The Prevalence of Single-Specimen/Locality Species in Insect Taxonomy: an Empirical Analysis
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Oedipodinae: Acrididae: Orthoptera) from Pakistan
Journal of Cell and Animal Biology Vol. 6(2), pp. 29-32, 30 January, 2012 Available online at http://www.academicjournals.org/JCAB DOI: 10.5897/JCAB12.008 ISSN 1996-0867 ©2012 Academic Journals Full Length Research Paper A new species of the genus Hilethera Uvarov (Oedipodinae: Acrididae: Orthoptera) from Pakistan Barkat Ali Bughio, Riffat Sultana* and M. Saeed Wagan Department of Zoology, University of Sindh, Jamshoro, Pakistan. Accepted 24 January, 2012 The subfamily Oedipodinae has considerable economic importance in Pakistan. It poses constant threat to pastures, orchards and variety of crops in both irrigated and rain-fed areas. Amongst its members, the genus Hilethera has not been studied extensively and it was described by Uvarov in 1925. It comprised two species: Hilethera hierichonica Uvarov and Hilethera aeolopoides Uvarov, but at present, we have added one new species, Hilethera balucha to this genus. This new species is closely related to Trilophidia annulata Thunberg because it has a refined body form but can easily be separated from the same on the following bases: it has the structure of pronotum; its anterior projections are conical, extending outwardly. It has lateral plates with convex median process, has shorter ancorae placed angularly, and has hyaline wings that are transparent with a smoky marginal band, and slightly greenish at the base. This insect has been collected from rocky areas with scattered vegetation that consists of grasses and herbs. H. balocha new species is described from Balochistan Province of Pakistan. Key words: Oedipodinae, new species, Hilethera Balocha , Balochistan. INTRODUCTION The fauna of grasshopper insects belonging to the Mostly, they are known as geophiles (living in open subfamily Oedipodinae are of considerable economic grounds) and phytophyles (found at vegetation, grasses, importance in Pakistan. -
Species Concepts and the Evolutionary Paradigm in Modern Nematology
JOURNAL OF NEMATOLOGY VOLUME 30 MARCH 1998 NUMBER 1 Journal of Nematology 30 (1) :1-21. 1998. © The Society of Nematologists 1998. Species Concepts and the Evolutionary Paradigm in Modern Nematology BYRON J. ADAMS 1 Abstract: Given the task of recovering and representing evolutionary history, nematode taxonomists can choose from among several species concepts. All species concepts have theoretical and (or) opera- tional inconsistencies that can result in failure to accurately recover and represent species. This failure not only obfuscates nematode taxonomy but hinders other research programs in hematology that are dependent upon a phylogenetically correct taxonomy, such as biodiversity, biogeography, cospeciation, coevolution, and adaptation. Three types of systematic errors inherent in different species concepts and their potential effects on these research programs are presented. These errors include overestimating and underestimating the number of species (type I and II error, respectively) and misrepresenting their phylogenetic relationships (type III error). For research programs in hematology that utilize recovered evolutionary history, type II and III errors are the most serious. Linnean, biological, evolutionary, and phylogenefic species concepts are evaluated based on their sensitivity to systematic error. Linnean and biologica[ species concepts are more prone to serious systematic error than evolutionary or phylogenetic concepts. As an alternative to the current paradigm, an amalgamation of evolutionary and phylogenetic species concepts is advocated, along with a set of discovery operations designed to minimize the risk of making systematic errors. Examples of these operations are applied to species and isolates of Heterorhab- ditis. Key words: adaptation, biodiversity, biogeography, coevolufion, comparative method, cospeciation, evolution, nematode, philosophy, species concepts, systematics, taxonomy. -
Western Tiger Salamander,Ambystoma Mavortium
COSEWIC Assessment and Status Report on the Western Tiger Salamander Ambystoma mavortium Southern Mountain population Prairie / Boreal population in Canada Southern Mountain population – ENDANGERED Prairie / Boreal population – SPECIAL CONCERN 2012 COSEWIC status reports are working documents used in assigning the status of wildlife species suspected of being at risk. This report may be cited as follows: COSEWIC. 2012. COSEWIC assessment and status report on the Western Tiger Salamander Ambystoma mavortium in Canada. Committee on the Status of Endangered Wildlife in Canada. Ottawa. xv + 63 pp. (www.registrelep-sararegistry.gc.ca/default_e.cfm). Previous report(s): COSEWIC. 2001. COSEWIC assessment and status report on the tiger salamander Ambystoma tigrinum in Canada. Committee on the Status of Endangered Wildlife in Canada. Ottawa. vi + 33 pp. (www.sararegistry.gc.ca/status/status_e.cfm). Schock, D.M. 2001. COSEWIC assessment and status report on the tiger salamander Ambystoma tigrinum in Canada, in COSEWIC assessment and status report on the tiger salamander Ambystoma tigrinum in Canada. Committee on the Status of Endangered Wildlife in Canada. Ottawa. 1-33 pp. Production note: COSEWIC would like to acknowledge Arthur Whiting for writing the status report on the Western Tiger Salamander, Ambystoma mavortium, in Canada, prepared under contract with Environment Canada. This report was overseen and edited by Kristiina Ovaska, Co-chair of the COSEWIC Amphibians and Reptiles Specialist Subcommittee. For additional copies contact: COSEWIC Secretariat c/o Canadian Wildlife Service Environment Canada Ottawa, ON K1A 0H3 Tel.: 819-953-3215 Fax: 819-994-3684 E-mail: COSEWIC/[email protected] http://www.cosewic.gc.ca Également disponible en français sous le titre Ếvaluation et Rapport de situation du COSEPAC sur la Salamandre tigrée de l’Ouest (Ambystoma mavortium) au Canada. -
Insect Imaging at the ANKA Synchrotron Radiation Facility 147
Insect Imaging at the ANKA Synchrotron Radiation Facility 147 Entomologie heute 25 (2013): 147-160 Insect Imaging at the ANKA Synchrotron Radiation Facility Bildgebung von Insekten an der Synchrotronstrahlungsquelle ANKA THOMAS VAN DE KAMP, ALEXEY ERSHOV, TOMY DOS SANTOS ROLO, ALEXANDER RIEDEL & TILO BAUMBACH Summary: Internal structures of biological samples are often diffi cult to visualize by traditional morphological methods like light and electron microscopy. In insects, a robust cuticle often impedes examination. Three-dimensional visualization of anatomical details based on light microscopy photo graphs is particularly challenging, because the necessary creation of a series of “perfect” slices often proves to be impossible in the case of hard-shelled specimens. Synchrotron-based X-ray imaging provides a pool of techniques well-suited for morphological studies. As it allows examin- ing millimeter-sized non-translucent objects, it is particularly valuable for the multidimensional visualization of insects and became increasingly popular among entomologists. A synchrotron is a cyclic particle accelerator. In high vacuum electrons are accelerated up to nearly light speed, injected into a storage ring and deviated by bending magnets. When the electron beam changes its direction due to magnetic infl uence, electromagnetic radiation is transmitted tangentially, which is used in attached experimental stations (“beamlines”). Synchrotron radiation has a broad spectrum ranging from microwaves to hard X-rays, the latter being used for most synchrotron imaging techniques. The high intensity of these X-rays facilitates high special and temporal resolutions. An important method is synchrotron X-ray microtomography (SR-μCT). Here, a series of 2D X-ray projections of a rotating sample is used to calculate a 3D volume. -
An Inventory of Short Horn Grasshoppers in the Menoua Division, West Region of Cameroon
AGRICULTURE AND BIOLOGY JOURNAL OF NORTH AMERICA ISSN Print: 2151-7517, ISSN Online: 2151-7525, doi:10.5251/abjna.2013.4.3.291.299 © 2013, ScienceHuβ, http://www.scihub.org/ABJNA An inventory of short horn grasshoppers in the Menoua Division, West Region of Cameroon Seino RA1, Dongmo TI1, Ghogomu RT2, Kekeunou S3, Chifon RN1, Manjeli Y4 1Laboratory of Applied Ecology (LABEA), Department of Animal Biology, Faculty of Science, University of Dschang, P.O. Box 353 Dschang, Cameroon, 2Department of Plant Protection, Faculty of Agriculture and Agronomic Sciences (FASA), University of Dschang, P.O. Box 222, Dschang, Cameroon. 3 Département de Biologie et Physiologie Animale, Faculté des Sciences, Université de Yaoundé 1, Cameroun 4 Department of Biotechnology and Animal Production, Faculty of Agriculture and Agronomic Sciences (FASA), University of Dschang, P.O. Box 222, Dschang, Cameroon. ABSTRACT The present study was carried out as a first documentation of short horn grasshoppers in the Menoua Division of Cameroon. A total of 1587 specimens were collected from six sites i.e. Dschang (265), Fokoue (253), Fongo – Tongo (267), Nkong – Ni (271), Penka Michel (268) and Santchou (263). Identification of these grasshoppers showed 28 species that included 22 Acrididae and 6 Pyrgomorphidae. The Acrididae belonged to 8 subfamilies (Acridinae, Catantopinae, Cyrtacanthacridinae, Eyprepocnemidinae, Oedipodinae, Oxyinae, Spathosterninae and Tropidopolinae) while the Pyrgomorphidae belonged to only one subfamily (Pyrgomorphinae). The Catantopinae (Acrididae) showed the highest number of species while Oxyinae, Spathosterninae and Tropidopolinae showed only one species each. Ten Acrididae species (Acanthacris ruficornis, Anacatantops sp, Catantops melanostictus, Coryphosima stenoptera, Cyrtacanthacris aeruginosa, Eyprepocnemis noxia, Gastrimargus africanus, Heteropternis sp, Ornithacris turbida, and Trilophidia conturbata ) and one Pyrgomorphidae (Zonocerus variegatus) were collected in all the six sites. -
Development of Encyclopedia Boyong Sleman Insekta River As Alternative Learning Resources
PROC. INTERNAT. CONF. SCI. ENGIN. ISSN 2597-5250 Volume 3, April 2020 | Pages: 629-634 E-ISSN 2598-232X Development of Encyclopedia Boyong Sleman Insekta River as Alternative Learning Resources Rini Dita Fitriani*, Sulistiyawati Biological Education Faculty of Science and Technology, UIN Sunan Kalijaga Jl. Marsda Adisucipto Yogyakarta, Indonesia Email*: [email protected] Abstract. This study aims to determine the types of insects Coleoptera, Hemiptera, Odonata, Orthoptera and Lepidoptera in the Boyong River, Sleman Regency, Yogyakarta, to develop the Encyclopedia of the Boyong River Insect and to determine the quality of the encyclopedia developed. The method used in the research inventory of the types of insects Coleoptera, Hemiptera, Odonata, Orthoptera and Lepidoptera insects in the Boyong River survey method with the results of the study found 46 species of insects consisting of 2 Coleoptera Orders, 2 Hemiptera Orders, 18 orders of Lepidoptera in Boyong River survey method with the results of the research found 46 species of insects consisting of 2 Coleoptera Orders, 2 Hemiptera Orders, 18 orders of Lepidoptera in Boyong River survey method. odonata, 4 Orthopterous Orders and 20 Lepidopterous Orders from 15 families. The encyclopedia that was developed was created using the Adobe Indesig application which was developed in printed form. Testing the quality of the encyclopedia uses a checklist questionnaire and the results of the percentage of ideals from material experts are 91.1% with very good categories, 91.7% of media experts with very good categories, peer reviewers 92.27% with very good categories, biology teachers 88, 53% with a very good category and students 89.8% with a very good category. -
Wild-Harvested Edible Insects
28 Six-legged livestock: edible insect farming, collecting and marketing in Thailand Collecting techniques Wild-harvested edible insects Bamboo caterpillars are mainly collected in the north of Thailand. Apart from farmed edible insects like Bamboo caterpillars were tradi onally crickets and palm weevil larvae, other collected by cutting down entire edible insect species such as silkworm bamboo clumps to harvest the pupae, grasshoppers, weaver ants and caterpillars. This approach was bamboo caterpillars are also popular destruc ve and some mes wasteful food items and can be found in every of bamboo material. More recently a market. less invasive collec on method has been tried. Sustainable collec on Grasshoppers, weaver ants, giant without cutting bamboo trees is water bugs and bamboo caterpillars starting to be practised by local are the most popular wild edible people. Mr.Piyachart, a collector of insects consumed. Grasshoppers are bamboo caterpillars from the wild, collected in the wild, but mainly was interviewed in Chiang Rai Province imported from Cambodia; weaver to learn about his sustainable ants and bamboo caterpillars are collecting method. The adult harvested in the wild seasonally. caterpillar exits, a er pupa emergence, from a hole at the base of the bamboo stem. The fi rst or second internode is Bamboo caterpillar examined to reveal the damage (Omphisa fuscidenƩ alis caused by the bamboo caterpillar and Hampson, Family its loca on. The denseness of an Pyralidae) internode is a clue to indicate the presence of bamboo caterpillars. The Known in Thai as rod fai duan or ‘the harves ng of bamboo caterpillars is express train’ the larvae live inside conducted by slicing the specifi c bamboo plants for around ten months. -
Loggerhead Shrike, Migrans Subspecies (Lanius Ludovicianus Migrans), in Canada
PROPOSED Species at Risk Act Recovery Strategy Series Recovery Strategy for the Loggerhead Shrike, migrans subspecies (Lanius ludovicianus migrans), in Canada Loggerhead Shrike, migrans subspecies © Manitoba Conservation 2010 About the Species at Risk Act Recovery Strategy Series What is the Species at Risk Act (SARA)? SARA is the Act developed by the federal government as a key contribution to the common national effort to protect and conserve species at risk in Canada. SARA came into force in 2003, and one of its purposes is “to provide for the recovery of wildlife species that are extirpated, endangered or threatened as a result of human activity.” What is recovery? In the context of species at risk conservation, recovery is the process by which the decline of an endangered, threatened or extirpated species is arrested or reversed, and threats are removed or reduced to improve the likelihood of the species’ persistence in the wild. A species will be considered recovered when its long-term persistence in the wild has been secured. What is a recovery strategy? A recovery strategy is a planning document that identifies what needs to be done to arrest or reverse the decline of a species. It sets objectives and broad strategies to attain them and identifies the main areas of activities to be undertaken. Detailed planning is done at the action plan stage. Recovery strategy development is a commitment of all provinces and territories and of three federal agencies — Environment Canada, Parks Canada Agency and Fisheries and Oceans Canada — under the Accord for the Protection of Species at Risk. -
Ohio EPA Macroinvertebrate Taxonomic Level December 2019 1 Table 1. Current Taxonomic Keys and the Level of Taxonomy Routinely U
Ohio EPA Macroinvertebrate Taxonomic Level December 2019 Table 1. Current taxonomic keys and the level of taxonomy routinely used by the Ohio EPA in streams and rivers for various macroinvertebrate taxonomic classifications. Genera that are reasonably considered to be monotypic in Ohio are also listed. Taxon Subtaxon Taxonomic Level Taxonomic Key(ies) Species Pennak 1989, Thorp & Rogers 2016 Porifera If no gemmules are present identify to family (Spongillidae). Genus Thorp & Rogers 2016 Cnidaria monotypic genera: Cordylophora caspia and Craspedacusta sowerbii Platyhelminthes Class (Turbellaria) Thorp & Rogers 2016 Nemertea Phylum (Nemertea) Thorp & Rogers 2016 Phylum (Nematomorpha) Thorp & Rogers 2016 Nematomorpha Paragordius varius monotypic genus Thorp & Rogers 2016 Genus Thorp & Rogers 2016 Ectoprocta monotypic genera: Cristatella mucedo, Hyalinella punctata, Lophopodella carteri, Paludicella articulata, Pectinatella magnifica, Pottsiella erecta Entoprocta Urnatella gracilis monotypic genus Thorp & Rogers 2016 Polychaeta Class (Polychaeta) Thorp & Rogers 2016 Annelida Oligochaeta Subclass (Oligochaeta) Thorp & Rogers 2016 Hirudinida Species Klemm 1982, Klemm et al. 2015 Anostraca Species Thorp & Rogers 2016 Species (Lynceus Laevicaudata Thorp & Rogers 2016 brachyurus) Spinicaudata Genus Thorp & Rogers 2016 Williams 1972, Thorp & Rogers Isopoda Genus 2016 Holsinger 1972, Thorp & Rogers Amphipoda Genus 2016 Gammaridae: Gammarus Species Holsinger 1972 Crustacea monotypic genera: Apocorophium lacustre, Echinogammarus ischnus, Synurella dentata Species (Taphromysis Mysida Thorp & Rogers 2016 louisianae) Crocker & Barr 1968; Jezerinac 1993, 1995; Jezerinac & Thoma 1984; Taylor 2000; Thoma et al. Cambaridae Species 2005; Thoma & Stocker 2009; Crandall & De Grave 2017; Glon et al. 2018 Species (Palaemon Pennak 1989, Palaemonidae kadiakensis) Thorp & Rogers 2016 1 Ohio EPA Macroinvertebrate Taxonomic Level December 2019 Taxon Subtaxon Taxonomic Level Taxonomic Key(ies) Informal grouping of the Arachnida Hydrachnidia Smith 2001 water mites Genus Morse et al. -
The Mt Halimun-Salak Malaise Trap Project - Releasing the Most Species Rich DNA Barcode Library for Indonesia
Biodiversity Data Journal 6: e29927 doi: 10.3897/BDJ.6.e29927 Research Article The Mt Halimun-Salak Malaise Trap project - releasing the most species rich DNA Barcode library for Indonesia Bruno Cancian de Araujo‡, Stefan Schmidt‡‡, Olga Schmidt , Thomas von Rintelen§, Rosichon Ubaidillah|, Michael Balke ‡ ‡ SNSB-Zoologische Staatssammlung München, Munich, Germany § Museum für Naturkunde, Leibniz-Institut für Evolutions- und Biodiversitätsforschung, Berlin, Germany | Museum Zoologicum Bogoriense, Research Center for Biology, Indonesian Institute of Sciences, Cibinong, Indonesia Corresponding author: Bruno Cancian de Araujo ([email protected]) Academic editor: Gergin Blagoev Received: 20 Sep 2018 | Accepted: 28 Nov 2018 | Published: 19 Dec 2018 Citation: Cancian de Araujo B, Schmidt S, Schmidt O, von Rintelen T, Ubaidillah R, Balke M (2018) The Mt Halimun-Salak Malaise Trap project - releasing the most species rich DNA Barcode library for Indonesia. Biodiversity Data Journal 6: e29927. https://doi.org/10.3897/BDJ.6.e29927 Abstract The Indonesian archipelago features an extraordinarily rich biota. However, the actual taxonomic inventory of the archipelago remains highly incomplete and there is hardly any significant taxonomic activity that utilises recent technological advances. The IndoBioSys project was established as a biodiversity information system aiming at, amongst other goals, creating inventories of the Indonesian entomofauna using DNA barcoding. Here, we release the first large scale assessment of the megadiverse insect groups that occur in the Mount Halimun-Salak National Park, one of the largest tropical rain-forest ecosystem in West Java, with a focus on Hymenoptera, Coleoptera, Diptera and Lepidoptera collected with Malaise traps. From September 2015 until April 2016, 34 Malaise traps were placed in different localities in the south-eastern part of the Halimun-Salak National Park. -
Towards a Global Names Architecture: the Future of Indexing Scientific Names
A peer-reviewed open-access journal ZooKeys 550: 261–281Towards (2016) a Global Names Architecture: The future of indexing scientific names 261 doi: 10.3897/zookeys.550.10009 RESEARCH ARTICLE http://zookeys.pensoft.net Launched to accelerate biodiversity research Towards a Global Names Architecture: The future of indexing scientific names Richard L. Pyle1 1 Bernice Pauahi Bishop Museum, 1525 Bernice Street, Honolulu, HI 96817, USA Corresponding author: Richard L. Pyle (email address) Academic editor: Ellinor Michel | Received 19 May 2015 | Accepted 20 May 2015 | Published 7 January 2016 http://zoobank.org/AD5B8CE2-BCFC-4ABC-8AB0-C92DEC7D4D85 Citation: Pyle RL (2016) Towards a Global Names Architecture: The future of indexing scientific names. In: Michel E (Ed.) Anchoring Biodiversity Information: From Sherborn to the 21st century and beyond. ZooKeys 550: 261–281. doi: 10.3897/zookeys.550.10009 Abstract For more than 250 years, the taxonomic enterprise has remained almost unchanged. Certainly, the tools of the trade have improved: months-long journeys aboard sailing ships have been reduced to hours aboard jet airplanes; advanced technology allows humans to access environments that were once utterly inacces- sible; GPS has replaced crude maps; digital hi-resolution imagery provides far more accurate renderings of organisms that even the best commissioned artists of a century ago; and primitive candle-lit micro- scopes have been replaced by an array of technologies ranging from scanning electron microscopy to DNA sequencing. But the basic paradigm remains the same. Perhaps the most revolutionary change of all – which we are still in the midst of, and which has not yet been fully realized – is the means by which taxonomists manage and communicate the information of their trade. -
Article Soup to Tree: the Phylogeny of Beetles Inferred by Mitochondrial
Soup to Tree: The Phylogeny of Beetles Inferred by Mitochondrial Metagenomics of a Bornean Rainforest Sample Alex Crampton-Platt,*,1,2 Martijn J.T.N. Timmermans,y,1,3 Matthew L. Gimmel,4 Sujatha Narayanan Kutty,z,1 Timothy D. Cockerill,1,5 Chey Vun Khen,6 and Alfried P. Vogler1,3,* 1Department of Life Sciences, Natural History Museum, London, United Kingdom 2Department of Genetics, Evolution and Environment, Faculty of Life Sciences, University College London, London, United Kingdom 3Division of Biology, Imperial College London, Silwood Park Campus, Ascot, United Kingdom 4Department of Biology, Faculty of Education, Palacky University, Olomouc, Czech Republic 5Department of Zoology, University of Cambridge, Cambridge, United Kingdom 6Entomology Section, Forest Research Centre, Forestry Department, Sandakan, Sabah, Malaysia yPresent address: Department of Natural Sciences, Hendon Campus, Middlesex University, London, United Kingdom zPresent address: Department of Biological Sciences, National University of Singapore, Singapore. *Corresponding author: E-mail: [email protected]; [email protected]. Associate editor: Claudia Russo Abstract In spite of the growth of molecular ecology, systematics and next-generation sequencing, the discovery and analysis of diversity is not currently integrated with building the tree-of-life. Tropical arthropod ecologists are well placed to accelerate this process if all specimens obtained through mass-trapping, many of which will be new species, could be incorporated routinely into phylogeny reconstruction. Here we test a shotgun sequencing approach, whereby mitochon- drial genomes are assembled from complex ecological mixtures through mitochondrial metagenomics, and demonstrate how the approach overcomes many of the taxonomic impediments to the study of biodiversity.