Microsc. Microanal. 14, 184–204, 2008 / doi: 10.1017 S143192760808029X Microscopy AND Microanalysis © MICROSCOPY SOCIETY OF AMERICA 2008

Luminescence Database I—Minerals and Materials

Colin M. MacRae* and Nicholas C. Wilson

CSIRO Minerals, Microbeam Laboratory, Bayview Avenue, Clayton, Victoria 3168, Australia

Abstract: A luminescence database for minerals and materials has been complied from the literature, the aim being to create a resource that will aid in the analysis of luminescence spectral of ionic species in minerals and materials. The database is based on a range of excitation techniques and records both major and minor lines, and their activators. The luminescence techniques included in the database are cathodoluminescence, ion luminescence, and photoluminescence. When combined with other traditional X-ray measurements collected on the same region, use of the luminescence database will give additional insight into the chemistry of minerals and materials. Key words: luminescence, cathodoluminescence, photoluminescence, ion, minerals

INTRODUCTION cite, dolomite, magnesite, !, or silicates ~albite, feldspar, , zeolites, kaolinite, forsterite, zircon, garnet, titanite, thorite, willemite!. The presence of luminescence, Minerals and materials can luminescence when they are in many cases, allows rapid identification of the different exposed to an electron, X-ray, ion, or photon beam. Lumi- mineral constituents using cathodoluminescence micros- nescence is generally associated with light in the ultraviolet copy. This is particularly important if samples consist of / ~UV! to infrared ~IR! region and can exhibit both broad fine-grained material and or of minerals with similar opti- and narrow band spectra. From the spectra it is possible to cal or crystallographic properties. These grains can then be identify both the activators responsible for the lumines- further characterized by electron microprobe or optical cence and their charge states. A large number of research microscopy. groups routinely employ luminescence analysis as a key Furthermore, many of the phases occurring in ceramics macro- and micro-characterization techniques in the study ~Hagni & Karakus, 1989!, glasses, refractory materials ~Kara- of minerals and materials. kus, 2005!, and biomaterials show distinct luminescence For many years the microanalyst has had available properties allowing a rapid identification of phase distribu- KLM lines for identifying peaks in X-ray spectra; however, tion and transformations. Luminescence spectroscopy is no such tool has been available for luminescence generated particularly important in the characterization of materials by electrons, light, protons, or ions. To address this problem that contain significant proportions of noncrystalline com- a luminescence database of lines has been compiled that ponents, multiple phases, or low concentrations of mineral contains over 1,000 lines or bands from over 70 minerals phases. and synthetic materials. In this article the luminescence database is described, and in a subsequent article software tools and web access will be described. It is the authors’ LUMINESCENCE FUNDAMENTALS intention to make the database easily accessible and provide a procedure for external users to add new lines and spectra Characteristic X-ray lines result from core level transitions, from minerals and materials. while the generation mechanism for luminescence is more A number of minerals have distinguishing lumines- complex. Characteristic X-rays are largely unaffected by cence properties. These include: diamond, sulphides ~chalco- bonding as the core orbitals do not take part and therefore a cite, sphalerite!, oxides ~periclase, corundum, cassiterite!, particular elemental transition is independent of the host halides ~fluorite, halite!, sulphates ~anhydrite, alunite!, wol- lattice. However, the luminescence emission is sensitive to framates ~scheelite!, ~!, carbonates ~cal- material composition and structure of the host lattice, be- cause it originates from effects such as conduction to va-

Received November 27, 2007; Accepted January 2, 2008 lence transitions and phonon modes ~Marfunin, 1979!. This *Corresponding author. E-mail: [email protected] makes luminescence sensitive to subtle effects such as trace Luminescence Database 185 level dopants and their valence, the host lattice, and quench- of luminescent minerals and synthetic materials ~Pagel et al., ing ions. This sensitivity results in luminescence providing 2000; MacRae & Miller, 2003!. extremely useful characterization information, but its inter- pretation is more difficult than that of characteristic X-rays. Generation of Luminescence Cathodoluminescence can be observed with a variety of Dopant Ions electron beam instruments ~Petrov, 1996!. One simple type Minerals and materials often contain optically active dop- of instrument is the electron beam flood gun that mounts ants ions. Generally there are considered to be three types of directly onto the optical stage of a petrographic microscope dopant ions that influence and determine the net emission ~Marshall, 1988!. Another approach is to mount a spectrom- of a particular mineral. They are referred to as activators, eter onto a scanning electron microscope. This typically sensitizers, or quenchers. Activators produce emission by collects light with a mirror that is usually on a retractable releasing the absorbed energy as photons. The most com- arm, and the light is measured using a grating-type spec- mon activators are transition metal ions such as Cr3ϩ, trometer ~Katona et al., 2004; Vernon-Parry et al., 2005!.A Mn2ϩ,Mn4ϩ,Sn2ϩ,Pb2ϩ,Fe3ϩ ~Gotze, 2002!, and rare earth more recent approach is to integrate cathodoluminescence elements ~Marfunin, 1979!. Sensitizers are ions that work in capture into an electron probe microanalyzer using the combination with an activator by absorbing the energy and existing collection optics and to employ an optic fiber subsequently transferring the energy to the activator. Quench- coupled to a CCD spectrometer to measure the lumines- ers trap part or all of the absorbed energy resulting in cence ~MacRae et al., 2001, 2005; Edwards et al., 2003!.All nonradiative decay of the energy. As a result, quenchers these collection systems measure cathodoluminescence with tend to eliminate the emission of light from minerals. The differing lateral and spectroscopic resolutions. They each presence of the quencher causes new closely spaced energy have their own benefits and virtues. levels to be set up, and the electron can easily return to the Photoluminescence spectra can be induced by mono- ground state with the emission of a succession of low- chromatic light in the band of the ion absorption or by energy photons ~IR! or by losing energy to the lattice as heat means of UV radiation with a spectrum necessary to excite ~Marshall, 1988!. An example of a well-recognized quencher the ion absorption bands. Ultraviolet radiation is necessary ion in minerals is Fe2ϩ. to excite the ion up to energy levels lying above the emission level, which is usually in the visible to near IR region Types of Emission ~Marfunin, 1979!. Luminescence emission is generally grouped into two types: Other Effects intrinsic and extrinsic. Intrinsic luminescence is native to host materials and involves band-to-band recombination of Luminescence lifetime or decay time can provide informa- electron and hole pairs. Intrinsic luminescence emission tion on the nature of the center and is a measure of the may also be associated with lattice defects ~anion vacancies! transition probability from the emitting state. The transi- within the minerals or material. This type of luminescence tion probability is unique for each center and therefore can is also referred to as “defect center” luminescence. The be used to differentiate centers. Time-resolved luminescence second type of emission, referred to as extrinsic, is the most spectra have been studied using pulsed or chopped electron common form of luminescence. Extrinsic emission is attrib- or laser-induced excitation and lock in amplifiers coupled uted to the presence of trace element impurities, transition to spectrometers to measure the decay spectra ~Gorton metal, and rare earth ions. This type of luminescence is et al., 1997; Pagel et al., 2000; Edwards et al., 2003; Merano referred to as an “impurity center.” et al., 2005!. The emission process involves an electronic transition Polarized luminescence has been observed with cathod- from an excited state ~Ee! to a lower energy level or ground oluminescence, and this can enhance differentiation of state ~Eg!. When an electron beam interacts with a surface minerals and materials and offers information about site and produces light, this process is known as cathodolumi- symmetries of the luminescence centers ~Gorz et al., 1970; nescence ~CL!. Similarly, an ion beam interacting with a Chandrasekhar & White, 1992!. The database does not surface and producing light is often referred to as ion indicate whether minerals or materials have polarized emis- luminescence ~IL!. Emission occurring when a photon beam sion. Only a few studies have considered this effect; for interacts with a surface is referred to as photoluminescence example, information on polarization has been studied in ~PL!, and for X-ray beams the process is referred to as silicates ~Bhalla & White, 1970, 1972; Gorz et al., 1970; roentgenoluminescence. Cathodo- and photo-luminescence Chandrasekhar & White, 1992; Remond et al., 2000!, and are the most effective methods of observing the glow of diamonds ~Kiflawi & Lang, 1974!. minerals, roentgenoluminescence and ion luminescence play- The intensity of luminescence varies as a function of ing a lesser role. The cathodoluminescence acquires addi- sample temperature. Typically, temperature quenching of tional importance in connection with the use of X-ray the luminescence arises at high temperature because of the microanalyzer in which an electron probe induces the glow increased probability of nonradiative transition from the 186 Colin M. MacRae and Nicholas C. Wilson excited to the ground state. Some samples will show an also have arisen in some measurements due to the use of increase in intensity with decreasing temperature. While glass in many older style spectrometer systems. Glass has peaks shapes are narrower at lower temperatures, they can strong absorption of UV, and emission lower than 350 nm also shift with temperature ~Lozykowski et al., 1999!.The is difficult to observe. luminescence decay time can also alter at low temperatures; for example, in calcite the Mn2ϩ peak has a measurably shorter decay time at lower temperature ~Mason et al., THE LUMINESCENCE DATABASE 2005!. Temperature is not the only mechanism that can affect positions and intensities of luminescent lines. Some cathod- The luminescence database is structured to provide lumi- oluminescence measurements performed using intense elec- nescence information on an extensive tron beams can cause disruption within the mineral or ~Table 1! and nonminerals ~Table 2!. Information provided material by such processes as heating, sputtering, or ion includes the particular elemental or molecular activator~s!, migration. These disruptions can lead to modified spectra ionic charge~s!, experimental temperature, technique em- and sometimes to rapid decreases in intensity with time of ployed to measure the luminescence, and the associated bombardment. Some spectra may have been collected with reference. A determination of the line intensity, where long dwell times leading to the recording of only the slow possible, has also been made to aid in the interpretation of decay processes as the faster ones have been extinguished. luminescence spectra, with major lines listed in bold. When Spectra collected on beam sensitive materials can be done available the FWHM of the line has been included; however, routinely with automated collection systems ~Lee et al., if the line is nonsymmetric, a measure of the bandwidth is 2005; MacRae et al., 2005!. recorded. In all cases the reference to the line or band is included, which in most cases contains original spectra and further interpretation. Wherever possible a number of lu- SCOPE OF THE LUMINESCENCE DATABASE minescence techniques ~photoluminescence, cathodolumi- nescence, ion-luminescence, thermal luminescence, and proton luminescence! have been included for each mineral The luminescence database encompasses an extensive range and material to provide the researcher with a range of of lines from minerals and materials that have been re- techniques offering differing sensitivities and resolutions. ported in the literature. Previously, a number of smaller This should aid in the determination of field infor- tables have been constructed but these usually focused on mation regarding the coordination of the activator and its specific minerals or materials ~Marshall, 1988; Yacobi & ionic charge. This is particularly important where quantita- Holt, 1990; Stevens-Kalceff & Phillips, 1995; Pagel et al., tive spectroscopic luminescence studies are being under- 2000; Gaft et al., 2005!. While the database presented here is taken ~Habermann, 2002!. In addition, the instrumental not exhaustive, it nonetheless provides a powerful resource. technique used to excite the luminescence is recorded, The lines in the database are listed as given in the cited where known. For example, cathodoluminescence has been publications and, when reported, the full width at half categorized into scanning electron microscopy ~SEM!,opti- maximum ~FWHM! of the peak has also been listed in cal microscope ~OM!, transmission electron microscope brackets after the line. In addition, for publications that did ~TEM!, while photoluminescence has been divided to UV, not report the FWHM but gave spectra, we have measured laser induced ~L!, photoluminescence ~PL!. Other methods and included it where possible. recorded are thermal luminescence ~TL!,protonorion Effects not recorded in the database but that may luminescence ~IL!, and X-ray excited luminescence ~XL!. modify the luminescence spectra include luminescent de- Where emission is known to be cathodoluminescence in cay, polarization, and temperature. While these all provide origin but unknown instrumentally, it has been listed as additional information about the material, they are outside OM cathodoluminescence; similarly where the photolumi- the scope of the database, which is aiming to provide only nescence is unknown in detail, it is listed simply as an initial identification of the line. photoluminescence. In general, the samples analyzed by cathodolumines- Where site specific information about the location of cence in this database were carbon-coated polished sections. the ionic species is described, it has been included. For It is worth noting that these carbon films have the ability to example, beryl can be activated by Cr3ϩ in two specific sites change intensity of cathodoluminescence peaks. Further, and these give rise to different lines Similarly Eu3ϩ in calcite the types of optical components such as mirrors, lenses, can sit in one of two Ca sites referred to as Ca~I! and Ca~II!, fibers, and optical spectrometers employed to measure many giving rise to different peak positions. Where the activator is of the luminescence spectra were not necessarily corrected not simply an ionic species but a form of intrinsic excita- for their optical response, and this can lead to shifts in the tion, then additional information about the origin of the maximum intensity of peaks and their shape. Errors in luminescence has been included where it is commonly detection of luminescence for UV emitting materials may employed, e.g., quartz activators. In the wide number of Luminescence Database 187

Table 1. Luminescence Lines, Activators, Temperature and Technique for Minerals

Identification/ Lines Temperature Mineral Activation ~nm! ~K! Method Albite Dy3ϩ 480,1 560,1 6601 Room SEM 3ϩ 1 1 1 NaAlSi3O8 Nd 870, 880, 900 Room SEM Sm3ϩ 600,1 645,1 650,1 700,1 8001 Room SEM Tb3ϩ 415,1 420,1 470,1 490,1 5001 Room SEM Alforsite Yb2ϩ 6482 Room — Ba5~PO4!3Cl Alumina Cr3ϩ 692,3 6943 —— 3ϩ 3 Al2O3 Fe 760~130! 873 — Mn2ϩ 515~70!3 873 — Mn4ϩ 673,3 6763 —— — 4434 Room SEM Amazonite Pb2ϩ 3005 Room — KAlSi3O8 Anhydrite Ce3ϩ 3196 Room L 3ϩ 7 7 CaSO4 Dy 480, 570 Room — Dy3ϩ 481,6 5766 Room L Eu2ϩ 3856 Room L Eu3ϩ 575,6 591,6 617,6 7036 Room L Gd3ϩ 3126 Room L Mn2ϩ 500,8 460–6107 Room — Nd3ϩ 8926 Room L Pr 3ϩ 228,6 239,6 258,6 2686 Room L Sm2ϩ 632~50!,6 732,6 7446 Room L Sm3ϩ 595,7 6407 Room — Tb3ϩ 380,6 414,6 436,6 483,6 5436 Room L Tm 3ϩ 4526 Room L Yb2ϩ 3772 Room — Anorthite Fe3ϩ 7009 Room — 2ϩ 9 CaAl2Si2O8 Mn 570 Room — Mn2ϩ 550–565,10 550–56010 Room OM Mn2ϩ 323,54 339,54 352,54 403,54 417,54 47654 Room OM Sm3ϩ 598,10 64310 Room OM Ce3ϩ 49011 Room — Eu2ϩ 47011 Room — Eu2ϩ 42012 Room OM Apatite Ce3ϩ 350–380,13 365,14 45813 Room SEM 3ϩ 15 Ca5~PO4!3 Ce 365 Room L Ce3ϩ 36516 Room — Ce3ϩ Ca~I! site 3606 Room L Ce3ϩ Ca~II! site 4306 —— Dy3ϩ 470,14 480,17 482,13 568,17 570,14 577,13 66713 Room SEM Dy3ϩ 480,15 481,6 485,6 570,6 575,6,15 578,6 579,6 663,15 75015 Room L Dy3ϩ 480,7,16 575,7 58016 Room — Er3ϩ 403~75!13 Room SEM Er3ϩ 544,6 545,15 154015 Room L Eu2ϩ 451,13 410–44514 Room SEM Eu2ϩ 450,6 430–45015 Room L Eu2ϩ 410~75!12 Room OM Eu2ϩ 45017 Room UV Eu2ϩ 410,12 4507,12,16 Room — Eu3ϩ 585,17 615,17 645,17 69017 Room SEM Eu3ϩ 579,15 590,15 618,15 653,15 70015 Room L Eu3ϩ 590,7 615,7 6957 —— Eu3ϩ in Ca~I! site 589,6 617,6 651,6 6956 Room L Eu3ϩ in Ca~II! site 574,6 601,6 623,6 630,6 6966 LN L ~continued! 188 Colin M. MacRae and Nicholas C. Wilson

Table 1. Continued

Identification/ Lines Temperature Mineral Activation ~nm! ~K! Method Gd3ϩ 31213 Room SEM Intrinsic 345,13 377,13 43213 Room SEM Mn2ϩ 560,17 565,14 57713 Room SEM Mn2ϩ 565,12 59512 Room OM Mn2ϩ 565~80!15 Room L Mn2ϩ 59018 Room XL Mn2ϩ 562,7 570,7 576,16 60019 Room — Mn5ϩ 1170,15 11716 Room L Mn2ϩ in Ca~I! site 569~60!6 Room L Mn2ϩ in Ca~II! site 583~80!6 Room L Nd3ϩ 884,6 890,15 909,6 1066,6 1068,6 1070,15 1074,6 13406,15 Room L Nd3ϩ 870~10!14 Room OM Pr 3ϩ 485,6 600,15 607,6 65015 Room L Sm2ϩ 7346 LN L Sm3ϩ Ca~I! site 565,15 599,15 64514 —— Sm3ϩ Ca~II! site 607,15 65414 —— Sm3ϩ 598,6 604,6 645,6,15 652,6 6546,15 Room L Sm3ϩ 420,14 566,13 595,17 599,13 600,14 640,14 645,17 649,13 Room SEM 690,14 80014 Sm3ϩ 560,7,16 600,7,16 645,7 648,16 7107 Room — Tb3ϩ 380,6,15 414,6 415,14 436,6 43714 Room L Tb3ϩ 381,13 416,13 438,13 490,13 540,17 54613 Room SEM Tb3ϩ 5457 Room — Tb3ϩ in Ca~I! site 4876 Room L with Dy Tb3ϩ in Ca~II! site 5456 Room L Tm 3ϩ 363,6 364,15 452,6,15 453,6 70015 Room L 6 6 6 6 UO2 467, 486, 505, 526 Room L 6 6 6 UO2 508, 524, 546 LN L Yb3ϩ 9936,15 Room L 2ϩ 6 Apophyllite ~UO2! 530~50! Room L 3ϩ 6 6 KCa4 ~Si4O10!2F.8H2O Ce 343, 365 Room L Mn2ϩ 600~100!6 Room L Aragonite Mn2ϩ 6308 Room TL 2ϩ 20 CaCO3 Mn 540 Room — Baddeleyite Anion-vacancy 50021 Room OM 3ϩ 22 ZrO2 Dy 490 Room UV Dy3ϩ 57922 LN UV Eu3ϩ 617~15!6 Room L Sm3ϩ 54922 Room UV Tb3ϩ 5466 Room L Barite Agϩ 635~150!6 Room L 2ϩ 6 BaSO4 Bi 625 Room L Bi3ϩ 4266 Room L Ce3ϩ 302,6 330,6 3606 Room L Eu2ϩ 3756 Room L Nd3ϩ 446,6 5896 Room L Yb2ϩ 3812 Room — Benitoite Ti3ϩ 6506 Room L 6 BaTiSi3O9 TiO6 419 Room L Beryl Cr3ϩ 68023 Room — 3ϩ 15 15 BeAl2Si6O18 Cr~1! 693, 694 Room L Cr~2!3ϩ 680,5 6825 Room — Fe3ϩ 720~110!5 Room — Mn2ϩ 480,5 5705 Room — 15 VO4 433 Room L ~continued! Luminescence Database 189

Table 1. Continued

Identification/ Lines Temperature Mineral Activation ~nm! ~K! Method

Boehmite Cr3ϩ 69215 Room L AlO{OH Calcite Ce3ϩ 345,24 380,24 545,24 70024 —— 3ϩ 6 CaCO3 Ce 357~70! Room L Ce3ϩ 345,24 37024 LN SEM 2Ϫ 24 CO3 450 Room SEM Dy3ϩ 500,25 580,25 680,25 76025 Room SEM Dy3ϩ 485,6 5766 Room L Eu3ϩ 6196 Room L Eu3ϩ in Ca~I! site 6186 Room L Eu3ϩ in Ca~II! site 5756 Room L Fe3ϩ 69524 Room SEM Mn2ϩ 588,26 605~100!,27 610,24 615~15!,28 66726 Room SEM Mn2ϩ 560–630,15 620~100!6 Room L Mn2ϩ 63029 Room UV Mn2ϩ 63018 Room XL Mn2ϩ 61030 Room — Nd3ϩ 8896 Room L Pb2ϩ 30024 Room SEM Pb2ϩ 3126 Room L Intrinsic 400~40!27 Room SEM Sm3ϩ 565,25 570,25 600,25 610,25 650,25 71025 Room SEM Tb3ϩ 4886 Room L Tm 3ϩ 4526 Room L Defect center 520~100!,31 560~130!31 Room OM Intrinsic 420,30 58030 Room — — 545,24 560,24 648,27 69527 Room SEM — 58024 LN SEM — 57832 Room SEM — 6708 Room UV — 6057 Room — Cassiterite Intrinsic 475~160!6 Room L 3ϩ 33 33 33 33 33 33 33 33 SnO2 Tb 416, 440, 462, 472, 490, 542, 588, 622, Room OM 650,33 68633 Celestine Yb2ϩ 3812 Room — SrSO4 Chalcocite Cd2ϩ 1020~100!34 90 SEM 34 Cu2S Intrinsic 960~50! 90 SEM Charoite Ce3ϩ 335,6 3606 Room L 2ϩ 6 K2NaCa5~Si12O30!F.3H2OEu 408~80! Room L Chlorapatite Yb2ϩ 4352 Room — Ca5~PO4!3Cl Collophane Dy3ϩ 480,35 57535 Room OM 2ϩ 35 Ca5~PO4!3~OH, F, Cl! Eu 410 Room OM Sm3ϩ 590,35 64535 Room OM Tb3ϩ 55035 Room OM Chrysoberyl Cr3ϩ 68036 Room OM BeAl2O4 Colquirite Yb2ϩ 3932 Room — CaLiAlF6 Corundum Cr3ϩ 69410 Room OM 10 10 10 Al2O3 Intrinsic 400–450, 500–550, 525–550 Room OM ~continued! 190 Colin M. MacRae and Nicholas C. Wilson

Table 1. Continued

Identification/ Lines Temperature Mineral Activation ~nm! ~K! Method Cristobalite Intrinsic 45010 Room OM 37 SiO2 Intrinsic 445 173 — Danburite Ce3ϩ 346,6 3676 Room L 3ϩ 18 18 CaB2~SiO4!2 Ce 330, 350 Room XL Eu2ϩ 4376 Room L Eu3ϩ 6116 Room L Sm3ϩ 61018 Room XL Datolite Ce3ϩ 335,6 3606 Room L 3ϩ 18 18 CaB~SiO4!~OH! Ce 340, 360 Room XL Eu2ϩ 4556 Room L Eu3ϩ 610,6 6176 Room L Mn2ϩ 565~60!6 Room L Yb2ϩ 5252 Room — Diamond Band A 443–51738 Room SEM C Dislocation 439.738 Room SEM Dislocation 42538 89 SEM N 388.938 Room SEM Neutral vacancy 740.238 Room SEM A center 4526 Room L H3 center 520~100!6 Room L Intrinsic 380–600,6 507~100!6 Room L S3 center 5196 Room L GR1 center 7946 LN L Diaspore Cr3ϩ 693,15 69415 Room L AlO{OH Dickite — 410~70!39 Room SEM Al2Si2O5~OH!4 Diopside Mn 585,40 67040 Room — 19,40 CaMgSi2O6 Ti 415 Room — Dolomite Mn2ϩ 65024 Room SEM 2ϩ 25 CaMg~CO3!2 Mn in Ca site 575~25! Room SEM Mn2ϩ in Mg site 661~50!25 Room SEM Fe3ϩ 630–72025 Room SEM — 640,7 6708 Room — Enstatite Mn2ϩ 67419 Room — 41 41 MgSiO3 — 400, 670 Room IL Esperite Ce3ϩ 400~40!6 Room L 2ϩ 6 Ca3PbZn4~SiO4!4 Mn 545~50! Room L Feldspar Al-OϪ-Al 380–5001 Room SEM 3ϩ 15 ~K, Na!AlSi3O8 Ce 335~50! Room L Co 4307 Room — Cr3ϩ 4057 Room — Dy3ϩ 479,7 572,7 6537 Room — Dy3ϩ 57615 Room L Er3ϩ 504,15 53215 Room L Er3ϩ 404,7 472,7 526,7 540,7 549,7 559,7 6687 Room — Eu2ϩ 404~50!15 Room L Eu3ϩ 61415 Room L Eu2ϩ 4201 Room SEM Fe3ϩ 765~120!15 Room L Fe3ϩ 700,1 710~20!25 Room SEM Fe3ϩ 7007 Room — Gd3ϩ 31615 Room L ~continued! Luminescence Database 191

Table 1. Continued

Identification/ Lines Temperature Mineral Activation ~nm! ~K! Method Intrinsic 43042 120 SEM Mn2ϩ 560,1 57025 Room SEM Pb2ϩ 296~40!15 Room L Intrinsic 470–6201 Room SEM Sm3ϩ 603,15 6401 Room L Tb3ϩ 383,15 413,15 437,15 54615 Room L — 450,9,43 559,43 560,9 7709 Room — Fluorite Ce3ϩ 34044 Room SEM 3ϩ 6 CaF2 Ce 320 Room L Dy3ϩ 480,44 570,44 666,44 75444 Room SEM Dy3ϩ 477,6 480,15 573,6 575,15 588,6 663,15 673,6 750,15 7656 Room L Er3ϩ 54244 Room SEM Er3ϩ 545,15 154015 Room L Eu2ϩ 42445 — SEM Eu3ϩ 58845 — SEM Eu2ϩ 42544 Room SEM Eu2ϩ 423,6 430–45015 Room L Eu2ϩ 43012 Room OM Eu3ϩϩ Sm 5956 Room L Eu3ϩ in Ca~I! site 6226 Room L Eu3ϩ in Ca~II! site 573,6 6146 Room L Fe 4257 Room — Fe3ϩ 67844 Room SEM Gd3ϩ 3106 Room L Gd3ϩ 413,7 435,7 5437 Room — Ho3ϩ 546,6 6576 Room L Ho3ϩ 5377 Room — Ir 4057 Room — M center 725,15 730~70!6 Room L Mn2ϩ 51018 Room XL Nd3ϩ 415,6 795,6 8666 Room L Nd3ϩ 450,7 512,7 525,7 585,7 640,7 655,7 6877 Room — Pr 3ϩ 405,7 428,7 488,7 525,7 537,7 606,7 6427 Room — Sm2ϩ 6856 Room L Sm3ϩ 60044 Room SEM Sm3ϩ 562,6 6406 Room L Sm3ϩ 564,7 584,7 602,7 6507 Room — Sm 567,19 606,19 61319 Room — Tb3ϩ 380,15 414,6 486,6 5446 Room L Tb3ϩ 385,7 416,7 436,7 470,7 487,7 542,7 544,7 581,7 6197 Room — Tm 3ϩ 4516 Room L Tm 3ϩ 453,7 515,7 6607 Room — U3ϩ 4107 Room — U4ϩ 5007 Room — Yb2ϩ 500,7 5752 Room — — 407,7 410,7 4907 Room — Fluoroapatite Eu2ϩ 460~60!12 Room OM 3ϩ 12 12 12 Ca5~PO4!3FEu 617~10!, 700~10!, 590~10! Room OM Mn2ϩ 565 ~60!7 Room — Forsterite Cr3ϩ 72046 296 TEM 3ϩ 46 46 46 Mg2SiO4 Cr 693, 698, 715 LN TEM Lattice defect 428,10 432,10 452,10 46010 Room OM Mn2ϩ 63010 Room OM Mn2ϩ 63046 Room TEM Ni2ϩ 1360,47 145047 20 SEM ~continued! 192 Colin M. MacRae and Nicholas C. Wilson

Table 1. Continued

Identification/ Lines Temperature Mineral Activation ~nm! ~K! Method — 410,46 420,46 79046 296 TEM — 693,46 698,46 708,46 717,46 721,46 739,46 790,46 80046 LN TEM Francolite Pr 3ϩ 611,6 619,6 634,6 6456 Room L 6ϩ 6 Ca5~PO4,CO3!3FU 522 LN L 6 UO2 530 Room L Garnet Mn2ϩ 590~70!15 Room L Nd3ϩ 48215 Room L V2ϩ 71715 Room L Halite Ag 24919 Room — NaCl Cu 35819 Room — Yb2ϩ 4342 Room — Hardystonite Ce3ϩ 378,6 4006 Room L 3ϩ 6 6 Ca2ZnSi2O7 Dy 480, 575 Room L Gd3ϩ 3126 Room L Mn2ϩ 575~100!6 Room L Pb2ϩ 355~40!6 Room L Tm 3ϩ 4526 Room L Hibonite Dy3ϩ 486,10 57010 Room OM 2ϩ 10 ~Ca, Ce!~Al, Ti, Mg!12O19 Mn 521 Room OM Sm3ϩ 560,10 603,10 642,10 70510 Room OM Hydroxylapatite Intrinsic 420~60!48 Room SEM 2ϩ 48 Ca5~PO4!3~OH! Mn 600 Room SEM Hydrozincite Mn2ϩ 5256 Room L 2ϩ 6 Zn5~CO3!2~OH!6 Pb 430 Room L Jadeite Mn2ϩ 400,49 46049 Room — Na~Al, Fe!Si2O6 Kaolinite — 400~100!39 Room SEM 3ϩ 39 Al2Si2O5~OH!4 Fe 650–800 Room SEM Kunzite Mn2ϩ 62550 Room L LiAlSi2O6 Kyanite Cr3ϩ 706,15 750~100!,15 790~100!15 Room L 3ϩ 21 Al2O~SiO4! Cr 694 Room OM Labradorite Eu2ϩ 420~20!1 Room OM 3ϩ 1 ~Ca,Na!~Si,Al!4O8 Fe 710~40! Room OM Mn2ϩ 560~30!1 Room OM Leucophane Ce3ϩ 4116 Room L 3ϩ 6 NaCaBe~Si2O6!FDy 478 Room L Eu2ϩ 4666 Room L Eu3ϩ 573,6 620,6 7016 Room L Mn2ϩ 600~65!6 Room L Sm3ϩ 6036 Room L Tm 3ϩ 806,6 8796 Room L Magnesite Intrinsic 42521 Room OM 2ϩ 21 30 MgCO3 Mn 650, 654 Room OM — 640,7 660–6808 Room — Magnetite Intrinsic 387,51 47751 Room OM Fe3O4 Monticellite Sm3ϩ 460,10 560,10 600,10 68810 Room OM 52 CaMgSiO4 — 525 Room — Mullite Cr3ϩ 69421 Room OM 2ϩ 10 Al~4ϩ2x!Si~2Ϫ2x!O~10Ϫx! Eu 426 Room OM ~continued! Luminescence Database 193

Table 1. Continued

Identification/ Lines Temperature Mineral Activation ~nm! ~K! Method Intrinsic 475~25!21 Room OM Sm3ϩ 60010 Room OM Muscovite — 68053 Room F KAl2~AlSi3O10!~OH!2 Nacrite — 410~70!39 Room SEM Al2Si2O5~OH!4 Neighborite Yb2ϩ 4192 Room — NaMgF3 Oldhamite Ce3ϩ 52310 Room OM ~Ca, Mg, Fe!SMn2ϩ 58410 Room OM Oligoclase Mn2ϩ 361,54 384,54 490,54 52154 Room OM 3ϩ 7 ~Na,Ca!~Si,Al!4O8 Fe 700 Room — Fe3ϩ 382,54 425,54 441,54 450,54 494,54 508,54 575,54 615,54 Room OM 65754 Otavite Mn 59520 Room — CdCO3 Pectolite Mn2ϩ 580~60!6 Room L 2ϩ 6 NaCa2Si3O8~OH! Pb 356~60! Room L Pegmatite Apatite Mn2ϩ 565~65!7 Room — Ca5~PO4!3~OH, F, Cl! Periclase Cr3ϩ 75055 Room OM MgO Cr3ϩ 750~80!,48 770,56 80056 Room SEM Fe3ϩ 720,57 735~15!10 Room OM Fe3ϩ 704,56 720,56 726,56 75058 Room SEM Fe3ϩ 68559 Room UV Intrinsic 526,10 535,10 720–75010 Room OM Intrinsic 450~100!48 Room SEM F center 52057 Room SEM Fϩ center 39057 Room SEM Lattice defect 400–50055 Room OM Mn2ϩ 61555 Room OM Mn2ϩ 610,57 615,48 74557 Room SEM Phonon assisted 790,56 810,56 830,56 837,56 85756 LN SEM Zero phonon 58810 Room OM V2ϩ 87056 Room SEM Plagioclase Cu2ϩ 42060 Room — 2ϩ 12 ~Na,Ca!AlSi3O8 Eu 420 Room OM — 42060 — Fe2ϩ 550~80!60 Room — Fe3ϩ 70060 Room — Mn2ϩ 321,54 340,54 355,54 404,54 421,54 487,54 55954 Room OM Mn2ϩ 58018 Room XL Mn2ϩ 560,43 570~90!60 Room — Ti4ϩ 400–55060 Room — Pyrochlore Dy3ϩ 4796 Room L 3ϩ 6 ~Ca,Na!2Nb2O6~OH,F! Eu 618 Room L Pyromorphite Ce3ϩ 3756 Room L 3ϩ 6 Pb5~PO4!3Cl Eu 613 Room L Sm3ϩ 566,6 603,6 652,6 7146 Room L Tb3ϩ 4826 Room L

~continued! 194 Colin M. MacRae and Nicholas C. Wilson

Table 1. Continued

Identification/ Lines Temperature Mineral Activation ~nm! ~K! Method Pyrope Cr3ϩ 675,6 684,6 687,6 699,6 7306 Room L Mg3Al2~SiO4!3 Pyrophyllite — 40039 Room SEM Al2Si4O10~OH!2 Quartz Defect 380~120!,61 440~120!,61 450,62 510~200!61 Room SEM 61 61 SiO2 Defect 470~140!, 570~200! Room SEM 63 64 64 ~See also Table 2, SiO2! NBOHC 620–650, 636, 649 Room SEM Oxygen Vacancy 620~140!,65 650~140!65 Room SEM Oxygen p orbital 420~100!65 Room SEM Intrinsic 175,63 290,63 340,63 420,63 450,63 58063 — Intrinsic 42364 295 SEM Intrinsic 47761 OM Impurity 38761 SEM ϩ 63 63 AlO46M center 385~10!, 500 — Nonbridging oxygen 65366 —— Associated with 62067 —TL Al-O-Al bonds STE 47768 —UV STE 477,66 54464 — SEM STE 56461 80 OM STE 456,64 46164 80 SEM 0 69 ~AlO4! hole trap 468 —— 0 69 ~H3O4! hole trap 381 —— E' center 290,70 45971 SEM Al-Mϩ center 39764 295 SEM Extrinsic 50464 295 SEM Extrinsic 49672 —— — 400,73 481,73 60573 — SEM — 450,10 62510 Room SEM — 50562, 58562 Room OM — 56466 —— Rhodochrosite Mn2ϩ 620~100!15 Room L MnCO3 Rhodonite Mn2ϩ 640~100!15 Room L CaMn4Si5O15 Rorisite Yb2ϩ 3942 Room — CaFCl Ruby Cr3ϩ 69415 Room L Al2O3 Sapphire Cr3ϩ 69474 Room SEM 3ϩ 63 63 Al2O3 Cr 692.9, 694.3 Room — Eu3ϩ 598,75 614,75 69075 Room OM Eu3ϩ 622~12!74 Room SEM F-center 34074 Room SEM F-center 41563 Room — Fe3ϩ 710–95015 Room L Fe3ϩ 71576 Room SEM Scheelite Cr 420–47019 Room — 3ϩ 12 12 CaWO4 Dy 490, 576 Room OM Dy3ϩ 480,15 575,6,15 663,15 75015 Room L Er3ϩ 527,6 545,15 553,6 615,6 154015 Room L Er3ϩ 616,12 70312 Room OM Er2ϩ 4426 Room L Ho3ϩ 5436 Room L ~continued! Luminescence Database 195

Table 1. Continued

Identification/ Lines Temperature Mineral Activation ~nm! ~K! Method 2Ϫ 15 MoO4 560 Room L Nd3ϩ 417,6 900,6 1070,6 13406 Room L Pr 3ϩ 6076 Room L Sm3ϩ 600,12 64912 Room OM Sm3ϩ 609,6 6476 Room L Tb3ϩ 380,15 414,6 436,6 488,6 5456 Room L Tb3ϩ 415,33 436,33 458,33 475,33 490,33 544,33 590,33 625,33 Room OM 655,33 67533 Tm 3ϩ 364,15 452,15 453,6 70015 Room L 2Ϫ 12 WO4 480~120! Room OM 2Ϫ 15 6 6 WO4 460~140!, 465~150!, 505~200! Room L 2Ϫ 77 WO4 435 Room Yb3ϩ 10136 Room L Sellaite Yb2ϩ 4822 Room — MgF2 Smithsonite — 65078 Room — ZnCO3 1Ϫ 15 15 15 15 Sodalite S2 633, 655, 678, 708 Room L Na8~Al6Si6O24!Cl2 Spinel Cr3ϩ 69815 Room L 3ϩ 57 MgAl2O4 Cr 690 Room OM Mn2ϩ 521.6,10 525~50!57 Room OM Spodumene Mn2ϩ 417,79 60279 — SEM 2ϩ 15 LiAlSi2O6 Mn 596 Room L Mn2ϩ 59518 Room XL Dy3ϩ 485,52 575,52 66052 Room OM 3ϩ 7 7 SrCO3 Dy 477, 575 Room — Eu2ϩ 410~80!12 Room OM Eu2ϩ 4177 Room — Mn2ϩ 62512 Room OM Mn2ϩ 59020 Room — Sm3ϩ 600,52 642,52 70052 Room OM Sm3ϩ 569,7 600,7 640,7 7007 Room — Tb3ϩ 54552 Room OM Sylvite Yb2ϩ 4322 Room — KCl Thorite Eu3ϩ 591,15 615,15 70215 Room L 3ϩ 15 ThSiO4 Nd 872 Room L Sm3ϩ 64215 Room L 15 UO2 530~60! Room L Titanite Cr3ϩ 686,6 790~110!6 Room L 3ϩ 6 6 CaTiSiO5 Er 820, 978 Room L Eu3ϩ 563,6 620,6 7036 Room L Nd3ϩ 735,6 756,6 867,6 880,6 906,6 10896 Room L Pr 3ϩ 4876 Room L Sm3ϩ 562,6 6006 Room L Tm 3ϩ 8056 Room L Topaz Cr3ϩ 684,15 711,15 73415 Room L 4ϩ 15 Al2SiO4F2 Ti 455~80! Room L Willemite Mn2ϩ 52580 Room SEM Zn2SiO4 Witherite — 525,7 5507 Room — BaCO3 ~continued! 196 Colin M. MacRae and Nicholas C. Wilson

Table 1. Continued

Identification/ Lines Temperature Mineral Activation ~nm! ~K! Method Wollastonite Cr3ϩ 8406 Room L 3ϩ 6 CaSiO3 Fe 700 Room L Mn2ϩ 6036 Room L Mn2ϩ 550~120!21 Room SEM Mn2ϩ 560,2 565,52 6202 Room — Zircon Dy3ϩ 483,81 58081 300 IL 3ϩ 82 82 82 82 82 ZrSiO4 Dy 485, 580, 665, 755, 840 205 SEM Dy3ϩ 480,52 57552 Room — Er3ϩ 1530,6 15686 Room L Er3ϩ 325,82 405,82 480,82 530,82 550–560,82 62082 205 SEM Eu3ϩ 560,82 595,82 620–635,82 71082 205 SEM Fe3ϩ 783~120!,6 79015 Room L Gd3ϩ 31481 300 IL Gd3ϩ 315,82 63082 205 SEM Ho3ϩ 550,82 660–670,82 76082 205 SEM Ho3ϩ 546~10!,6 660~10!,6 6736 Room L Ho3ϩ 320,81 360,81 41581 300 IL Intrinsic 230,82 290,82 310,82 330,82 355,82 38082 205 SEM Intrinsic 59052 Room — Intrinsic 59015 Room L Pr 3ϩ 490,81 530,81 595,81 618,81 719,81 742,81 791,81 837,81 300 IL 870,81 903,81 923,81 986,81 102681 Pr 3ϩ 595,82 62082 205 SEM nϪ 81 SiOm 620 300 IL nϪ 15 SiOm 590 Room L Sm3ϩ 575,82 655–670,82 610–620,82 72582 205 SEM Tb3ϩ 385,82 415,82 440,82 490,82 550,82 590,82 625,82 655–685,82 205 SEM 765,82 83582 Tm 3ϩ 348,6 457,6 4836 Room L Tm 3ϩ 290,82 345–360,82 380,82 455–480,82 510–520,82 580,82 205 SEM 650–665,82 700,82 730,82 755,82 790–80082 57 Zirconia TiO6 500~150! Room SEM ZrO2 Zoisite Dy3ϩ 57515 Room L 2ϩ 15 Ca2Al3~SiO4!3~OH! Eu 440~80! Room L Tb3ϩ 54415 Room L V2ϩ 71815 Room L

1Gotze et al. ~1999! 22Eremenko and Khrenov ~1982! 43Sippel and Spencer ~1970! 63Richteretal.~2003! 2Dorenbos ~2003! 23Burnsetal.~1965! 44Kempeetal.~2002! 64Stevens-Kalceff and Phillips ~1995! 3Pott and McNicol ~1971! 24Chapoulie et al. ~1995! 45D’Almeida ~1997! 65Grant and White ~1978! 4Guoetal.~2006! 25Habermann et al. ~1999! 46Benstock et al. ~1997! 66Remond et al. ~1992! 5Tarashchan ~1978! 26Walker and Burley ~1991! 47Walker et al. ~1994! 67Hashimoto et al. ~1994! 6Gaft et al. ~2005! 27Leeetal.~2005! 48Gotze ~2000! 68Trukhin and Plaudis ~1979! 7Marshall ~1988! 28Mason et al. ~2005! 49Walker et al. ~1989! 69Yang and McKeever ~1990! 8Medlin ~1963! 29Medlin ~1964! 50Chandrasekhar and White ~1992! 70Jones and Embree ~1976! 9Geake et al. ~1971! 30Habermann ~2002! 51Balberg and Pankove ~1971! 71McKnight and Palik ~1980! 10Moore and Karakus ~1994! 31Habermann et al. ~2001! 52Mariano ~1978! 72Itoh et al. ~1988! 11Laud et al. ~1971! 32Schulman et al. ~1947! 53Edgington and Blair ~1970! 73Gritsenko and Lisitsyn ~1985! 12Mariano and Ring ~1975! 33Crabtree ~1974! 54Telfer and Walker ~1978! 74Canetal.~1995! 13Barbarand and Pagel ~2001! 34Loferski et al. ~1979! 55Vu et al. ~1998! 75Hirata et al. ~2005! 14Kempe and Gotze ~2002! 35Karakus et al. ~2001! 56Fernandez and Llopis ~1988! 76Ponahlo ~1999! 15Gaft et al. ~1998! 36Ponahlo ~1993! 57Karakus et al. ~2000! 77Randall ~1939! 16Portnov and Gorobets ~1969! 37Hanusiak and White ~1975! 58Karakus ~2005! 78Hagni ~1984! 17Roeder et al. ~1987! 38Yacobi and Holt ~1990! 59Garcia et al. ~1986! 79Walker et al. ~1997! 18Marfunin ~1995! 39Gotze et al. ~2002! 60Mariano et al. ~1973! 80Bhalla and White ~1972! 19Leverenz ~1968! 40Smith ~1949! 61Luff and Townsend ~1990! 81Finch et al. ~2004! 20Sommer ~1972! 41Derham et al. ~1964! 62Holness and Watt ~2001! 82Cesborn et al. ~1995! 21Karakus and Moore ~1988! 42Finch and Klein ~1999! Luminescence Database 197

Table 2. Luminescence Lines, Activators, Temperature, and Technique for Materials

Identification/ Lines Temperature Material Activation ~nm! ~K! Method 1 1 1 Al2O3 nanoceramic — 288, 326, 387 Room SEM Anion vacancies 5171 Room SEM 3ϩ 2 Al2O3 ~b-Alumina! Cr 689 Room SEM Mn2ϩ 5182 Room SEM AlN Er3ϩ 405,3 475,3 540,3 560,3 625,3 670,3 770,3 810,3 870,3 Room SEM 910,3 10003 BN ~cubic! — 4134 Room SEM BaFBr Yb2ϩ 5005 Room — BaFCl Yb2ϩ 5255 Room — 2ϩ 5 BaLiF3 Yb 467 Room — 2ϩ 5 Ba3~PO4!2 Yb 435 Room — 6 BaTiO3 Intrinsic 465~120! Room SEM 2ϩ 5 CaB2O~Si2O7! Yb 538 Room — CaFBr Yb2ϩ 4105 Room — 2ϩ 5 CaGa2S4 Yb 580 Room — 2ϩ 7 Ca3MgSi2O8 Eu 475~50! Room — 2ϩ 5 Ca2PO4Cl Yb 455 Room — CaS Yb2ϩ 7475 Room — CaS:As — 6158 Room OM CaS:Cu — 4758 Room OM CaS:Pb, Cu Cuϩ 4209 Room OM CaS:Pb, Cu Cuϩ 4309 Room UV 10 10 10 10 10 10 Cd4SiS6 — 481, 514, 521, 538, 591, 920 LN SEM CdS — 488,10 49210 LN SEM CdS ~Si doped! — 494,10 509,10 514,10 52010 LN SEM CdSe — 685,10 68810 LN SEM CdSe ~Si doped! — 719,10 940,10 99010 LN SEM CdTe — 88611 Room SEM Defect 103311 Room SEM — 789,10 80810 LN SEM CdTe ~Si doped! — 786,10 88010 LN SEM CsBr Eu2ϩ 440,1252012 290 OM GaP Intrinsic 82713 Room SEM GaN ~hexagonal! Donor-acceptor pair 365,14 38714 85 SEM Exciton 355,14 35714 85 SEM Near band edge 36515 Room SEM Cr3ϩ 69416 11 OM Tb3ϩ ~major lines! 383,16 419,16 423,16 487,16 545,16 547,16 551,16 558,16 11 OM 58616 Yb3ϩ 932,17 945,17 953,17 975,17 979,17 980,17 987,17 993,17 11 OM 994,17 1001,17 1006,17 1015,17 1022,17 1033,17 103817 — 420,15 56415 Room SEM — 425,14 556,14 614,14 67814 87 SEM GaN~Si!~hexagonal! Dy3ϩ 456,18 482,18 488,18 564,18 580,18 602,18 660,18 670,18 411 SEM 742,18 755,18 767,18 827,18 84318 Er3ϩ 383,18 409,18 478,18 488,18 539,18 560,18 625,18 757,18 411 SEM 768,18 811,18 822,18 878,18 987,18 100018 Tm 3ϩ 478,18 511,18 536,18 560,18 592,18 648,18 655,18 774,18 411 SEM 781,18 804,18 84118 InP Intrinsic 88613 Room SEM InGaN — 430–49019 Room SEM 20 ~InN!x~InGaN! Intrinsic 360–480 ~x ϭ 0–0.23! Room SEM ~continued! 198 Colin M. MacRae and Nicholas C. Wilson

Table 2. Continued

Identification/ Lines Temperature Material Activation ~nm! ~K! Method KBr Yb2ϩ 4425 Room — KI Yb2ϩ 4315 Room — 2ϩ 5 KMgF3 Yb 408 Room — 2ϩ 5 LiSrAlF6 Yb 440 Room — 21 MgTiO3 O defect 410 Room UV Eu3ϩ 61521 Room UV 3ϩ 21 Mg2TiO4 Eu 658 Room UV 3ϩ 21 Mg2Ti2O5 Eu 615 Room UV 22 22 PbWO4 — 540~40!, 620~60! Room L RbCl Yb2ϩ 4265 Room — SiC-6H ~polytype! Al 500~100!23 Room SEM B 700~100!23 Room SEM Be 600~100!23 Room SEM Defect 520~120!23 Room SEM Sc 570~100!23 Room SEM 24 SiO2 Intrinsic 460 300 UV ~See also Table 1, Quartz! Si related center 46025 —UV Defect 63626 —UV Intrinsic 451,27 56128 —OM Intrinsic 288,29 400,30 46829 —UV Intrinsic ~Low OH! 590,31 ~high OH!62031 —— Eu3ϩ 62232 Room SEM Fe3ϩ 69533 873 — Ge 40025 293 UV Mn2ϩ 51033 873 — E' center 45934 — SEM Impurity 41528 —— Interstitial oxygen 1273,35 128135 —UV Interstitial oxygen 1278,36 128137 290 SEM Oxygen defect 282,36 45936,37 290 SEM O vacancy 45938 Room L O~1D! Ϫ O~3P! 65339 —UV NBOHC 620,40 653,30,40,41 67026 —— NBO defect 65342 —— STE 47026 —UV STE 53936 —— — 400–80032 Room SEM — 64928 — SEM — 558,27 63627 —OM — 310–620,30 460,30 46831 —UV 2ϩ 5 SrAlF5 Yb 405 Room — 2ϩ 5 SrB4O7 Yb 361 Room — 2ϩ 5 Sr2B5O9Cl Yb 421 Room — 2ϩ 5 Sr2B5O9Cl Yb 420 Room — 2ϩ 5 SrCl2 ~cubic! Yb 408 Room — 2ϩ 5 SrF2 Yb 800 Room — SrFBr Yb2ϩ 4165 Room — SrFCl Yb2ϩ 4015 Room — 2ϩ 43 Sr2MgSi2O7:Eu, Dy Eu 450–550 Room PL 2ϩ 5 Sr3~PO4!2 Yb 442 Room — 2ϩ 5 5 Sr5~PO4!3Cl Yb 450, 560 Room — 2ϩ 5 a-Sr2P2O7 Yb 453 Room — SrS:Cu — 5308 Room OM

~continued! Luminescence Database 199

Table 2. Continued

Identification/ Lines Temperature Material Activation ~nm! ~K! Method 3ϩ 44 Y2SiO5 on nano SiO2 Ce 443 Room UV Eu3ϩ 320,44 364,44 384,44 397,44 468,44 61244 Room UV Tb3ϩ 247,44 489,44 543,44 585,44 62544 Room UV ZnO — 387,45 62045 Room SEM ZnS ~thin film Sn doped! — 40546 Room SEM ZnS ~thin film Al doped! Al3ϩ 49046 Room SEM Defect 43046 Room SEM Self-activated center 39946 Room SEM — 60046 Room SEM ZnS ~bulk! Bandgap 34647 Room PL Mn2ϩ 58847 Room PL Mn2ϩ 57848 Room SEM ZnS ~nanocrystal! Cu 460~60!,49 507~60!49 Room L Cu2ϩ 480~130!50 Room L Cu2ϩ 470~130!51 4 SEM Cu2ϩ 60051 Room SEM Defect 426~35!52 40 PL Defect 433~45!52 275 PL Defect 52047 Room PL Eu 518~120!49 Room L Mn2ϩ 590~60!49 Room L Mn2ϩ 435~25!52 275 PL Mn2ϩ 600~20!52 40 PL Mn2ϩ 585,47 61047 Room PL Mn-Mn pair 700,47 72047 —— ZnSe — 477,53 585,53 66053 — SEM — 45953 —UV

1Gorbunov et al. ~2005! 15Sunetal.~2002! 28Koyama ~1980! 41Skuja et al. ~1984a! 2Karakus ~2005! 16Gruber et al. ~2002! 29Skujaetal.~1984b! 42Sigel and Marrone ~1981! 3Gurumurugan et al. ~1999! 17Jadwisienczak and Lozykowski ~2003! 30Nishikawa et al. ~1992! 43Linetal.~2001b! 4Manfredotti et al. ~2006! 18Lozykowski et al. ~1999! 31Friebele et al. ~1985! 44Linetal.~2006! 5Dorenbos ~2003! 19Choi et al. ~2003! 32Canetal.~1995! 45Meietal.~2006! 6Kobayashi et al. ~1998! 20Martin et al. ~2002! 33Pott and McNicol ~1971! 46Hichou et al. ~2004! 7Linetal.~2001a! 21Kominami et al. ~2006! 34McKnight and Palik ~1980! 47Toyama et al. ~2000! 8Singhetal.~1981! 22Anicete-Santos et al. ~2007! 35Skujaetal.~1998! 48Bulanyi et al. ~2003! 9Choi et al. ~2004! 23Saparinetal.~1996! 36Stevens-Kalceff et al. ~2002! 49Xu et al. ~1998! 10Odin et al. ~2001! 24Guzzi et al. ~1987! 37Stevens-Kalceff ~2000! 50Bhagwat et al. ~1995! 11Petrov ~1996! 25Skuja and Trukhin ~1989! 38Tohmon et al. ~1989! 51Boletal.~2002! 12Zorenkoetal.~2006! 26Griscom ~1985! 39Awazu and Kawazoe ~1990! 52Chen et al. ~2002! 13Tiginyanu et al. ~2004! 27Wang et al. ~1988! 40Munekuni et al. ~1990! 53Godlewski et al. ~2003! 14Díaz-Guerra et al. ~2003!

quartz and SiO2 studies, a range of terms such as Defect, and GR1. These have all been recorded within the lumines- Non-Bridging Oxygen Hole ~NBOHC!, Oxygen p, Self- cence database. 6 ϩ Trapped Exciton ~STE!, and AlO4 M have all been used to One of the key points that luminescence database dem- describe the intrinsic luminescence and are recorded in the onstrates is that many activators change their emission database. Historically, where a mineral has had significant wavelength or energy depending upon the structure type, interest and study, such as diamond, then other terms have symmetry, and associated atom, thus reflecting the local been introduced to describe the luminescence origin. In crystal field information. For example, the activator Yb2ϩ diamond the usual designation of center in the infrared has been studied in a range of materials, and peak shifting spectra is labeled A, while the usual designations of the has been attributed to local crystal symmetry ~Dorenbos, luminescence and absorption centers are labeled H3, S3, 2003!. This illustrates the importance of knowing the local 200 Colin M. MacRae and Nicholas C. Wilson chemistry and crystal information when trying to deter- Benstock, E.J., Buseck, P.R. & Steele, I.M. ~1997!. Cathodolumi- mine the activator present by observing the luminescence nescence of meteoritic and synthetic forsterite at 296 and 77 K emission spectra. using TEM. Am Mineral 82, 310–315. Bhagwat, U.A., Sastry, M. & Kulkarni, S.K. ~1995!.Green luminescence from copper doped zinc sulphide quantum parti- cles. Appl Phys Lett 67, 2702–2704. CONCLUSIONS Bhalla, R.J.R.S.B. & White, E.W. ~1970!. Polarized cathodolumi- nescence emission from Willemite @Zn2SiO4~Mn!# single crys- tals. JApplPhys41, 2267–2268. The analysis of luminescence spectra of ionic species in Bhalla, R.J.R.S.B. & White, E.W. ~1972!. Cathodoluminescence 2ϩ minerals and materials can be enhanced by the ability to characteristics of Mn -activated willemite ~Zn2SiO4! single inspect major and minor lines in the luminescence data- . J Electrochem Soc 119, 740–743. base. Understanding of the factors that control lumines- Bol, A.A., Ferwerda, J., Bergwerff, J.A. & Meijerink, A. ~2002!. cence activation and quenching in minerals and materials is Luminescence of nanocrystalline ZnS:Cu2ϩ. J Lumin 99, 325–334. also possible by studying shifts in peak position and inten- Bulanyi, M.F., Klimenko, V.I., Kovalenko, A.V. & Polezhaev, sity with structural variation. This is important where new B.A. ~2003!. Defect structure and luminescence behaviour of 2ϩ minerals or materials are being analyzed. Continuing devel- ZnS:Mn crystals. Inorg Mater 39, 436–439. opments in the understanding of the origin of lines and Burns, G., Geiss, E.A., Jenkins, B.A. & Nathan, M.I. ~1965!. Cr3ϩ fluorescence in garnets and other crystals. Phys Rev 139, spectral features will aid in the quantification of lumines- A1687. cence spectroscopy. Through the use of the luminescence Can, N., Townsend, P.D., Hole, D.E., Snelling, H.V., Balle- database, additional insight into the chemistry can be gained steros, J.M. & Afonso, C.N. ~1995!. Enhancement of lumines- and by combining with other traditional X-ray measure- cence by pulse laser annealing of ion-implanted europium in ments collected on the same region, will result in faster sapphire and silica. JApplPhys78, 6737–6744. understanding of minerals and materials. The wealth of Cesborn, F., Blanc, P., Ohnenstetter, D. & Remond, G. ~1995!. information presented in this luminescence database indi- Cathodoluminescence of rare earth doped zircons. I. Their cates that a large number of research groups routinely possible use as reference materials. Scanning Microsc Suppl 9, employ luminescence analysis as a key macro- and micro- 35–36. characterization technique in the study of minerals and Chandrasekhar, B.K. & White, W.B. ~1992!. Polarized lumines- materials. cence spectra of kunzite. Phys Chem Miner 18, 433–440. Chapoulie, R., Bechtel, F., Borschneck, D., Schvoerer, M. & A subsequent article will describe software tools and Remond, G. ~1995!. Cathodoluminescence of some synthetic Web access to the database. It is the author’s intention to calcite crystals. Investigation of the role played by cerium. make the database easily accessible and provide a procedure Scanning Microsc Suppl 9, 225–232. for external users to add new lines and spectra from miner- Chen, W., Su, F.H., Li, G.H., Joly, A.G., Malm, J.O. & Bovin, J.O. als and materials. ~2002!. Temperature and pressure dependencies of the Mn2ϩ and donor-acceptor emissions in ZnS:Mn2ϩ nanoparticles. JApplPhys92, 1950–1955. ACKNOWLEDGMENTS Choi, H.W., Jeon, C.W., Dawson, M.D., Edwards, P.R., Martin, R.W. & Tripathy, S. ~2003!. Mechanism of enhanced light output efficiency in InGaN-based microlight emitting diodes. The authors wish to thank Mark Pownceby and Graham JApplPhys93, 5978–5982. Choi, S.H., Park, C.O., Park, H.S., Park, S.H.K. & Yunc, S.J. Sparrow for their internal reviewing of the manuscript. ~2004!. Cathodoluminescence and photoluminescence proper- ties of CaS thin film codoped with Pb and Cu. J Electrochem Soc 151, H184–H187. REFERENCES Crabtree, D.F. ~1974!. Cathodoluminescence of tin oxide doped with terbium. JPhysD:ApplPhys7, 22–26. D’Almeida, T. ~1997!. Cathodoluminescence des ions de terras Anicete-Santos, M., Orhan, E., de Maurera, M.A.M.A., Si- rares dans les fluorures alcalinoterreux: utilisation comme sonde moes, L.G.P., Souza, A.G., Pizani, P.S., Leite, E.R., Varela, locale detemperature et applications. These de doctorat de J.A., Juan, A., Beltran, A. & Longo, E. ~2007!. Contribution l’Universite de Reims Champagne-Ardenne. Unpublished. of structural order-disorder to the green photoluminescence of Derham, C.J., Geake, J.E. & Walker, G. ~1964!. Luminescence of PbWO4. Phys Rev B 75, 165105. enstatite achondrite meteorites. Nature 203, 134–136. Awazu, K. & Kawazoe, H. ~1990!.O2 molecules dissolved in Díaz-Guerra, C., Piqueras, J. & Cavallini, A. ~2003!. Time- synthetic silica glasses and their photochemical reactions in- resolved cathodoluminescence assessment of deep-level transi- duced by ArF excimer laser radiation. JApplPhys68, 3584–3591. tions in hydride-vapor-phase-epitaxy GaN. Appl Phys Lett 82, Balberg, I. & Pankove, J.I. ~1971!. Cathodoluminescence of mag- 2050–2052. netite. Phys Rev Lett 27, 1371–1374. Dorenbos, P. ~2003!. Anomalous luminescence of Eu2ϩ and Barbarand, J. & Pagel, M. ~2001!. Cathodoluminescence study Yb2ϩ in inorganic compounds. J Phys Condens Matter 15, of apatite crystals. Am Mineral 86, 473–484. 2645–2665. Luminescence Database 201

Edgington, J.A. & Blair, I.M. ~1970!. Luminescence and thermo- resonance ~EPR! studies of clay minerals. Mineral Petrol 76, luminescence induced by bombardment with protons of 159 195–212. million electron volts. Science 167, 715–717. Grant, P.R. & White, S.H. ~1978!. Cathodoluminescence and Edwards, P.R., Martin, R.W., O’Donnell, K.P. & Watson, I.M. microstructure of quartz overgrowths on quartz. Scan Electr ~2003!. Simultaneous composition mapping and hyperspectral Microsc 1, 789–794. cathodoluminescence imaging of InGaN epilayers. Physica Sta- Griscom, D.L. ~1985!. Defect structure of glasses: Some outstand- tus Solidi 7, 2474–2477. ing questions in regard to vitreous silica. J Non-Cryst Solids 73, Eremenko, G. & Khrenov, A. ~1982!. Luminescence of baddeley- 51–77. ite. Mineral Zh 4, 93–95. Gritsenko, B.P. & Lisitsyn, V.M. ~1985!. Sov Phys Solid State 27, Fernandez, I. & Llopis, J. ~1988!. Reducing effects on the CL red 1330. emission of MgO doped crystals. Phys Stat Sol (a) 108, Gruber, J.B., Zandi, B., Lozykowski, H.J. & Jadwisienczak, K163–K167. W.M. ~2002!. Spectra and energy levels of Tb3ϩ ~4f 8! in GaN. Finch, A.A., Garcia-Guinea, J., Hole, D.E., Townsend, P.D. & JApplPhys92, 5127–5132. Hanchar, J.M. ~2004!. Ionoluminescence of zircon: Rare earth Guo, Q.X., Hachiya, Y., Tanaka, T., Nishio, M. & Ogawa, H. emissions and radiation damage. JPhysD:ApplPhys37, ~2006!. Cathodoluminescence study of anodic nanochannel 2795–2803. alumina. J Lumin 119, 253–257. Finch, A.A. & Klein, J. ~1999!. The causes and petrological Gurumurugan, K., Hong, C., Harp, G.R., Jadwisienczak, W.M. significance of cathodoluminescence emissions from alkali feld- & Lozykowski, H.J. ~1999!. Visible cathodoluminescence of spars. Contrib Mineral Petrol 135, 234–243. Er-doped amorphous AlN thin films. Appl Phys Lett 74, Friebele, E.J., Griscom, D.L. & Marrone, M.J. ~1985!.The 3008–3010. optical absorption and luminescence bands near 2 eV in irradi- Guzzi, M., Martini, M., Mattaini, M., Pio, F. & Spinolo, G. Ϫ ated and drawn synthetic silica. J Non-Cryst Solids 71, 133–144. ~1987!. Luminescence of fused silica: Observation of the O2 Gaft, M., Reisfeld, R. & Panczer, G. ~2005!. Luminescence Spec- emission band. Phys Rev B 35, 9407. troscopy of Minerals and Materials. Berlin Heidelberg: Springer. Habermann, D. ~2002!. Quantitative cathodoluminescence ~CL! Gaft, M., Reisfeld, R., Panczer, G., Blank, P. & Boulon, G. spectroscopy of minerals: Possibilities and limitations. Mineral ~1998!. Laser-induced time-resolved luminescence of minerals. Petrol 76, 247–259. Spectrochim Acta Part A 54, 2163–2175. Habermann, D., Meijer, J., Neuser, R.D., Richter, D.K., Rolfs, Garcia, J.A., Remon, A. & Piqueras, J. ~1986!. Red luminescence C. & Stephan, A. ~1999!. Micro-PIXE and quantitative cathod- from quenched MgO crystals. Solid State Commun 58, 555–558. oluminescence spectroscopy: Combined high resolution trace Geake, J.E., Walker, G., Mills, A.A. & Garlick, G.F.J. ~1971!.Lu- element analyses in minerals. Nucl Instrum Methods Phys Res, minescence of Apollo lunar samples. In Proceedings of the Second Sect B 150, 470–477. Lunar Conference, Levinson, A.A. ~Ed.!, Geochimica et Cosmo- Habermann, D., Niklas, J.R., Meijer, J., Stephan, A. & Gotte, T. chimica Acta, Suppl. 2, pp. 2265–2275. Cambridge MA: MIT. ~2001!. Structural point defects in “Iceland spar” calcite. Nucl Godlewski, M., Guziewicz, E., Kopalko, K., Lusakowska, E., Instrum Methods Phys Res, Sect B 181, 563–569. Dynowska, E., Godlewski, M.M., Goldys, E.M. & Phillips, Hagni, R. ~1984!. Cathodoluminescence microscopy applied to M.R. ~2003!. Origin of white color light emission in ALE- mineral exploration and beneficiation. In Second International grown ZnSe. J Lumin 102, 455–459. Congress on Applied Mineralogy, Park, W.C., Hausen, D.M. & Gorbunov, S.V., Zatsepin, A.F., Pustovarov, V.A., Cholakh, Hagni, R.D. ~Eds.!, pp. 41–66. New York: American Institute of S.O. & Yakovlev, V.Y. ~2005!. Electronic excitations and defects Mining, Metallurgical and Petroleum Engineers, Inc. in nanostructural Al2O3. Phys Solid State 47, 733–737. Hagni, R. & Karakus, M. ~1989!. Cathodoluminescence micros- Gorton, N.T., Walker, G. & Burley, S.D. ~1997!. Experimental copy: A valuable technique for studying ceramic materials. analysis of the composite blue cathodoluminescence emission Materials Research Society Bulletin 14, 11, 54–59. in quartz. J Lumin 72-4, 669–671. Hanusiak, W.M. & White, E.W. ~1975!. SEM cathodolumines- Gorz, H., Bhalla, R.J.R.S.B. & White, E.W. ~1970!. Detailed cence for characterization of damaged and undamaged alpha- cathodoluminescence characterisation of common silicates. Pro- quartz in respirable dusts. In 8th Annual Scanning Electron ceeding of a Workshop on Solid State Luminescent Phenomena, Microscope Symposium, Johari, O. & Corvin, I. ~Eds.!, pp. 125– pp. 1–12. 132. Chicago: IIT Research Institute. Gotze, J. ~2000!. Materials characterisation by cathodolumines- Hashimoto, T., Sakaue, S., Aoki, H. & Ichino, M. ~1994!.Depen- cence microscopy and spectroscopy. In Proceedings of the Sixth dence of TL-property changes of natural quartzes on alumin- International Congress on Applied Mineralogy in Research, Econ- ium contents accompanied by thermal annealing treatment. omy, Technology, Ecology and Culture, pp. 783–786. Gottingen, Radiat Meas 23, 293–299. Germany: Balkema, Rotterdam. Hichou, A.E., Addou, M., Bubendorff, J.L., Ebothe, J., Idrissi, Gotze, J. ~2002!. Potential of cathodoluminescence ~CL! micros- B.E. & Troyon, M. ~2004!. Microstructure and cathodolumines- copy and spectroscopy for the analysis of minerals and materi- cence study of sprayed Al and Sn doped ZnS thin films. als. Anal Bioanal Chem 374, 703–708. Semicond Sci Technol 19, 230–235. Gotze, J., Habermann, D., Neuser, R.D. & Richter, D.K. ~1999!. Hirata, G., Perea, N., Tejeda, M., Gonzalez-Ortega, J.A. & High-resolution spectrometric analysis of rare earth elements— McKittrick, J. ~2005!. Luminescence study in Eu-doped alu- Activated cathodoluminescence in feldspar minerals. Chem Geol minium oxide phosphors. Opt Mater 27, 1311–1315. 153, 81–91. Holness, M.B. & Watt, G.R. ~2001!. Quartz recrystallisation and Gotze, J., Plotze, M., Gotte, T., Neuser, R.D. & Richter, D.K. fluid flow during contact metamorphism: A cathodolumines- ~2002!. Cathodoluminescence ~CL! and electron paramagnetic cence study. Geofluids 1, 215–218. 202 Colin M. MacRae and Nicholas C. Wilson

Itoh, C., Tanimura, K. & Itoh, N. ~1988!. Optical studies of structure: Sol-gel synthesis and characterisation. Eur J Inorg self-trapped excitons in SiO2. JPhysC:SolidStatePhys21, Chem 2006, 3667–3675. 4693–4702. Lin, Y., Tang, Z., Zhang, Z., Wang, X. & Zhang, J. ~2001a!. Prepa- Jadwisienczak, W.M. & Lozykowski, H.J. ~2003!. Optical prop- ration of a new long afterglow blue-emitting Sr2MgSi2O7-based erties of Yb ions in GaN epilayer. Opt Mater 23, 175–181. photoluminescent phosphor. J Mater Sci Lett 20, 1505–1506. Jones, C.E. & Embree, D. ~1976!. Correlations of the 4.77–4.28 eV Lin, Y., Zhang, Z., Tang, Z., Wang, X., Zhang, J. & Zheng, Z. luminescence band in silicon dioxide with the oxygen vacancy. ~2001b!. Luminescent properties of a new long afterglow Eu2ϩ 3ϩ JApplPhys47, 5365–5371. and Dy activated Ca3MgSi2O8 phosphor. J Eur Ceram Soc 21, Karakus, M. ~2005!. Cathodoluminescence microscopy and spec- 683–685. troscopy characterisation of refractory and advanced structural Loferski, J.J., Schewchun, J., Mittleman, S.D., DeMeo, E.A., ceramics. In UNITECR ’05: Proceedings of the Unified Inter- Arnott, R., Hwang, H.L., Beaulieu, R. & Chapman, G. national Technical Conference on Refractories: 9th Biennial World- ~1979!. Cathodoluminescence characteristics of CuxS films pro- wide Congress on Refractories, Smith, J.D. ~Ed.!, pp. 330–334. duced by different methods. Solar Energy Mater 1, 157–169. Orlando, FL: American Ceramic Society. Lozykowski, H.J., Jadwisienczak, W.M. & Brown, I. ~1999!. Karakus, M., Crites, M.D. & Schlesinger, M.E. ~2000!. Cathod- Visible cathodoluminescence of GaN doped with Dy, Er, and oluminescence microscopy characterization of chrome-free re- Tm. Appl Phys Lett 74, 1129–1131. fractories for copper smelting and converting furnaces. JMicrosc Luff, B.J. & Townsend, P.D. ~1990!. Cathodoluminescence of Oxford 200, 50–58. synthetic quartz. J Phys Condens Matter 2, 8089–8097. Karakus, M., Hagni, R.D. & Spreng, A.C. ~2001!. Cathodolumi- MacRae, C.M. & Miller, P.R. ~2003!. Electron microscopy in min- nescence petrography and chemistry of the grains in eral processing. In Industrial Applications of Electron Microscopy, the lower Jurassic ~Aalenian! ironstones of Lorraine, France. In Zhigang, R.L. ~Ed.!, pp. 187–212. New York: Marcel Dekker. Studies on Ore Deposits, Mineral Economics, and Applied Miner- MacRae, C.M., Wilson, N.C., Johnson, S.A., Phillips, P.L. & alogy: With Emphasis on Missippi Valley-Type Base Metals and Otsuki, M. ~2005!. Hyperspectral mapping—combining cathod- Carbonate-Related Ore Deposits, Hagni, R.D. ~Ed.!, pp. 335–363. oluminescence and X-ray collection in an electron microprobe. Rolla, MO: University of Missouri-Rolla Press. Microsc Res Tech 67, 271–277. Karakus, M. & Moore, R.E. ~1988!. CLM—A new technique for MacRae, C.M., Wilson, N.C. & Otsuki, M. ~2001!. Holistic refractories. Ceram Bull 77, 55–61. mapping in an electron microprobe. In Microscopy and Micro- Katona, T.M., Craven, M.D., Speck, J.S. & DenBarns, S.P. analysis, Vol. 7, Suppl. 2, Bailey, G.W. ~Ed.!, pp. 146–147. New ~2004!. Cathodoluminescence study of deep ultraviolet quan- York: Springer. tum wells grown on maskless laterally epitaxial overgrown Manfredotti, C., Cossio, R., Lo Giudice, A., Vittone, E. & AlGaN. Appl Phys Lett 85, 1350–1352. Fizzotti, F. ~2006!. Vibronic spectrum of c-BN with cathodolu- Kempe, U. & Gotze, J. ~2002!. Cathodoluminescence ~CL! behav- minescence. Phys Rev B 74, 1–7. iour and crystal chemistry from rare-metal deposits. Mineral Marfunin, A.S. ~1979!. Spectroscopy, Luminescence and Radia- Mag 66, 151–172. tion Centers in Minerals. Berlin, Heidelberg, New York: Kempe, U., Plotze, M., Brachmann, A. & Bottcher, R. ~2002!. Springer-Verlag. Stabilisation of divalent rare earth elements in natural fluorite. Marfunin, A.S. ~1995!. Advanced Mineralogy. Berlin: Springer- Mineral Petrol 76, 213–234. Verlag. Kiflawi, I. & Lang, A.R. ~1974!. Linearly polarized luminescence Mariano, A.N. ~1978!. The application of cathodoluminescence from linear defects in natural and synthetic diamond. Philos for carbonatite exploration and characterization. In Inter- Mag 30, 219–223. national Symposium on Carbonatites, 1st ed., Pocos de Caldas, Kobayashi, Y., Sato, S., Hitomi, A., Isshiki, T., Saijo, H., No- Minas Gerais, Brazil, Braga, C.J. ~Ed.!, pp. 39–57. mura, T. & Shiojiri, M. ~1998!. Cathodoluminescence scan- Mariano, A.N., Ito, J. & Ring, P.J. ~1973!. Cathodoluminescence ning electron microscopy observations of ~SrBaCa!TiO3 ceramic of plagioclase feldspars. In Geological Society of America, Vol. 5, varistors. J Electron Microsc 47, 29–37. p. 726. Boulder, CO: Geological Society of America. Kominami, H., Tanka, M., Hara, K., Nakanishi, Y. & Hatanaka, Mariano, A.N. & Ring, P.J. ~1975!. Europium-activated cathodolu- Y. ~2006!. Synthesis and luminescence properties of Mg-Ti-O:Eu minescence in minerals. Geochim Cosmochim Acta 39, 649–660. red-emitting phosphors. Phys Stat Sol (c) 3, 2758–2761. Marshall, D.J. ~1988!. Cathodoluminescence of Geological Materi- Koyama, H. ~1980!. Cathodoluminescence study of SiO2. JAppl als. London, UK: Unwin Hyman Ltd. Phys 51, 2228–2235. Martin, R.W., Edwards, P.R., O’Donnell, K.P., Mackay, E.G. & Laud, K.R., Gibbons, E.F., Tien, T.Y. & Stadler, H.L. ~1971!. Watson, I.M. ~2002!. Microcomposition and luminescence of Cathodoluminescence of Ce3ϩ and Eu2ϩ activated alkaline InGaN emitters. Phys Status Solidi A 192, 117–123. earth feldspars. J Electrochem Soc 118, 918–923. Mason, R., Clouter, M. & Goulding, R. ~2005!. The lumines- Lee, M.R., Martin, R.W., Trager-Cowan, C. & Edwards, P.R. cence decay-time of Mn2ϩ activated calcite. Phys Chem Miner ~2005!. Imaging of cathodoluminescence zoning in calcite by 32, 451–459. scanning electron microscopy and hyperspectral mapping. J McKnight, S.W. & Palik, E.D. ~1980!. Cathodoluminescence of Sedim Res 75, 313–322. SiO2 films. J Non-Cryst Solids 40, 595–603. Leverenz, H.W. ~1968!. An Introduction to Luminescence of Solids. Medlin, W.L. ~1963!. Emission centers in thermoluminescent New York: Dover. calcite, dolomite, magnesite, aragonite, and anhydrite. J Opt Soc Lin, C., Wang, H., Kong, D., Yu, M., Liu, X., Wang, Z. & Lin, J. Am 53, 1276–1285. 3ϩ ~2006!. Silica supported submicron SiO2@Y2SiO5:Eu and Medlin, W.L. ~1964!. Trapping centers in thermoluminescent cal- 3ϩ 3ϩ SiO2@Y2SiO5:Ce /Tb spherical particles with a core-shell cite. Phys Rev 135, 1770–1779. Luminescence Database 203

Mei, Y.F., Fu, R.K.Y., Siu, G.G., Wong, K.W., Chu, P.K., Wang, Schulman, J.H., Evans, L.W., Ginther, R.J. & Murata, K.J. R.S. & Ong, H.C. ~2006!. Nitrogen binding behaviour in ZnO ~1947!. The sensitized luminescence of manganese-activated films with time-resolved cathodoluminescence. Appl Surf Sci calcite. JApplPhys18, 732–739. 252, 8131–8134. Sigel, G.H. & Marrone, M.J. ~1981!. Photoluminescence in as- Merano, M., Sonderegger, S., Crottini, A., Collin, S., Re- drawn and irradiated silica optical fibers: An assessment of the nucci, P., Pelucchi, E., Malko, A., Baier, M.H., Kapon, E., role of non-bridging oxygen defect centers. J Non-Cryst Solids Deveaud, B. & Ganiere, J.D. ~2005!. Probing carrier dynamics 45, 235–247. in nanostructures by picosecond cathodoluminescence. Nature Singh, N., Marwaha, G.L. & Mathur, V.K. ~1981!. Lumines- 438, 479–482. cence centres and charge compenstation in CaS phosphors. Moore, R.E. & Karakus, M. ~1994!. Cathodoluminescence micros- Phys Stat Sol (a) 66, 761–765. copy: A technique uniquely suited to the solution of refractory Sippel, R.F. & Spencer, A.B. ~1970!. Luminescence petrography wear problems. Int Ceram Mono 1, 925–940. and properties of lunar crystalline rocks and breccias. In Pro- Munekuni, S., Yamanaka, T., Shimogaichi, Y., Tohmon, R., ceedings of the Apollo 11 Lunar Science Conference, Levinson, Ohki, Y., Nagasawa, K. & Hama, Y. ~1990!. Various types of A.A. ~Ed.!, pp. 2413–2426. Geochim et Cosmochim Acta, Suppl. 1. nonbridging oxygen hole center in high-purity silica glass. J Skuja, L.N., Guttler, B., Schiel, D. & Silin, A.R. ~1998!. Infrared Appl Phys 68, 1212–1217. photoluminescence of preexisting or irradiation-induced inter- Nishikawa, H., Shiroyama, T., Nakamura, R., Ohki, Y., Na- stitial oxygen molecules in glassy SiO2 and alpha-quartz. Phys gasawa, K. & Hama, Y. ~1992!. Photoluminescence from de- Rev B 58, 14296–14304. fect centers in high-purity silica glasses observed under 7.9-eV Skuja, L.N., Silin, A.R. & Boganov, A.G. ~1984a!. On the nature excitation. Phys Rev B 45, 586. of the 1.9 eV luminescence centers in amorphous SiO2. J Odin, I.N., Chukichev, M.V., Ivanov, V.A. & Rubina, M.E. Non-Cryst Solids 63, 431–436. ~2001!. Cathodoluminescence of Cd4SiS6,Cd4SiSe6, and S-doped Skuja, L.N., Streletsky, A.N. & Pakovich, A.B. ~1984b!. A new CdS, CdSe and CdTe crystals. Inorg Mater 37, 445–448. intrinsic defect in amorphous SiO2—Twofold coordinated sili- Pagel, M., Barbin, V., Blanc, P. & Ohnestetter, D. ~2000!. con. Solid State Commun 50, 1069. Cathodoluminescence in Geosciences. Berlin, New York: Skuja, L.N. & Trukhin, A.N. ~1989!. Comment on “Luminescence Ϫ Springer. of fused silica: Observation of the O2 emission band.” Phys Rev Petrov, V.I. ~1996!. Cathodoluminescence microscopy. Physics— B 39, 3909. Uspekhi 39, 807–818. Smith, A.L. ~1949!. New complex silicate phosphors containing Ponahlo, J. ~1993!. Kathodolumineszenz ~KL! und KL-spektren calcium, magnesium, and beryllium. J Electrochem Soc 96, von edelsteinen. ZDtGemmolGes42, 101–113. 287–296. Ponahlo, J. ~1999!. Kathodolumineszenz- und absorptionsspek- Sommer, S.E. ~1972!. Cathodoluminescence of carbonates, 1. Char- tren gelber saphire. ZDt.GemmolGes39, 225–228. acterization of cathodoluminescence from carbonate solid so- Portnov, A.M. & Gorobets, B.S. ~1969!. Luminescence of apatite lutions. Chem Geol 9, 257–273. from different rock types. Doklady Akademii Nauk SSSR 184, Stevens-Kalceff, M.A. ~2000!. Electro-irradiation-induced radio- 110–13. lytic oxygen generation and microsegregation in silicon dioxide Pott, G.T. & McNicol, B.D. ~1971!. Spectroscopic study of the polymorphs. Phys Rev Lett 84, 3137–3140. coordination and valence of Fe and Mn ions in and on the Stevens-Kalceff, M.A. & Phillips, M.R. ~1995!. Cathodolumi- surface of aluminas and silicas. Disc Faraday Soc 52, 121–131. nescence microcharacterization of the defect structure of quartz. Randall, J.T. ~1939!. Some recent experiments in luminescence. Phys Rev B 52, 3122–3134. Trans Faraday Soc 35, 2–14. Stevens-Kalceff, M.A., Stesmans, A. & Wong, J. ~2002!.Defects Remond, G., Cesborn, F., Chapoulie, R., Ohnenstetter, D., induced in fused silica by high fluence ultraviolet laser pulses at Roque-Carmes, C. & Schvoerer, M. ~1992!. Cathodolumines- 355 nm. Appl Phys Lett 80, 758–760. cence applied to the microcharacterization on mineral materi- Sun, X.L., Goss, S.H., Brillson, L.J., Look, D.C. & Molnar, R.J. als: A present status in experimentation and interpretation. ~2002!. Depth-dependent investigation of defects and impurity Scan Microsc 6, 23–68. doping in GaN/sapphire using scanning electron microscopy and Remond, G., Phillips, M.R. & Roque-Carmes, C. ~2000!.Impor- cathodoluminescence spectroscopy. JApplPhys91, 6729–6738. tance of instrumental and experimental factors on the interpre- Tarashchan, A.N. ~1978!. Luminescence of Minerals. Kiev: Naukova tation of cathodoluminescence data from wide band gap Dumka. materials. In Cathodoluminescence in Geosciences,Pagel,M., Telfer, D.J. & Walker, G. ~1978!. Ligand field bands of Mn2ϩ and Barbin, V., Blanc, P. & Ohnenstetter, D. ~Eds.!, pp. 108–113. Fe3ϩ luminescence centres and their site occupancy in plagio- Heidelberg: Springer Verlag. clase feldpsars. Mod Geol 6, 199–210. Richter, D.K., Gotte, T., Gotze, J. & Neuser, R.D. ~2003!. Tiginyanu, I.M., Langa, S., Sirbu, L., Monaico, E., Stevens- Progress in application of cathodoluminescence ~CL! in sedi- Kalceff, M.A. & Foll, H. ~2004!. Cathodoluminescence micro- mentary petrology. Mineral Petrol 79, 127–166. analysis of porous GaP and InP structures. EurPhysJApplPhys Roeder, P.L., MacArthur, D., Ma, X., Palmer, G.R. & Mariano, 27, 81–84. A.N. ~1987!. Cathodoluminescence and microprobe study of Tohmon, R., Shimogaichi, Y., Mizuno, H., Ohki, Y., Nagasawa, rare-earth elements in apatite. Am Mineral 72, 801–811. K. & Hama, Y. ~1989!. 2.7-eV luminescence in as-manufactured Saparin, G.V., Mokhov, E.N., Obyden, S.K. & Roenkov, A.D. high-purity silica glass. Phys Rev Lett 62, 1388. ~1996!. Real color cathodoluminescence scanning electron Toyama, T., Adachi, D. & Okamoto, H. ~2000!. Electrolumines- microscopy—A new effective method for study of SiC materi- cent devices with nanostructured ZnS:Mn emission layer oper- als and devices. Scanning 18, 25–34. ated at 20 V0-p. Mater Res Soc Symp Proc 621, Q4.4.1–Q4.4.6. 204 Colin M. MacRae and Nicholas C. Wilson

Trukhin, A.N. & Plaudis, A.E. ~1979!. Investigation of intrinsic Walker, G., Kamaluddin, B., Glynn, T.J. & Sherlock, R. ~1994!. 2ϩ luminescence of SiO2. Sov Phys Solid State 21, 644–646. Luminescence of Ni centres in forsterite ~MgSiO4!. J Lumin Vernon-Parry, K.D., Davies, G. & Galloway, S. ~2005!. Elec- 60–61, 123–126. tronic and structural properties of grain boundaries in electron- Wang, P.W., Haglund, R.F., Kinser, D.L., Mendenhall, M.H., irradiated edge-defined film-fed growth silicon. Semicond Sci Tolk, N.H. & Weeks, R.A. ~1988!. Luminescence induced by Technol 20, 171–174. low energy electron deposition in Suprasil௡ and Spectrosil௡ Vu, T.A., Gotze, J., Burkhardt, J., Ulbricht, J. & Habermann, glasses. J Non-Cryst Solids 102, 288–294. D. ~1998!. Application of optical and spectral cathodolumines- Xu, S.J., Chua, S.J., Liu, B., Gan, L.M., Chew, C.H. & Xu, G.Q. cence in the study of MgO refractories. Int Ceram 47, 164–167. ~1998!. Luminescence characteristics of impurities-activated Walker, G., Abumere, O.E. & Kamaluddin, B. ~1989!. Lumines- ZnS nanocrystals prepared in microemulsion with hydrother- cence spectroscopy of Mn2ϩ centres in rock-forming carbon- mal treatment. Appl Phys Lett 73, 478–480. ates. Mineral Mag 53, 201–211. Yacobi, B.G. & Holt, D.B. ~1990!. Cathodoluminescence Micros- Walker, G. & Burley, S.D. ~1991!. Luminescence petrology and copy of Inorganic Solids. New York, London: Plenum Press. spectroscopic studies in diagentic minerals. In Luminescence Yang, X.H. & McKeever, S.W.S. ~1990!. The predose effect in Microscopy: Qualitative and Quantitative Applications. SPEM crystalline quartz. JPhysD:ApplPhys23, 237–244. ShortCourse25, Barker, C.E. & Kopp, O.C. ~Eds.!, pp. 83–96. Zorenko, Y.V., Turchak, R.M., Voznyak, T.I. & Luchechko, A.P. Tulsa, OK: SPEM ~Society for Sedimentary Geology!. ~2006!. Luminescence of CsBr:Eu films grown by liquid-phase Walker, G., El Jaer, A., Sherlock, R., Glynn, T.J., Czaja, M. & epitaxy. JApplPhys73, 211–215. Mazurak, Z. ~1997!. Luminescence spectroscopy of Cr3ϩ and 2ϩ Mn in spodumene ~LiAlSi2O6!. J Lumin 72–74, 278–280.