Assessment, Angiosperm, Plant Diversity, Nijhum Dweep
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Phylogeny of Abildgaardieae (Cyperaceae) Inferred from ITS and Trnl–F Data Kioumars Ghamkhar University of New England, Armidale, New South Wales, Australia
Aliso: A Journal of Systematic and Evolutionary Botany Volume 23 | Issue 1 Article 12 2007 Phylogeny of Abildgaardieae (Cyperaceae) Inferred from ITS and trnL–F Data Kioumars Ghamkhar University of New England, Armidale, New South Wales, Australia Adam D. Marchant Royal Botanic Gardens, Sydney, New South Wales, Australia Karen L. Wilson Royal Botanic Gardens, Sydney, New South Wales, Australia Jeremy J. Bruhl University of New England, Armidale, New South Wales, Australia Follow this and additional works at: http://scholarship.claremont.edu/aliso Part of the Botany Commons, and the Ecology and Evolutionary Biology Commons Recommended Citation Ghamkhar, Kioumars; Marchant, Adam D.; Wilson, Karen L.; and Bruhl, Jeremy J. (2007) "Phylogeny of Abildgaardieae (Cyperaceae) Inferred from ITS and trnL–F Data," Aliso: A Journal of Systematic and Evolutionary Botany: Vol. 23: Iss. 1, Article 12. Available at: http://scholarship.claremont.edu/aliso/vol23/iss1/12 Aliso 23, pp. 149–164 ᭧ 2007, Rancho Santa Ana Botanic Garden PHYLOGENY OF ABILDGAARDIEAE (CYPERACEAE) INFERRED FROM ITS AND trnL–F DATA KIOUMARS GHAMKHAR,1,2,4 ADAM D. MARCHANT,2 KAREN L. WILSON,2 AND JEREMY J. BRUHL1,3 1Botany, Centre for Ecology, Evolution, and Systematics, University of New England, Armidale, New South Wales 2351, Australia; 2National Herbarium of New South Wales, Royal Botanic Gardens, Sydney, Mrs Macquaries Road, Sydney, New South Wales 2000, Australia 3Corresponding author ([email protected]) ABSTRACT Within the tribe Abildgaardieae, the relationships between Fimbristylis and its relatives have not been certain, and the limits of Fimbristylis have been unclear, with Bulbostylis and Abildgaardia variously combined with it and each other. -
View on Neutraceutical Value 9
ijlpr 2021; doi 10.22376/ijpbs/lpr.2021.11.2.L212-219 International Journal of Life science and Pharma Research Botany for Medicinal science Research Article Effect of Topographical Features on the Growth and Yield of the Leaves of Sesbania Grandiflora L. Pers of Gunjur Region, Chikkaballapur District, Karnataka. Naveen Kumar S. P1. and Dr. C. Maya2 1Research Scholar, Department Of Botany, Bangalore University, Bangalore-560056. 2Professor., Department Of Botany, Bangalore University, Bangalore-560056. Abstract: The leaves of Sesbania grandiflora L. Pers were collected from the Gunjur region of Chikkaballapur district and subjected to analysis for checking the growth. The data of the area regarding height in terms of growth, texture determining the soil type, rainfall occurred during the study duration, numbers of leaves per plant were recorded for quarterly analysis viz., March, June, September, and December 2020. The average yield was estimated according to the total number of plots of land utilized for cultivation. The phytochemicals present in these samples were evaluated for their presence. Overall features affecting the growth and yield were interpreted based on the survey. The present study focuses on the consistancy of the yield of the leaves of the plant Sesbania grandiflora L. Pers irrespective of the changes in the topography of Gunjur region, Chikkaballapur district, Karnataka State. Keywords: Sesbania grandiflora L. Pers, quarterly analysis, average yield, cultivation, phytochemicals. *Corresponding Author Recieved On 15 March 2021 Naveen Kumar S. P , Research Scholar, Department Of Revised On 27 March 2021 Botany, Bangalore University, Bangalore-560056 Accepted On 29 March 2021 Published On 31 March 2021 Funding This research did not receive any specific grant from any funding agencies in the public, commercial or not for profit sectors. -
Ornamental Garden Plants of the Guianas Pt. 2
Surinam (Pulle, 1906). 8. Gliricidia Kunth & Endlicher Unarmed, deciduous trees and shrubs. Leaves alternate, petiolate, odd-pinnate, 1- pinnate. Inflorescence an axillary, many-flowered raceme. Flowers papilionaceous; sepals united in a cupuliform, weakly 5-toothed tube; standard petal reflexed; keel incurved, the petals united. Stamens 10; 9 united by the filaments in a tube, 1 free. Fruit dehiscent, flat, narrow; seeds numerous. 1. Gliricidia sepium (Jacquin) Kunth ex Grisebach, Abhandlungen der Akademie der Wissenschaften, Gottingen 7: 52 (1857). MADRE DE CACAO (Surinam); ACACIA DES ANTILLES (French Guiana). Tree to 9 m; branches hairy when young; poisonous. Leaves with 4-8 pairs of leaflets; leaflets elliptical, acuminate, often dark-spotted or -blotched beneath, to 7 x 3 (-4) cm. Inflorescence to 15 cm. Petals pale purplish-pink, c.1.2 cm; standard petal marked with yellow from middle to base. Fruit narrowly oblong, somewhat woody, to 15 x 1.2 cm; seeds up to 11 per fruit. Range: Mexico to South America. Grown as an ornamental in the Botanic Gardens, Georgetown, Guyana (Index Seminum, 1982) and in French Guiana (de Granville, 1985). Grown as a shade tree in Surinam (Ostendorf, 1962). In tropical America this species is often interplanted with coffee and cacao trees to shade them; it is recommended for intensified utilization as a fuelwood for the humid tropics (National Academy of Sciences, 1980; Little, 1983). 9. Pterocarpus Jacquin Unarmed, nearly evergreen trees, sometimes lianas. Leaves alternate, petiolate, odd- pinnate, 1-pinnate; leaflets alternate. Inflorescence an axillary or terminal panicle or raceme. Flowers papilionaceous; sepals united in an unequally 5-toothed tube; standard and wing petals crisped (wavy); keel petals free or nearly so. -
The Journal of Phytopharmacology (Pharmacognosy and Phytomedicine Research) Phytopharmacology of Indian Plant Sesbania Grandiflora L
Suresh et. al. www.phytopharmajournal.com Volume 1 Issue 2 2012 The Journal of Phytopharmacology (Pharmacognosy and Phytomedicine Research) Phytopharmacology of Indian plant Sesbania grandiflora L. Suresh Kashyap *1 , Sanjay Mishra 1 1. Rakshpal Bahadur College of Pharmacy, Bareilly-243001 [Email: [email protected]] Abstract: Sesbania grandiflora L. is an Indian medicinal plant which belongs to family Leguminosae. It is cultivated in south or west India in the ganga valley and in Bengal. The plant contains rich in tanins, flavonoides, coumarins, steroids and triterpens. The plant used in colic disorder, jaundice, poisoning condition, small-pox, eruptive fever, epilepsy etc. The present work is carried out on phytopharmacological survey of the plant. Keywords: Sesbania grandiflora, Plant, Biological source, Phytopharmacology Introduction: Plant drug profile Biological source Plant name - Sesbania grandiflora L. It consist of dried leaves of Sesbania Synonym – Agati grandiflora L. grandiflora L. , belonging to the family English – Agati sesban , Swamp pea Leguminosae. 1 Ayurvedic – Agastya, agasti, munidrum, Geographical source muni, vangasena, vakrapushpa, kumbha It is cultivated in south or west India in the Siddha/Tamil – Agatti ganga valley and in Bengal. It is believed to have originated either in India or Southeast Volume 1 Issue 2 2012 | THE JOURNAL OF PHYTOPHARMACOLOGY 63 Suresh et. al. www.phytopharmajournal.com Asia and grows primarily in hot and humid Macroscopical character 4 areas of the world. Sesbania is found from Sesbania grandiflora L. is a small erect, northern Luzon to Mindanao in settled areas fast-growing, and sparsely branched tree that at low and medium altitudes. It was certainly reaches 10 m in height. -
LUẬN VĂN THẠC SĨ LÂM NGHIỆP Chuyên Ngành: Lâm Học
ĐẠI HỌC HUẾ TRƯỜNG ĐẠI HỌC NÔNG LÂM LÊ NGỌC TUẤN NGHIÊN CỨU HIỆN TRẠNG PHÂN BỐ VÀ KỸ THUẬT NHÂN GIỐNG NHẰM PHÁT TRIỂN NGUỒN GEN LOÀI CÂY QUAO (Dolichandrone spathacea (L.f.) K. Schum) TẠI TỈNH THỪA THIÊN HUẾ LUẬN VĂN THẠC SĨ LÂM NGHIỆP Chuyên ngành: Lâm học HUẾ - 2020 ĐẠI HỌC HUẾ TRƯỜNG ĐẠI HỌC NÔNG LÂM LÊ NGỌC TUẤN NGHIÊN CỨU HIỆN TRẠNG PHÂN BỐ VÀ KỸ THUẬT NHÂN GIỐNG NHẰM PHÁT TRIỂN NGUỒN GEN LOÀI CÂY QUAO (Dolichandrone spathacea (L.f.) K. Schum) TẠI TỈNH THỪA THIÊN HUẾ LUẬN VĂN THẠC SĨ LÂM NGHIỆP Chuyên ngành: Lâm học Mã số: 8620201 NGƯỜI HƯỚNG DẪN KHOA HỌC PGS.TS. ĐẶNG THÁI DƯƠNG HUẾ - 2020 i LỜI CAM ĐOAN Tôi xin cam đoan đề tài: “Nghiên cứu hiện trạng phân bố và kỹ thuật nhân giống phát triển nguồn gen loài cây Quao (Dolichandrone spathacea (L.f.) K. Schum) tại tỉnh Thừa Thiên Huế.” Các số liệu, kết quả trong luận án là trung thực và chưa được công bố. Nếu có kế thừa kết quả nghiên cứu của người khác thì đều được trích dẫn rõ nguồn gốc. Huế, tháng 5 năm 2020 Tác giả Lê Ngọc Tuấn ii LỜI CẢM ƠN Trong quá trình hoàn thành luận văn này tôi xin được bày tỏ lòng biết ơn chân thành và sâu sắc nhất tới Trường Đại học Nông lâm Huế, các Thầy giáo Trường Đại học Nông Lâm Huế đã tạo mọi điều kiện thuận lợi trong việc học tập, phương pháp nghiên cứu, cơ sở lý luận… Đặc biệt là thầy giáo PGS.TS. -
In-Vitro Production of Anthocyanin in Sesbania Grandiflora (Red Katuray) As Influenced by Varying Concentrations of 2,4-D and BA Added on MS Medium
American Journal of Plant Sciences, 2016, 7, 2297-2306 http://www.scirp.org/journal/ajps ISSN Online: 2158-2750 ISSN Print: 2158-2742 In-Vitro Production of Anthocyanin in Sesbania grandiflora (Red Katuray) as Influenced by Varying Concentrations of 2,4-D and BA Added on MS Medium Donata A. Largado-Valler College of Agriculture, Dr. Emilio B. Espinosa Sr. Memorial State College of Agriculture and Technology, Mandaon, Philippines How to cite this paper: Largado-Valler, Abstract D.A. (2016) In-Vitro Production of Antho- cyanin in Sesbania grandiflora (Red Katu- The study aimed to determine the anthocyanin content in callus cultures of Sesbania ray) as Influenced by Varying Concentra- grandiflora L. (Red Katuray) using petal explants as influenced by 2,4-D and BA. The tions of 2,4-D and BA Added on MS Me- specific objective of this study is to determine the effect of plant growth regulators dium. American Journal of Plant Sciences, 7, 2297-2306. specifically auxin (2,4-D) and BA (Benzyladenine) on Murashige and Skoog’s (MS) http://dx.doi.org/10.4236/ajps.2016.715202 medium in anthocyanin production. Earliest callus initiation was noted in 2.5 ppm to 5.0 ppm 2,4-D without BA and 2.5 ppm 2,4-D with 2.5 ppm BA. Same treatment Received: September 21, 2016 Accepted: November 15, 2016 combination had the highest degree of callus formation and obtained the greatest Published: November 18, 2016 percentage of callus formation 2.5 ppm 2,4-D without BA and 2.5 ppm 2,4-D with 2.5 ppm BA. -
Mangroves: Unusual Forests at the Seas Edge
Tropical Forestry Handbook DOI 10.1007/978-3-642-41554-8_129-1 # Springer-Verlag Berlin Heidelberg 2015 Mangroves: Unusual Forests at the Seas Edge Norman C. Dukea* and Klaus Schmittb aTropWATER – Centre for Tropical Water and Aquatic Ecosystem Research, James Cook University, Townsville, QLD, Australia bDepartment of Environment and Natural Resources, Deutsche Gesellschaft fur€ Internationale Zusammenarbeit (GIZ) GmbH, Quezon City, Philippines Abstract Mangroves form distinct sea-edge forested habitat of dense, undulating canopies in both wet and arid tropic regions of the world. These highly adapted, forest wetland ecosystems have many remarkable features, making them a constant source of wonder and inquiry. This chapter introduces mangrove forests, the factors that influence them, and some of their key benefits and functions. This knowledge is considered essential for those who propose to manage them sustainably. We describe key and currently recommended strategies in an accompanying article on mangrove forest management (Schmitt and Duke 2015). Keywords Mangroves; Tidal wetlands; Tidal forests; Biodiversity; Structure; Biomass; Ecology; Forest growth and development; Recruitment; Influencing factors; Human pressures; Replacement and damage Mangroves: Forested Tidal Wetlands Introduction Mangroves are trees and shrubs, uniquely adapted for tidal sea verges of mostly warmer latitudes of the world (Tomlinson 1994). Of primary significance, the tidal wetland forests they form thrive in saline and saturated soils, a domain where few other plants survive (Fig. 1). Mangrove species have been indepen- dently derived from a diverse assemblage of higher taxa. The habitat and structure created by these species are correspondingly complex, and their features vary from place to place. For instance, in temperate areas of southern Australia, forests of Avicennia mangrove species often form accessible parkland stands, notable for their openness under closed canopies (Duke 2006). -
Medicinal Plants of Karnataka
Detailed information on Medicinal Plants of Karnataka SL. Threat Season of System of Botanical Name Family Vernacular name Habit Habitat Part used Used for Mode of Propagation Trade information No. Status Reproduction Medicine Flowerin Fruiting g 1 Ablemoschus crinitis Wall. Malvaceae No Herb North canara Rare 0 0 Whole Plant dysentry and Gravel Complaints AUS and F Seeds 2 Abelmoschus esculentus (L.) Malvaceae Bende kayi(Kan), Herb Bangalore,Coorg,Mysore,raichur Cultivable 0 0 Leaf, Fruit, Seed Fruit used as a plasma replacement or blood volume Ayu, Siddha, Seeds Moench Bhinda, Vendaikkai expander,also used for vata, pitta, debility.Immature capsules Unani, Folk (Tam) emollient, demulcent and diuretic, Seeds stimulent, Cardiac and 3 Abelmoschus manihot (L.) Medik Malvaceae No Herb Chickmagalur, Hassan, North kanara, Very 0 0 Bark emmenagogueantispasmodic Diarrhoea,leucorrhoea, aphrodisiac Folk Seeds Shimoga common 4 Abelmoschus moschatus Medik Malvaceae Latha Kasturi(Kan), Herb Chickmagalur, Coorg,Hassan,Mysore, Cultivable 0 0 Seed,Root,Leaf Seed used for Disease of Ayu, Siddha, 1.Seeds 2. Kaattu kasturi(Tam) North kanara, face,distaste,anorexia,diarrhoea,cardiac Unani, Folk Vegetative: through disease,cough,dysponia,polyuria,spermatorrhoea,eye disease, cuttings. seed musk used as stimulent,leaf and root used for Headache,veneral diseases,pyrexia,gastric and Skin disease 5 Abrus fruticulosus Wall.ex Wt. & Papilionaceae Angaravallika(San), Climbing Chickmagalore,Hassan,North 0 0 0 Root,leaf,seed Roots diuretic,tonic and emetic. Seeds used in infections of Ayu, Siddha, Arn. Venkundri or shrub kanara,Shimoga,South kanara nervous system, Seed paste applied locally in sciatica,stiffness Unani, Folk Vidathari(Tam) of sholder joints and paralysis 6 Abrus precatorius L. -
Pharmacological Effects of Sesbania Sesban Linn : an Overview
PharmaTutor PRINT ISSN: 2394-6679 | E-ISSN: 2347-7881 16 Pharmacological effects of Sesbania sesban Linn : An overview Saptarshi Samajdar1*, Amiya Kr. Ghosh2 1Centre for Pharmaceutical Sciences and Natural Products, Central University of Punjab, Punjab, India 2Department of Pharmacy, Utkal University, Orissa * [email protected] ABSTRACT Sesbania Sesban Linn (Family: Fabaceae) found all through the fields of India and ordinarily called as Jayanti. Herbals which shape a piece of our nourishment and give us an extra helpful impact are sought after and Sesbania Sesban Linn is one of such plant. The plant has got great restorative significance. Blooms contain cyanidin and delphinidin glucosides, Pollen and dust tubes contain alphaketoglutaric, oxaloacetic and pyruvic acids. The leaves of Sesbania is additionally found to have hepatoprotective and powerful hostile to oxidant and against urolithiatic action. The ethanolic and fluid extraction of various parts of Sesbania. The present survey outlines the different pharmacological activities of Sesbania sesban Linn. Keywords: Sesbania sesban Linn, Pharmacology, Phytochemistry, medicinal plant INTRODUCTION Bengali : jainti, jayant The World Health Organization (WHO) appraises that English : common sesban, Egyptian rattle pod, around 80% of individuals living in developing frother, river bean, sesban, sesbania nations depend only on conventional drugs for their Hindi : jainti, jait, rawasa essential medicinal services needs. India is essentially Sanskrit : jayanti, jayantika a herbarium of the world. Sesbania sesban Linn. is outstanding restorative plant very much circulated BOTANY: all through India and other tropical nations it is Sesbania is an erect, branched, stout, shrubby plant, found all through the fields of India. Sesbania 2 to 3 meters in height. -
Mangrove Guidebook for Southeast Asia
RAP PUBLICATION 2006/07 MANGROVE GUIDEBOOK FOR SOUTHEAST ASIA The designations and the presentation of material in this publication do not imply the expression of any opinion whatsoever on the part of the Food and Agriculture Organization of the United Nations concerning the legal status of any country, territory, city or area or of its frontiers or boundaries. The opinions expressed in this publication are those of the authors alone and do not imply any opinion whatsoever on the part of FAO. Authored by: Wim Giesen, Stephan Wulffraat, Max Zieren and Liesbeth Scholten ISBN: 974-7946-85-8 FAO and Wetlands International, 2006 Printed by: Dharmasarn Co., Ltd. First print: July 2007 For copies write to: Forest Resources Officer FAO Regional Office for Asia and the Pacific Maliwan Mansion Phra Atit Road, Bangkok 10200 Thailand E-mail: [email protected] ii FOREWORDS Large extents of the coastlines of Southeast Asian countries were once covered by thick mangrove forests. In the past few decades, however, these mangrove forests have been largely degraded and destroyed during the process of development. The negative environmental and socio-economic impacts on mangrove ecosystems have led many government and non- government agencies, together with civil societies, to launch mangrove conservation and rehabilitation programmes, especially during the 1990s. In the course of such activities, programme staff have faced continual difficulties in identifying plant species growing in the field. Despite a wide availability of mangrove guidebooks in Southeast Asia, none of these sufficiently cover species that, though often associated with mangroves, are not confined to this habitat. -
By CGGJ History. the Publication Of
Malayan Bignoniaceae, their taxonomy, origin and geographical distribution by C.G.G.J. van Steenis. and will not distribu- Age area do, function of and tion is a age biology. The mechanism of evolution is the main problem of biological science. Introduction. : My publication on the Bignoniaceae of New Guinea ) has been the prime cause to study this family for the whole Malayan region. So this study forms a parallel to the publications of the families worked out by the botanists at Buitenzorg, which are an attempt to constitute a modern review of the Malayan flora. That this a review of family was necessary may appear from short historical a survey. History. Since the publication of „De flora van Neder- landsch Indie” by Miguel 2), only 4 of the 5 Javanese 3 species have been discussed byKoorders and Va 1eton ); 4 Koorders ) gives only a short enumeration of the 5 Java- nese species, together with the cultivated ones of Java. 6 discussed the and Boerlage ) genera gave an account critical dis- of the species known then, but did not give a cussion of the species. 1) Nova-Guinea 14 (1927) 293-303. 2 ) De Flora van Nederlandsch Indie. 2 (1856) 750-9. 8 ) Bijdrage tot de boomsoorten van Java. 1 (1894) 64. 4) Excursionsflora fur Java. 3 (1912) 182. 6 585 ) Handleiding tot de kennis der flora van Ned. Indie. 2 (1899) 788 For the there extra-Javanese species are only the elder works of Blume 1 2 ) and Mique 1 ) and for Deplanchea the descriptions of Scheffer 3). As the and genera species were known only incompletely, the geographical distribution could not be indicated with any certainty and about the affinities was not known much either. -
Biodiversity Summary: Wet Tropics, Queensland
Biodiversity Summary for NRM Regions Species List What is the summary for and where does it come from? This list has been produced by the Department of Sustainability, Environment, Water, Population and Communities (SEWPC) for the Natural Resource Management Spatial Information System. The list was produced using the AustralianAustralian Natural Natural Heritage Heritage Assessment Assessment Tool Tool (ANHAT), which analyses data from a range of plant and animal surveys and collections from across Australia to automatically generate a report for each NRM region. Data sources (Appendix 2) include national and state herbaria, museums, state governments, CSIRO, Birds Australia and a range of surveys conducted by or for DEWHA. For each family of plant and animal covered by ANHAT (Appendix 1), this document gives the number of species in the country and how many of them are found in the region. It also identifies species listed as Vulnerable, Critically Endangered, Endangered or Conservation Dependent under the EPBC Act. A biodiversity summary for this region is also available. For more information please see: www.environment.gov.au/heritage/anhat/index.html Limitations • ANHAT currently contains information on the distribution of over 30,000 Australian taxa. This includes all mammals, birds, reptiles, frogs and fish, 137 families of vascular plants (over 15,000 species) and a range of invertebrate groups. Groups notnot yet yet covered covered in inANHAT ANHAT are notnot included included in in the the list. list. • The data used come from authoritative sources, but they are not perfect. All species names have been confirmed as valid species names, but it is not possible to confirm all species locations.