(Danio Rerio). (In Vivo/ in Vitro

Total Page:16

File Type:pdf, Size:1020Kb

(Danio Rerio). (In Vivo/ in Vitro Lire la première partie de la thèse IV. Métabolisme de la BP2 et du BPS dans des modèles in vitro issus de l’Homme et du poisson zèbre utilisés dans l’évaluation toxicologique et le criblage des substances à activité œstrogénique Article 3 Cell-specific biotransformation of benzophenone 2 and Bisphenol-S in zebrafish and human in vitro models used for toxicity and estrogenicity screening Vincent Le Fola,b,c, Selim Aït-Aïssaa,*, Nicolas Cabatonb,c, Laurence Dolob,c, Marina Grimaldid, Patrick Balaguerd, Elisabeth Perdub,c, Laurent Debrauwerb,c, François Briona, Daniel Zalkob,c,* a Institut National de l’Environnement Industriel et des Risques (INERIS), Unité Écotoxicologie in vitro et in vivo, F-60550 Verneuil-en-Halatte, France b INRA, UMR1331, Toxalim, Research Centre in Food Toxicology, F-31027 Toulouse, France c Toulouse University, INP, UMR 1331 TOXALIM, F-31000 Toulouse, France. d Institut de Recherche en Cancérologie de Montpellier, Institut National de la Santé et de la Recherche Médicale U896, Institut Régional de Cancérologie de Montpellier, Université Montpellier 1, F-34298 Montpellier, France. * corresponding authors: E-mail: [email protected], phone +33 561 285 004, fax +33 561 285 244 E-mail: [email protected], phone +33 344 556 511, fax +33 344 556 767 185 L’étude du devenir de la BP2 et du BPS dans différents modèles in vitro du poisson zèbre fait suite à la mise en évidence des différences de réponse œstrogénique observées entre les modèles cellulaires, larvaires et adultes. En complément de ces modèles poisson zèbre, cette étude de devenir de la BP2 et du BPS a également été conduite dans des modèles in vitro humain d’origine hépatique ou mammaire et couramment utilisés dans l’évaluation toxicologique du potentiel œstrogénique des xénobiotiques. Présentation de l’article Plusieurs bio-essais in vitro ont été développés dans différentes espèces afin de mettre en évidence le potentiel œstrogénique de composés chimiques. Il a été montré que l’espèce de laquelle provienne les cellules, les sous-types d’ER correspondants et le contexte cellulaire sont des paramètres influençant le degré d’activation des ER par des composés chimiques (Matthews et al. 2000; Menuet et al. 2002; Cosnefroy et al. 2009; Cosnefroy et al. 2012; Miyagawa et al. 2014). Alors que l’absorption cellulaire et la biotransformation des xénobiotiques sont également des paramètres clefs pouvant modifier le potentiel œstrogénique de ces substances (Jacobs et al. 2013), très peu d’études rendent compte de la caractérisation des capacités de biotransformation des bio-essais utilisés. C’est pourquoi nous avons caractérisés les capacités de biotransformation de huit modèles in vitro issus du poisson zèbre et de l’Homme par l’étude du devenir de deux substances chimiques « émergeantes », la benzophénone 2 et le bisphénol S. Quatre modèles cellulaires hépatiques du poisson zèbre ont été utilisés à savoir la culture primaire d’hépatocytes (PZFH), les lignées cellulaires transfectées ZELH-zfERα et ZELH- zfERβ, et la lignée cellulaire ZFL de laquelle sont issues les cellules transfectées ZELH-zfERs. Concernant les modèles cellulaires hépatiques humains, les lignées HepG2 et HepaRG ont été utilisées. Enfin, cette étude comparative de biotransformation a intégré deux modèles d’origine humaine de criblage des xéno-œstrogènes, à savoir les lignées mammaires MELN et T47D-KBLuc. L’étude de la biotransformation de la BP2 et du BPS radiomarqués a été réalisée au moyen de techniques analytiques (radio-CLHP, spectrométrie de masse haute résolution) et biochimiques (hydrolyses enzymatiques). L’étude du devenir de la BP2 et du BPS a mis en évidence la nature glucurono- et sulfoconjuguée de l’ensemble de métabolites produits, bien que la formation d’un métabolite hydroxylé de la BP2 ne puisse être écartée pour la lignée cellulaire T47D-KBLuc. Bien que des enzymes de phase I fonctionnelles aient été rapportées pour certains de ces modèles cellulaires, la nature conjuguée prépondérante peut s’expliquer facilement par la présence de groupements hydroxyles libres pour la BP2 et le BPS, qui facilite les réactions de phase II sans fonctionnalisation préalable via des réactions de phase I. Deux modèles cellulaires se distinguent des autres par leur forte capacité de biotransformation, à savoir le modèle de culture primaire d’hépatocytes de poisson zèbre (PZFH) et la lignée cellulaire 186 HepaRG. Ce résultat, logique, tient à la nature même des cultures primaires, qui sont généralement dotées de capacités enzymatiques mieux préservées que celles des lignées cellulaires issues du même tissu. Le modèle de lignée HepaRG est quant à lui de mieux en mieux reconnu pour ses capacités de biotransformation proches de celles observées in vivo (Aninat et al. 2006; Antherieu et al. 2012). Bien que les réactions de sulfatation soient fonctionnelles dans les modèles cellulaires du poisson zèbre, une proportion plus importante de métabolites sulfo-conjugués a été retrouvée dans les modèles cellulaires d’origine humaine. Toutefois, des différences de capacités de biotransformation aussi bien qualitatives que quantitatives ont été retrouvées aussi parmi les modèles d’origine humaine. Contrairement au modèle HepaRG, les modèles HepG2, MELN et T47D-KBLuc sont caractérisés par une capacité de sulfatation majoritaire. Les modèles cellulaires du poisson zèbre sont, quant à eux, caractérisés par des capacités de biotransformation davantage homogènes, prédominées par des réactions de glucuronoconjugaison. Les doubles transfections dans la lignée ZFL n’ont pas modifié les capacités de biotransformation des cellules ZELH-zfERs résultantes. De manière intéressante, la BP2 a été plus fortement biotransformée que le BPS quel que soit le modèle de culture cellulaire, à l’exception des modèles PZFH et HepaRG dotés des plus fortes capacités de biotransformation. Etant donné la similitude de structures chimiques entre les deux composés, ce résultat n’était pas attendu. En résumé, il est à noter que les modèles cellulaires hépatiques du poisson zèbre (PZFH, ZFL, ZELH- zfERα, ZELH-zfERβ2) et le modèle hépatique d’origine humaine HepaRG sont caractérisés par des réactions du glucuronoconjugaison majoritaires. A l’inverse, les modèles cellulaires humains hépatiques et mammaires (HepG2, MELN, T47D-KBLuc) sont caractérisés par des réactions de sulfonconjugaison majoritaires. Par conséquent, en terme de biotransformation de la BP2 et du BPS, les modèles cellulaires du poisson zèbre se rapprochent davantage du modèle cellulaire humain HepaRG que des autres modèles. Il convient de noter que pour le BPA, molécule xéno-œstrogène de référence, des travaux encore non publiés de l’INRA en collaboration avec l’université de Davis (CA, USA) montrent que les profils obtenus in vivo chez le primate (macaque Rhésus ; Vandevoort, Zalko et al. non publié) et les profils HepaRG soulignent la prédominance de la voie de glucuronidation, et qu’HepaRG est donc bien plus « fidèle » à la situation in vivo chez le primate, que ne le seraient des lignées exprimant davantage l’activité sulfo-transférase, vraisemblablement parce qu’elles ont perdu une partie de leurs capacités de glucuronidation (Perdu et Zalko, non publié). Bien qu’il soit reconnu que les capacités de biotransformation déterminent en partie les quantités de molécules actives atteignant leur(s) cible(s) moléculaire(s) et ainsi influencent les réponses biologiques et leur interprétation, très peu de modèles in vitro utilisés dans le criblage des xéno- œstrogènes n’ont fait l’objet d’une telle caractérisation. Par l’étude du devenir de la BP2 et du BPS, ce travail a contribué à caractériser les capacités de biotransformation de huit modèles cellulaires issus de l’Homme et du poisson zèbre et pour certains utilisés comme outil de criblage des xéno-œstrogènes. 187 En termes de biotransformation, ces résultats montrent, par ailleurs, l’intérêt que représentent ces modèles hépatiques du poisson zèbre dans l’étude du potentiel œstrogénique des composés chimiques. 188 189 190 191 192 193 194 195 196 197 Supplemental information In vitro assay HELN-hERα cells1 were used for luciferase assay to assess human ERα estrogenic potency of BP2 and BPS metabolites (BPS-monoG, BPS-monoS, BP2-monoG1, BP2-monoG2 and BP2-monoS). The metabolites were biochemically synthesized as previously described2. Synthesized [3H]-BP2 and [3H]- BPS glucuronides and sulfates were analyzed by the same HPLC systems as already described. Figure S1. Estrogenic activity of parent compounds (BP2 and BPS) (a) and their conjugated metabolites (b) in HELN-hERα assay. References 1. Escande, A.; Pillon, A.; Servant, N.; Cravedi, J. P.; Larrea, F.; Muhn, P.; Nicolas, J. C.; Cavailles, V.; Balaguer, P. Evaluation of ligand selectivity using reporter cell lines stably expressing estrogen receptor alpha or beta. Biochem. Pharmacol. 2006, 71 (10), 1459-1469. 2. Cabaton, N.; Zalko, D.; Rathahao, E.; Canlet, C.; Delous, G.; Chagnon, M. C.; Cravedi, J. P.; Perdu, E. Biotransformation of bisphenol F by human and rat liver subcellular fractions. Toxicol. In Vitro 2008, 22 (7), 1697-1704. 198 V. Métabolisme de la Benzophénone-2 et du Bisphénol S chez le poisson zèbre aux stades larvaires et adultes Article 4 Life-stage dependant biotransformation of BP2 and BPS in zebrafish supports the use of embryo model as an alternative to adult fish. Vincent Le Fola,b,c, François Briona*, Anne Hillenweckb,c, Elisabeth Perdub,c, Sandrine Bruelb,c Selim Aït-Aïssaa, Jean-Pierre Cravedib,c, Daniel Zalkob,c,* a Institut National
Recommended publications
  • FACTA UNIVERSITATIS COBISS.SR-ID 32415756 Series Medicine and Biology Vol
    UNIVERSITY OF NIŠ ISSN 0354-2017 (Print) ISSN 2406-0526 (Online) FACTA UNIVERSITATIS COBISS.SR-ID 32415756 Series Medicine and Biology Vol. 19, No 2, 2017 Contents UNIVERSITY OF NIŠ OF UNIVERSITY FACTA UNIVERSITATIS Editorial WARNING: A MAJOR GLAND IS IN PERIL ..................................................................................................i Invited Review Article Series MEDICINE AND BIOLOGY Leonidas H. Duntas Vol. 19, No 2, 2017 THE THYROID UNDER THREAT IN A WORLD OF PLASTICS ...............................................................47 Original Articles Miodrag Vrbic, Maja Jovanovic, Lidija Popovic-Dragonjic, Aleksandar Rankovic, Marina Djordjevic-Spasic MONITORING OF IMMUNE RESPONSE IN VIROLOGIC SUCCESSFULLY TREATED HIV-INFECTED PATIENTS IN SOUTHEASTERN SERBIA ........................................................................51 Dragana Stokanovic, Valentina N. Nikolic, Jelena Lilic, Svetlana R. Apostolovic, Milan Pavlovic, Vladimir S. Zivkovic, Dusan Milenkovic, Dane Krtinic, Gorana Nedin-Rankovic, Tatjana Jevtovic-Stoimenov 2, 2017 ONE-YEAR CARDIOVASCULAR OUTCOME IN PATIENTS ON CLOPIDOGREL o ANTI-PLATELET THERAPY AFTER ACUTE MYOCARDIAL INFARCTION .........................................55 Slobodan Davinić, Ivana Davinic, Ivan Tasic ASSESSMENT OF CARDIOVASCULAR RISK AND COMORBIDITY IN PATIENTS 19, N Vol. WITH CHRONIC KIDNEY DISEASE ............................................................................................................61 Dragoljub Živanović, Ivona Đorđević, Milan Petrović APPENDICITIS
    [Show full text]
  • Effects of Bisphenol a and Its Analogs on Reproductive Health: a Mini Review
    View metadata, citation and similar papers at core.ac.uk brought to you by CORE HHS Public Access provided by CDC Stacks Author manuscript Author ManuscriptAuthor Manuscript Author Reprod Manuscript Author Toxicol. Author Manuscript Author manuscript; available in PMC 2019 August 11. Published in final edited form as: Reprod Toxicol. 2018 August ; 79: 96–123. doi:10.1016/j.reprotox.2018.06.005. Effects of Bisphenol A and its Analogs on Reproductive Health: A Mini Review Jacob Steven Siracusa1, Lei Yin1,2, Emily Measel1, Shenuxan Liang1, Xiaozhong Yu1,* 1.Department of Environmental Health Science, College of Public Health, University of Georgia, Athens, Georgia 30602 2.ReproTox Biotech LLC, Athens 30602, Georgia Abstract Known endocrine disruptor bisphenol A (BPA) has been shown to be a reproductive toxicant in animal models. Its structural analogs: bisphenol S (BPS), bisphenol F (BPF), bisphenol AF (BPAF), and tetrabromobisphenol A (TBBPA) are increasingly being used in consumer products. However, these analogs may exert similar adverse effects on the reproductive system, and their toxicological data are still limited. This mini-review examined studies on both BPA and BPA analog exposure and reproductive toxicity. It outlines the current state of knowledge on human exposure, toxicokinetics, endocrine activities, and reproductive toxicities of BPA and its analogs. BPA analogs showed similar endocrine potencies when compared to BPA, and emerging data suggest they may pose threats as reproductive hazards in animal models. While evidence based on epidemiological studies is still weak, we have utilized current studies to highlight knowledge gaps and research needs for future risk assessments. Keywords Bisphenol A; Bisphenol F; Bisphenol S; Bisphenol AF; Tetrabromobisphenol A; Reproductive toxicity 1.
    [Show full text]
  • 2019 Minnesota Chemicals of High Concern List
    Minnesota Department of Health, Chemicals of High Concern List, 2019 Persistent, Bioaccumulative, Toxic (PBT) or very Persistent, very High Production CAS Bioaccumulative Use Example(s) and/or Volume (HPV) Number Chemical Name Health Endpoint(s) (vPvB) Source(s) Chemical Class Chemical1 Maine (CA Prop 65; IARC; IRIS; NTP Wood and textiles finishes, Cancer, Respiratory 11th ROC); WA Appen1; WA CHCC; disinfection, tissue 50-00-0 Formaldehyde x system, Eye irritant Minnesota HRV; Minnesota RAA preservative Gastrointestinal Minnesota HRL Contaminant 50-00-0 Formaldehyde (in water) system EU Category 1 Endocrine disruptor pesticide 50-29-3 DDT, technical, p,p'DDT Endocrine system Maine (CA Prop 65; IARC; IRIS; NTP PAH (chem-class) 11th ROC; OSPAR Chemicals of Concern; EuC Endocrine Disruptor Cancer, Endocrine Priority List; EPA Final PBT Rule for 50-32-8 Benzo(a)pyrene x x system TRI; EPA Priority PBT); Oregon P3 List; WA Appen1; Minnesota HRV WA Appen1; Minnesota HRL Dyes and diaminophenol mfg, wood preservation, 51-28-5 2,4-Dinitrophenol Eyes pesticide, pharmaceutical Maine (CA Prop 65; IARC; NTP 11th Preparation of amino resins, 51-79-6 Urethane (Ethyl carbamate) Cancer, Development ROC); WA Appen1 solubilizer, chemical intermediate Maine (CA Prop 65; IARC; IRIS; NTP Research; PAH (chem-class) 11th ROC; EPA Final PBT Rule for 53-70-3 Dibenzo(a,h)anthracene Cancer x TRI; WA PBT List; OSPAR Chemicals of Concern); WA Appen1; Oregon P3 List Maine (CA Prop 65; NTP 11th ROC); Research 53-96-3 2-Acetylaminofluorene Cancer WA Appen1 Maine (CA Prop 65; IARC; IRIS; NTP Lubricant, antioxidant, 55-18-5 N-Nitrosodiethylamine Cancer 11th ROC); WA Appen1 plastics stabilizer Maine (CA Prop 65; IRIS; NTP 11th Pesticide (EPA reg.
    [Show full text]
  • QSAR Model for Androgen Receptor Antagonism
    s & H oid orm er o t n S f a l o S l c a Journal of i n e Jensen et al., J Steroids Horm Sci 2012, S:2 r n u c o e DOI: 10.4172/2157-7536.S2-006 J ISSN: 2157-7536 Steroids & Hormonal Science Research Article Open Access QSAR Model for Androgen Receptor Antagonism - Data from CHO Cell Reporter Gene Assays Gunde Egeskov Jensen*, Nikolai Georgiev Nikolov, Karin Dreisig, Anne Marie Vinggaard and Jay Russel Niemelä National Food Institute, Technical University of Denmark, Department of Toxicology and Risk Assessment, Mørkhøj Bygade 19, 2860 Søborg, Denmark Abstract For the development of QSAR models for Androgen Receptor (AR) antagonism, a training set based on reporter gene data from Chinese hamster ovary (CHO) cells was constructed. The training set is composed of data from the literature as well as new data for 51 cardiovascular drugs screened for AR antagonism in our laboratory. The data set represents a wide range of chemical structures and various functions. Twelve percent of the screened drugs were AR antagonisms; three out of six statins showed AR antagonism, two showed cytotoxicity and one was negative. The newly identified AR antagonisms are: Lovastatin, Simvastatin, Mevastatin, Amiodaron, Docosahexaenoic acid and Dilazep. A total of 874 (231 positive, 643 negative) chemicals constitute the training set for the model. The Case Ultra expert system was used to construct the QSAR model. The model was cross-validated (leave-groups-out) with a concordance of 78.4%, a specificity of 86.1% and a sensitivity of 57.9%.
    [Show full text]
  • QSAR Model for Androgen Receptor Antagonism - Data from CHO Cell Reporter Gene Assays
    Downloaded from orbit.dtu.dk on: Oct 07, 2021 QSAR Model for Androgen Receptor Antagonism - Data from CHO Cell Reporter Gene Assays Jensen, Gunde Egeskov; Nikolov, Nikolai Georgiev; Sørensen, Karin Dreisig; Vinggaard, Anne Marie; Niemelä, Jay Russell Published in: Journal of Steroids & Hormonal Science Link to article, DOI: 10.4172/2157-7536.S2-006 Publication date: 2012 Document Version Publisher's PDF, also known as Version of record Link back to DTU Orbit Citation (APA): Jensen, G. E., Nikolov, N. G., Sørensen, K. D., Vinggaard, A. M., & Niemelä, J. R. (2012). QSAR Model for Androgen Receptor Antagonism - Data from CHO Cell Reporter Gene Assays. Journal of Steroids & Hormonal Science. https://doi.org/10.4172/2157-7536.S2-006 General rights Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights. Users may download and print one copy of any publication from the public portal for the purpose of private study or research. You may not further distribute the material or use it for any profit-making activity or commercial gain You may freely distribute the URL identifying the publication in the public portal If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately and investigate your claim. Jensen et al., J Steroids Horm Sci 2012, S:2 Steroids
    [Show full text]
  • Full Version (PDF File)
    Physiol. Res. 68: 689-693, 2019 https://doi.org/10.33549/physiolres.934200 SHORT COMMUNICATION Assessment of the Effective Impact of Bisphenols on Mitochondrial Activity and Steroidogenesis in a Dose-Dependency in Mice TM3 Leydig Cells T. JAMBOR1, E. KOVACIKOVA2, H. GREIFOVA1, A. KOVACIK1, L. LIBOVA3, N. LUKAC1 1Department of Animal Physiology, Faculty of Biotechnology and Food Sciences, Slovak University of Agriculture in Nitra, Nitra, Slovak Republic, 2AgroBioTech Research Centre, Slovak University of Agriculture in Nitra, Nitra, Slovak Republic, 3Faculty of Health and Social Work St. Ladislav, St. Elisabeth University of Health Care and Social Work, Bratislava, Slovak Republic Received May 3, 2019 Accepted June 24, 2019 Epub Ahead of Print July 25, 2019 Summary Biotechnology and Food Sciences, Slovak University of Agriculture The increasing worldwide production of bisphenols has been in Nitra, Tr. A. Hlinku 2, 949 76 Nitra, Slovak Republic. E-mail: associated to several human diseases, such as chronic respiratory [email protected] and kidney diseases, diabetes, breast cancer, prostate cancer, behavioral troubles and reproductive disorders in both sexes. The Bisphenol A (BPA, 2,2-bis[4-hydroxyphenyl] aim of the present in vitro study was to evaluate the potential propane) is one of the oldest and most studied synthetic impact bisphenols A, B, S and F on the cell viability and substance known as an endocrine disruptor (ED). About testosterone release in TM3 Leydig cell line. Mice Leydig cells 70 % of BPA production is used to produce were cultured in the presence of different concentrations of polycarbonate plastics used in a variety of common bisphenols (0.04-50 µg.ml-1) during 24 h exposure.
    [Show full text]
  • Systematic Review of Exposure to Bisphenol a Alternatives and Its Effects on Reproduction and Thyroid Endocrine System in Zebrafish
    applied sciences Review Systematic Review of Exposure to Bisphenol A Alternatives and Its Effects on Reproduction and Thyroid Endocrine System in Zebrafish Jiyun Lee 1,2 , Kyong Whan Moon 1,2 and Kyunghee Ji 3,* 1 Department of Health and Safety Convergence Science, Graduate School at Korea University, Seoul 02841, Korea; [email protected] (J.L.); [email protected] (K.-W.M.) 2 BK21 FOUR R&E Center for Learning Health System, Graduate School at Korea University, Seoul 02841, Korea 3 Department of Occupational and Environmental Health, Yongin University, Yongin 17092, Korea * Correspondence: [email protected]; Tel.: +82-31-8020-2747 Abstract: Bisphenol A (BPA), which is widely used for manufacturing polycarbonate plastics and epoxy resins, has been banned from use in plastic baby bottles because of concerns regarding endocrine disruption. Substances with similar chemical structures have been used as BPA alternatives; however, limited information is available on their toxic effects. In the present study, we reviewed the endocrine disrupting potential in the gonad and thyroid endocrine system in zebrafish after exposure to BPA and its alternatives (i.e., bisphenol AF, bisphenol C, bisphenol F, bisphenol S, bisphenol SIP, and bisphenol Z). Most BPA alternatives disturbed the endocrine system by altering the levels of genes and hormones involved in reproduction, development, and growth in zebrafish. Changes in gene expression related to steroidogenesis and sex hormone production were more prevalent in males than in females. Vitellogenin, an egg yolk precursor produced in females, was also detected in males, confirming that it could induce estrogenicity. Exposure to bisphenols in the parental Citation: Lee, J.; Moon, K.W.; Ji, K.
    [Show full text]
  • MORPHOLOGICAL, CELLULAR, and MOLECULAR EFFECTS of BISPHENOL a (BPA) and BISPHENOL ALTERNATIVES in the MOUSE MAMMARY GLAND Deirdr
    MORPHOLOGICAL, CELLULAR, AND MOLECULAR EFFECTS OF BISPHENOL A (BPA) AND BISPHENOL ALTERNATIVES IN THE MOUSE MAMMARY GLAND Deirdre K. Tucker A dissertation submitted to the faculty of the University of North Carolina at Chapel Hill in partial fulfillment of the requirements for the degree of Doctor of Philosophy in the Curriculum of Toxicology in the School of Medicine. Chapel Hill 2017 Approved by: William Coleman Suzanne Fenton Charles Perou Lola Reid John Rogers ©2017 Deirdre K. Tucker ALL RIGHTS RESERVED ii ABSTRACT Deirdre K. Tucker: Morphological, cellular, and molecular effects of bisphenol A (BPA) and bisphenol alternatives in the mouse mammary gland (Under the direction of Suzanne E. Fenton) Bisphenol A (BPA) is an industrial chemical used in manufacturing of epoxy resins and polycarbonate plastics that are in many consumer products, including canned foods, plastic bottles, and water supply pipes, thus increasing human exposure. The effects of early life exposure to BPA have been extensively documented in several tissues of multiple species. Animal studies have been critical in identifying morphological and transcriptional changes in the mammary gland, at human relevant BPA exposures (≤0.05 µg/kg bw/d). These studies have prompted increasing public concerns surrounding the use of BPA in consumer products and have warranted the implementation of alternative analogues, including the fluorinated and sulfonated derivatives, BPAF and BPS. Estrogenicity screenings of these analogues have revealed either enhanced or comparable properties to BPA, indicating their endocrine potential which may impact the mammary gland. This research investigates the potential effects of early life exposure to the bisphenol analogues, BPAF, BPS, and BPA on pubertal development and adult mammary gland alterations, as well as cellular and molecular pathways that are associated with these changes.
    [Show full text]
  • Newsletter Article on Bisphenols and Pthalates
    Bisphenols & Phthalates Why do I keep hearing so much about BPA and phthalates? What are these things and how do they affect my family? And if they really are such a big problem, is there anything I can do to keep my family from being exposed to them? What are bisphenols and phthalates? Bisphenols, like bisphenol A, S or F (or BPA, BPS, BPF for short), are chemicals used to harden plastic. They are found in many things we use every day, including: children’s teething toys plastic containers cash-register receipts in the lining of food and soda cans Phthalates are chemicals used to make plastic more flexible and to make fragrances last longer. Some things they are found in include: personal-care products (nail polish, aftershave lotion, shampoos, perfumes) toys flexible PVC pipes vinyl flooring Why are they dangerous? Exposure to bisphenols and phthalates can be harmful, especially for fetuses and young children. They migrate out of plastic into air, food and water. We breathe and consume these chemicals in our food and water, or absorb them through our skin. Bisphenols and phthalates can mimic or block hormones – the chemical messengers that help our bodies function properly – causing health problems. Health problems linked to BPA include: Problems with the development of the brain and nervous system like hyperactivity, anxiety, & depression Decreased fertility Heart disease Obesity Type 2 Diabetes Health problems linked to phthalates include: Increased allergies and asthma Harm to reproductive development in boys Decreased fertility Many of these problems start with exposures in the womb or during early childhood.
    [Show full text]
  • The Effect of Bisphenol a Exposure on Mast Cell Function and Pulmonary Inflammation Associated with Asthma
    The Effect of Bisphenol A Exposure on Mast Cell Function and Pulmonary Inflammation Associated with Asthma by Edmund O’Brien A dissertation submitted in partial fulfillment of the requirements for the degree of Doctor of Philosophy (Toxicology) in The University of Michigan 2013 Doctoral Committee: Associate Professor Peter Mancuso, Co-Chair Assistant Professor Dana Dolinoy, Co-Chair Professor Cory M. Hogaboam Professor Rita Loch-Caruso Professor Bruce C. Richardson © Edmund O’Brien All Rights Reserved 2013 ACKNOWLEDGEMENTS I would like to acknowledge my committee members, Drs. Peter Mancuso, Dana C. Dolinoy, Cory M. Hogaboam, Rita Loch-Caruso, and Bruce C. Richardson, for their advice and support provided throughout my course of study. Special thanks are extended to various lab collaborators, past and present, who have aided in training, experimental design, and sample collection, including Anya Abashian, Olivia S. Anderson, Kristen A. Angel, Michael Carnegie, Sarah (Hardy) Carvaines, Jennifer Dolan, Deepti Goel, Jared Goldberg, Dr. Craig Harris, Tamara R. Jones, Marisa Mead, Muna S. Nahar, Dr. Marc Peters-Golden, Joseph Prano, Caren Weinhouse, and Dr. Zbigniew Zaslona. Thank you, Dr. Ingrid L. Bergin, Kelsey Hargesheimer, Dr. Roderick J. A. Little, Yebin Tao, Joel Whitfield, and ULAM staff for technical and supportive services. Lastly, thank you to my wonderful friend and husband, Joseph Jones, for his unconditional support. Financial support for this research came from the NIH grant HL077417 (awarded to Dr. Peter Mancuso), the Flight Attendant Medical Research Institute award CIA- 103071 (awarded to Dr. Peter Mancuso), the University of Michigan National Institutes of Environmental Health Sciences Core Center award P30 ES017885 (awarded to Dr.
    [Show full text]
  • HPC - HPC Standards Gmbh Am Wieseneck 7 [email protected] 04451 Cunnersdorf GERMANY Tel
    WWW.HIGH-PURITY-COMPOUNDS.DE HPC - HPC Standards GmbH Am Wieseneck 7 [email protected] 04451 Cunnersdorf GERMANY Tel. +49 34 291 / 33 72 36 Fax +49 34 291 / 33 72 39 Page 1/117 C A T A L O G (last update: 30.11.2015) A.-Nr. CAS Artikel Menge Preis Reference Materials - Dyes 1 676945 101-14-4 4,4'-Methylene-bis(2-chloroaniline) 100 mg on request 2 676258 81-16-3 2-Amino-1-naphthalenesulfonic acid 250 mg on request 3 676260 88-53-9 5-Amino-2-chlorotoluene-4-sulfonic acid 250 mg on request 4 676257 88-51-7 4-Amino-2-chlorotoluene-5-sulfonic acid 250 mg on request 5 676261 131-27-1 2-Amino-4,8-naphthalenedisulfonic acid 100 mg on request 6 676927 60-09-3 4-Aminoazobenzene 250 mg on request 7 676925 97-56-3 o-Aminoazotoluene 250 mg on request 8 676850 1208-52-2 2-(4-Aminobenzyl)aniline 10 mg on request 9 676894 1208-52-2 2-(4-Aminobenzyl)aniline 1 ml on request 10 676783 92-67-1 4-Aminobiphenyl 100 mg on request 11 676665 90-04-0 o-Anisidine 250 mg on request 12 674909 103-33-3 Azobenzene 500 mg on request 13 676728 5941-07-1 Azomethine-H 100 mg on request 14 674870 633-03-4 Basic Green 1 100 mg on request 15 676514 569-61-9 Basic Red 9 100 mg on request 16 673126 548-62-9 Basic Violet 3 250 mg on request 17 676963 7128-64-5 BBOT 100 mg on request 18 676771 92-87-5 Benzidine 100 mg on request 19 673155 532-82-1 Chrysoidine G 250 mg on request 20 676730 838-88-0 4,4'-Diamino-3,3'-dimethyldiphenyl methane 100 mg on request 21 676773 139-65-1 4,4'-Diaminodiphenyl sulfide 250 mg on request 22 676926 101-77-9 4,4'-Diaminodiphenylmethane 250 mg on request 23 676679 119-90-4 o-Dianisidine 100 mg on request 24 677184 91-94-1 3,3'-Dichlorobenzidine 100 mg on request 25 676729 119-93-7 3,3'-Dimethylbenzidine 100 mg on request WWW.HIGH-PURITY-COMPOUNDS.DE WWW.HIGH-PURITY-COMPOUNDS.DE HPC - HPC Standards GmbH Am Wieseneck 7 [email protected] 04451 Cunnersdorf GERMANY Tel.
    [Show full text]
  • 4,4'-Isopropylidenediphenol (BPA, Bisphenol A) EC Number: 201-245-8 CAS Number: 80-05-7
    Substance Name: 4,4'-isopropylidenediphenol (BPA, Bisphenol A) EC Number: 201-245-8 CAS Number: 80-05-7 MEMBER STATE COMMITTEE SUPPORT DOCUMENT FOR IDENTIFICATION OF 4,4'-ISOPROPYLIDENEDIPHENOL (BPA, BISPHENOL A) AS A SUBSTANCE OF VERY HIGH CONCERN BECAUSE OF ITS ENDOCRINE DISRUPTING PROPERTIES WHICH CAUSE PROBABLE SERIOUS EFFECTS TO HUMAN HEALTH WHICH GIVE RISE TO AN EQUIVALENT LEVEL OF 1 2 CONCERN TO THOSE OF CMR AND PBT/ VPVB SUBSTANCES Adopted on 14 June 2017 1 CMR means carcinogenic, mutagenic or toxic for reproduction 2 PBT means persistent, bioaccumulative and toxic; vPvB means very persistent and very bioaccumulative SVHC SUPPORT DOCUMENT - 4,4'-ISOPROPYLIDENEDIPHENOL (BISPHENOL A) CONTENTS JUSTIFICATION ..................................................................................................................................... 16 1. IDENTITY OF THE SUBSTANCE AND PHYSICAL AND CHEMICAL PROPERTIES . 16 1.1 Name and other identifiers of the substance .............................................................. 16 1.2 Composition of the substance ............................................................................................. 17 1.3 Identity and composition of degradation products/metabolites relevant for the SVHC assessment .............................................................................................................. 17 1.4 Identity and composition of structurally related substances (used in a grouping or read-across approach) .................................................................................
    [Show full text]