of scattered light in the atmosphere.
    [Show full text]
  • Cris Trace Gas Data Users Workshop
    NOAA Unique CrIS/ATMS Processing System (NUCAPS) Trace Gas Data Products and Access A.K. Sharma (OSPO) CrIS Trace Gas Data Users Workshop September 18, 2014 The NOAA Unique CrIS/ATMS Processing System Products Retrieval Products gas Range Precisio d.o.f. Interfering Gases Science Cloud Cleared Radiances 660-750 cm-1 (cm-1) n Code 2200-2400 cm-1 T 650-800 1K/km 6-10 H2O,O3,N2O 100 levels Cloud fracon and Top 660-750 cm-1 2375-2395 emissivity Pressure Surface temperature window H2O 1200-1600 15% 4-6 CH4, HNO3 100 layers O 1025-1050 10% 1+ H2O,emissivity 100 layers Temperature 660-750 cm-1 3 2200-2400 cm-1 CO 2080-2200 15% ≈ 1 H2O,N2O 100 layers Water Vapor 780 – 1090 cm-1 1200-1750 cm-1 CH4 1250-1370 1.5% ≈ 1 H2O,HNO3,N2O 100 layers O3 990 – 1070 cm-1 CO2 680-795 0.5% ≈ 1 H2O,O3 100 layers CO 2155 – 2220 cm-1 2375-2395 T(p) CH4 1220-1350 cm-1 Volcanic 1340-1380 50% ?? < 1 H2O,HNO3 flag SO2 N2O 1290-1300cm-1 2190-2240cm-1 HNO3 860-920 50% ?? < 1 emissivity 100 layers 1320-1330 H2O,CH4,N2O HNO3 760-1320cm-1 N2O 1250-1315 5% ?? < 1 H2O 100 layers SO2 1343-1383cm-1 2180-2250 H2O,CO NH3 860-875 50% <1 emissivity BT diff CFCs 790-940 20-50% <1 emissivity Constant NUCAPS EDR Trace Gas Products The EDR product contains the following trace gas profiles calculated on each CrIS FOR: O3 layer column density (at 100 levels) O3 mixing ratio (at 100 levels) First Guess O3 layer column density (at 100 levels) First Guess O3 mixing ratio (at 100 levels) CH4 layer column density (at 100 levels) CH4 mixing ratio (at 100 levels) CO2 mixing ratio (at 100 levels) HNO3 layer column density (at 100 levels) HNO3 mixing ratio (at 100 levels) N2O layer column density (at 100 levels) N2O mixing ratio (at 100 levels) SO2 layer column density (at 100 levels) SO2 mixing ratio (at 100 levels) 3 AWIPS NUCAPS Products The retrieval product for AWIPS contains the following variaBles.
    [Show full text]
  • Concentrations and Fluxes of Aerosol Particles During the LAPBIAT
    Atmos. Chem. Phys. Discuss., 7, 709–751, 2007 Atmospheric www.atmos-chem-phys-discuss.net/7/709/2007/ Chemistry © Author(s) 2007. This work is licensed and Physics under a Creative Commons License. Discussions Concentrations and fluxes of aerosol particles during the LAPBIAT measurement campaign in Varri¨ o¨ field station T. M. Ruuskanen1, M. Kaasik2, P. P. Aalto1, U. Horrak˜ 2, M. Vana1,2, M. Martensson˚ 3, Y. J. Yoon4, P. Keronen1, G. Mordas1, D. Ceburnis4, E. D. Nilsson3, C. O’Dowd4, M. Noppel2, T. Alliksaar5, J. Ivask5, M. Sofiev6, M. Prank2, and M. Kulmala1 1University of Helsinki, Dept. of Physical Sciences, P.O. Box 64, 00014 University of Helsinki, Finland 2Institute of Environmental Physics, University of Tartu, Tartu, Estonia 3Department of Applied Environmental Science, Stockholm University, Stockholm, Sweden 4Department of Experimental Physics, National University of Ireland, Galway, Ireland 5Institute of Geology, Tallinn University of Technology, Tallinn, Estonia 6Air Quality Research, Finnish Meteorological Institute, Finland Received: 21 November 2006 – Accepted: 8 January 2006 – Published: 17 January 2007 Correspondence to: T. M. Ruuskanen (taina.ruuskanen@helsinki.fi) 709 Abstract The LAPBIAT measurement campaign took place in the SMEAR I measurement station located in Eastern Lapland in the spring of 2003 between 26 April and 11 May. In this paper we describe the measurement campaign, concentrations and fluxes of aerosol 5 particles, air ions and trace gases, paying special attention to an aerosol particle for- mation event broken by a polluted air mass approaching from industrial areas of Kola Peninsula, Russia. Aerosol particle number flux measurements show strong downward fluxes during that time.
    [Show full text]
  • Dual Laser Trace Gas Monitor Sensitive, Rapid, Highly Specific and Continuous Measurements of Multiple Atmospheric Trace Gases in Ambient Air
    Dual Laser Trace Gas Monitor Sensitive, rapid, highly specific and continuous measurements of multiple atmospheric trace gases in ambient air. APPLICATIONS ADVANTAGES • Extremely sensitive detection of a wide variety of • Absolute trace gas concentrations with atmospheric trace gases, such as: methane, out calibration gases. nitrous oxide, nitric oxide, nitrogen dioxide, carbon monoxide, carbon dioxide, formaldehyde, • Fast time response. formic acid, ethylene, acetylene, carbonyl sulfide, acrolein, ammonia and others. • Free from interferences by other atmospheric gases or water vapor. • Combustion monitoring and characterization. • Turnkey and unattended operation. • Isotopic monitoring of CH4 and N2O for source/ sink characterization. • Ready to be deployed in field measurements and on moving platforms. • Eddy Covariance measurements. • Two lasers allow simultaneous • Fast response plume studies. measurement of more species. • Air quality monitoring. • Optical pathlength of either 76 meters or 210 meters. • Mobile measurements from ship, truck, and Aircraft platforms. AERODYNE RESEARCH, Inc. 45 MANNING ROAD, BILLERICA, MA 01821 (978) 663 9500 www.aerodyne.com CAEC_TILDAS_DUAL POPULAR INSTRUMENTS HIGHER PRECISION AND ACCURACY IS OBTAINABLE WITH MID-INFRARED LASERS Clumped CO2 Isotopes* CH4 Isotopes CO2, Water Isotopes N2O Isotopes NO, NO2 CH4, N2O, CO,CO2, H2O, C2H6 MECHANICAL SPECIFICATIONS FOR DUAL LASER TRACE GAS MONITOR: Dimensions: 560 mm x 770 mm x 640 mm (W x D x H) Weight: 75 kg Electrical Power: 250-500 W, 120/240 V, 55/60 Hz (without pump) MULTIPASS CELL: Choice of 76 meter standard cell (V=0.5 liters) or 210 meter “Super Cell” (V=2liters) *Image attribution by Psammophile [GFDL (http://www.gnu.org/copyleft/fdl.html) or CC-BY-SA-3.0-2.5-2.0-1.0 (http://creativecommons.org/licenses/by-sa/3.0)], via Wikimedia Commons REFERENCES: Nelson, D.D.
    [Show full text]
  • Transportable Aerosol Characterization Trailer with Trace Gas Chemistry: Design, Instruments and Verification
    Aerosol and Air Quality Research, 13: 421–435, 2013 Copyright © Taiwan Association for Aerosol Research ISSN: 1680-8584 print / 2071-1409 online doi: 10.4209/aaqr.2012.08.0207 Transportable Aerosol Characterization Trailer with Trace Gas Chemistry: Design, Instruments and Verification T. Petäjä1*, V. Vakkari1, T. Pohja2, T. Nieminen1, H. Laakso2, P.P. Aalto1, P. Keronen1, E. Siivola1, V.-M. Kerminen1,3, M. Kulmala1, L. Laakso3,4 1 Division of Atmospheric Sciences, Department of Physics, University of Helsinki, P.O. Box 64, FI-00014 University of Helsinki, Finland 2 Hyytiälä Forestry Field Station, Hyytiäläntie 124, FI-35500 Korkeakoski, Finland 3 School of Physical and Chemical Sciences, North-West University, Potchefstroom 2520, South Africa 4 Finnish Meteorological Institute, Research and Development, P.O. Box 503, FI-00101, Finland ABSTRACT The characterization of atmospheric aerosol properties and trace gas concentrations in various environments provides a basis for scientific research on the assessment of their roles in the climate system, as well as regional air quality issues. However, measurements of these face many problems in the developing world. In this study we present the design of a transportable aerosol dynamic and atmospheric research trailer, which relies minimally on the existing infrastructure by making use of wireless data transfer. The instrumentation used in this trailer was originally used in various aerosol formation studies, and has been expanded so that it can also monitor air quality. The instruments include a Differential Mobility Particle Sizer (DMPS) for aerosol number size distribution in the range 10–840 nm, a Tapered Element Oscillating Microbalance (TEOM) for aerosol mass concentration, and Air Ion Spectrometer (AIS) for atmospheric ion measurements in the size range 0.5–40 nm.
    [Show full text]
  • Is a Trace Gas in Earth's Atmosphere, with a Mixing Ratio in 2005 Of
    Nitrous Oxide Nitrous oxide (chemical formula N 2O), is a trace gas in Earth’s atmosphere, with a mixing ratio in 2005 of 319±0.12 ppb (parts per billion, by volume). Atmospheric nitrous oxide is steadily increasing due to human activities. Nitrous oxide absorbs terrestrial radiation (i.e. radiation emitted by the Earth), and consequently it is an important anthropogenic greenhouse gas; it is one of the gases targeted for control within the Kyoto Protocol. Nitrous oxide also absorbs solar radiation, which can split the molecule, releasing reactive species that contribute towards stratospheric ozone depletion. Various natural and anthropogenic sources add nitrous oxide to the atmosphere. The main natural sources are related to biological activity in soils and the upper ocean. The largest anthropogenic source is from the use of nitrogenous fertilizer in the agricultural sector; others include combustion of fossil fuel, biomass and biofuel, and industrial processes. Nitrous oxide emissions related to biofuel production are an example of reducing emissions of one greenhouse gas (CO 2) at the expense of increasing emissions of another. Nitrous oxide is relatively inert in the troposphere (the atmosphere’s lowest 10-15 km). Higher up, in the stratosphere, energetic ultra-violet radiation starts to break the molecule apart. This photochemical destruction in the upper atmosphere removes about 0.9% of all nitrous oxide every year, determining the average atmospheric residence time of an N 2O molecule, which is currently around 114 years. This is long compared to timescales of most atmospheric transport and mixing processes, which typically range from hours to a few years.
    [Show full text]
  • An Implementation of the Dry Removal Processes DRY Deposition and Sedimentation in the Modular Earth Submodel System (Messy) A
    Technical Note: an implementation of the dry removal processes DRY DEPosition and SEDImentation in the Modular Earth Submodel System (MESSy) A. Kerkweg, J. Buchholz, L. Ganzeveld, A. Pozzer, H. Tost, P. Jöckel To cite this version: A. Kerkweg, J. Buchholz, L. Ganzeveld, A. Pozzer, H. Tost, et al.. Technical Note: an implementation of the dry removal processes DRY DEPosition and SEDImentation in the Modular Earth Submodel System (MESSy). Atmospheric Chemistry and Physics Discussions, European Geosciences Union, 2006, 6 (4), pp.6853-6901. hal-00302014 HAL Id: hal-00302014 https://hal.archives-ouvertes.fr/hal-00302014 Submitted on 24 Jul 2006 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. Atmos. Chem. Phys. Discuss., 6, 6853–6901, 2006 Atmospheric www.atmos-chem-phys-discuss.net/6/6853/2006/ Chemistry ACPD © Author(s) 2006. This work is licensed and Physics 6, 6853–6901, 2006 under a Creative Commons License. Discussions Dry removal processes in MESSy A. Kerkweg et al. Technical Note: an implementation of the Title Page dry removal processes DRY DEPosition Abstract Introduction and SEDImentation in the Modular Earth Conclusions References Submodel System (MESSy) Tables Figures A.
    [Show full text]
  • Interaction of the Oceans with Greenhouse Gases and Atmospheric Aerosols
    Interaction of the oceans with greenhouse gases and atmospheric aerosols UNEP Regional Seas Reports and Studies No.94 Prepared in co-operation with BIIR IT UNESCO UNEP 1988 I Note; This docianent is an extract from the report entitled Pollutant Modification of Atmospheric and Oceanic Processes and Climate' prepared for the Joint Group of Experts on the Scientific Aspects of F4arine Pollution (GESAIiP) sponsored by the United 1ations, United Nations €nviromnt Progrinne (UNEP). Food and Agriculture Organization of the United Nations (FM)). United Nations Educational. Scientific and Cultural Organization (UNESCO) 1 World Health Organization (I1O), World Meteorological Organization (0), International Maritime Organization (1110) and International Atcmic Energy Agency (IAEA). The report was prepard by the $lO-1ed GESAI4P Working Group No. 14 on the Interchange of Pollutants between the Atisphere and the Oceans 1 which is also supported by UNEP and UNESCO. The eighteenth session of GESRIIP (Paris 11-15 April 1988) approved the report of the Working Group and decided that it should be published by 1140 as GESAMP Reports and Studies Mo. 36. The designations en1oyed and the presentation of the material in this document do not iui1ly the expression of any opinion whatsoever on the part of the organizations co-sponsoring GESAMP concerning the legal status of any State 1 Territory, city or area, or of its authorities, or concerning the delimitation of its frontiers or boundaries. The docianent contains the views expressed by experts acting in their individual capacities 1 and may not necessarily correspond with the views of the sponsoring organizations. For bibliographic purposes, this docwnent may be cited as: J4O/UNEP/UNESCO: Interaction of the oceans with greenhouse gases and atmospheric aerosols: UNEP Regional Seas Reports and Studies No.
    [Show full text]
  • Ammonia: Measurement Issues
    View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by DigitalCommons@University of Nebraska University of Nebraska - Lincoln DigitalCommons@University of Nebraska - Lincoln U.S. Department of Agriculture: Agricultural Publications from USDA-ARS / UNL Faculty Research Service, Lincoln, Nebraska 2005 Ammonia: Measurement Issues Lowry A. Harper USDA-ARS Follow this and additional works at: https://digitalcommons.unl.edu/usdaarsfacpub Harper, Lowry A., "Ammonia: Measurement Issues" (2005). Publications from USDA-ARS / UNL Faculty. 1339. https://digitalcommons.unl.edu/usdaarsfacpub/1339 This Article is brought to you for free and open access by the U.S. Department of Agriculture: Agricultural Research Service, Lincoln, Nebraska at DigitalCommons@University of Nebraska - Lincoln. It has been accepted for inclusion in Publications from USDA-ARS / UNL Faculty by an authorized administrator of DigitalCommons@University of Nebraska - Lincoln. 15 Ammonia: Measurement Issues LOWRY A. HARPER Southern Piedmont Conservation Research Unit J. Phil Campbell, Sr., Natural Resources Conservation Center USDA-ARS Watkinsville, Georgia Ammonia (NH3) is a colorless gas under standard conditions, whose pungent odor is easily discernible at concentrations above about 10 ppm, and to some per- sons, down to almost 1 ppm. It is the major basic neutralizing gas in the atmos- phere so it has an important role in the neutralization of atmospheric acids generated by the oxidation of sulfur dioxide (SO2) and nitrogen oxides (NOx). As + a result, the reaction product of NH3, ammonium (NH4 ), forms an aerosol that is a major component of atmospheric aerosols and in precipitation (Asman et al., 1998). Other organic forms also exist, such as amines and organic N compounds (not currently studied), but the concentrations of these components are generally negligible by comparison (Van der Eerden, 1982).
    [Show full text]
  • Ozone Depletion Due to Increasing Anthropogenic Trace Gas Emissions: Role of Stratospheric Chemistry and Implications for Future Climate
    Vol. 1: 85-95, 1991 CLIMATE RESEARCH Published April 14 Clim. Res. Ozone depletion due to increasing anthropogenic trace gas emissions: role of stratospheric chemistry and implications for future climate M. Lal*,T. Holt Climatic Research Unit, University of East Anglia, Norwich NR4 7TJ,United Kingdom ABSTRACT: The response of the atmosphere to increasing emissions of radatively active trace gases (COz,CH,, N20, o3and CFCs) is calculated by means of a l-dimensional coupled chemical-radiative- transport model. We identify the sign and magnitude of the feedback between the chemistry and thermal structure of the atmosphere by examining steady state changes in stratospheric ozone and surface temperature in response to perturbations in trace gases of anthropogenic origin. Next, we assess the possible decline in stratospheric ozone and its effect on troposphere-stratosphere temperature trends for the period covering the pre-industrial era to the present. Future trends are also considered using projected 'business-as-usual' trace gas scenario (scenario BAU) and that expected as a result of global phase-out of production of CFCs by the year 2000 (scenario MP). The numerical experiments take account of the effect of stratospheric aerosol loading due to volcanic eruptions and the influence of the thermal inertia of the ocean. Results indicate that the trace gas increase from the period 1850 to 1986 could already have contributed to a 3 to 10 % decline in stratospheric ozone and that this decline is expected to become more pronounced by the year 2050, amounting to a 43 % ozone loss at 40 km for the scenario BAU. The total column ozone Increase of 1.5% obtained in our model calculations for the present-day atmosphere is likely to change sign with time leading to a net decrease of 12.7 % by the middle of next century.
    [Show full text]