Relattvisttc Cosmology and Space Platforms*

Total Page:16

File Type:pdf, Size:1020Kb

Relattvisttc Cosmology and Space Platforms* RELATTVISTTC COSMOLOGY AND SPACE PLATFORMS* Remo Ruffini ** Institute for Advanced Study, Princeton, New Jersey John Archibald Wheeler Joseph Henry Laboratories, Princeton University, Princeton, New Jersey ABSTRACT Einstein's standard 1915 general relativity or geometrodynamics introduces a new dynamical participant on the scene of physics : geometry. Nowhere did the dynamics of geometry originally show up more impressively than in the expansion of the Universe. Today the role of curved space geometry, both static and dynamic, lends itself to investigation from space platforms or from the ground, or both, in many other contexts; among them, discussed here, are : properties of a superdense or neutron star; pulsar physics; collapse of a star with big dense core to a superdense star in a supernova event, or complete collapse to a black hole; physics of the black hole; galactic centers, jets, and quasi-stellar sources; gravitational radiation; Misner's mixmaster model of the universe; the primordial fireball radiation; the time-scale of the expansion of the Universe; the Universe as a lens, magnifying the apparent diameter of a far-away galaxy; the mystery of the missing matter; the formation of galaxies; reaching out via radiation receptors for more information on the physics of these phenomena; and finally the solar system itself as a testing ground for relativity including the traditional three tests of relativity; the retardation of light as it passes close to the Sun on its way to Venus and back; relativistic effects in planetary motion and searches via corner reflectors on the Moon for relativistic effects in the motion of the Moon, as predicted by Baierlein. * Expanded version of the lecture given at the Colloquium. ** ESRO-NASA Postdoctoral Fellow. 45 TABLE OF CONTENTS 1. INTRODUCTION 48 1.1 The Double Challenge - more Precision in Known Effects; the Search for New Eflfects .. 48 1.2 Space from Riemann to Einstein 48 1.3 The Local Character of Gravitation 49 1.4 Tide-producing Acceleration and Spacetime Curvature 49 1.5 Spacetime vs Space 50 1.6 Curvature and Density 50 1.7 Einstein's Equation Connecting Curvature with Density 51 2. THE PHYSICS OF A SUPERDENSE STAR 52 2.1 Results of Newtonian Treatment 54 2.2 Equilibrium Configurations for General Relativity 54 2.3 Scalar Tensor Theory and Equilibrium Configurations 56 2.4 Equation of State 57 3. PULSARS 62 3.1 Pulsars as Neutron Stars 64 3.2 The Crust and Interior of a Neutron Star 68 4. SUPERNOVAE 70 5. BLACK HOLES '.. 72 5.1 Collapse of a Spherically Symmetrical Cloud of Dust 73 5.2 The Kruskal Diagram 77 5.3 "NoBounce" 80 5.4 Small Departures from Spherical Symmetry 84 5.5 Rotation and the Kerr Geometry 87 5.6 Energy Sent Out when Mass Falls In 95 5.7 Final Outcome of Collapse of a Rotating Body 96 5.8 Search for Black Holes and their Effects 98 6. QUASI-STELLAR OBJECTS 99 7. GRAVITATIONAL RADIATION 101 7.1 Angular Distribution of Gravitational Radiation 108 7.2 Detector of Gravitational Radiation 116 7.3 Bar as Multiple-Mode Detector 118 7.4 Earth Vibrations as Detectors of Gravitational Waves 119 7.5 Seismic Response of Earth to Gravitational Radiation in the One-Hertz Region 120 7.6 Changes in Solar System Distances Not Adequate as Detectors of Gravitational Waves. 121 7.7 Sources of Gravitational Radiation 121 7.7.1 Spinning Rod 121 7.7.2 SpinningStar 122 7.7.3 Double Star System. 127 7.7.4 Pulsating Neutron Star 127 7.8 Splash of Gravitational Radiation 132 7.9 Low-Frequency Part of Splash Radiation 133 7.10 Radiation in Elliptical Orbits Treated as a Succession of Pulses 136 46 7.11 Fallinto Schwarzschild Black Hole 136 7.12 Radiation from Gravitational Collapse 139 7.13 Earthquakes and Meteorites 139 7.14 Microscopic Processes 141 7.15 Primordial Gravitational Radiation 141 8. MISNER'S MTXMASTER MODEL OF THE UNIVERSE 143 9. THE PRIMORDIAL COSMIC FIREBALL RADIATION 148 9.1 Observations at Microwave Wavelengths from Mountain Altitudes 149 9.2 Temperature from Population of Excited Molecular States 150 9.3 Rocket Measurement of Radiation in the Millimetre Range 151 9.4 Decoupling and Isotropy 151 10. THE TIME-SCALE OF EXPANSION OF THE UNIVERSE 153 11. THE UNIVERSE AS A LENS, MAGNIFYING THE APPARENT DIAMETER OF A FAR-AWAY GALAXY 155 12. THE MYSTERY OF THE MISSING MATTER 158 13. FORMATION OF GALAXIES 158 14. REACHING OUT VIA RADIATION RECEPTORS FOR MORE INFORMATION. 159 15. THE TRADITIONAL THREE TESTS OF RELATIVITY 159 16. THE RETARDATION OF LIGHT AS IT PASSES BY THE SUN ON ITS WAY TO AND RETURN FROM VENUS 160 17. RELATIVISTIC EFFECTS IN PLANETARY MOTIONS 161 18. SEARCH VIA CORNER REFLECTORS ON THE MOON FOR RELATIVISTIC EFFECTS IN THE MOTION OF THE MOON PREDICTED BY BAIERLEIN. 162 19. SOME OTHER TIES BETWEEN RELATIVISTIC ASTROPHYSICS AND EXPERI­ MENTS ON SPACE PLATFORMS 163 ACKNOWLEDGMENT 163 REFERENCES 164 47 1. INTRODUCTION 1.1 THE DOUBLE CHALLENGE: MORE PRECISION IN KNOWN EFFECTS: THE SEARCH FOR NEW EFFECTS " ...the opinion seems to have got abroad, that in a few years all the great physical constants will have been approximately estimated, and that the only occupation which will then be left to men of science will be to carry on these measurements to another place of decimals ". These words were pronounced by James Clerk Maxwell at the inauguration of the Devonshire (Cavendish) Physical Laboratory at Cambridge1. Decades later Albert A. Michelson made the idea of " the search for the next decimal place " even more famous to a still wider audience. This great tradition of precision physics flourishes still more actively in our own time, thanks not least to the development of the atomic clock, radar, the Môssbauer effect and the laser. Hopes are high that within a few years we shall have tests, with greatly improved accuracy, of the three famous predictions of general relativity, the precession of the orbit of Mercury, the bending of light by the Sun and the red shift of light from the Sun; at present none of these effects is reliably established with a precision better than 10 per cent. Ideas for these and other precision tests of Einstein's theory today receive more attention from more skilled experimenters than ever before. Measure known effects with improved precision; or explore for new effects. Those who prefer the one activity find relativity as challenging as those who prefer the other. The reason is clear. Einstein's standard 1915 geometrodynamics makes new predictions-not only about the numbers but also about the nature of physics. The geometry of space is dynamic. The Universe is closed 2. The Universe starts its life unbelievably small, reaches a maximum dimension and recontracts. It under­ goes complete gravitational collapse. In many ways a similar gravitational collapse overtakes certain stars with big dense cores. This collapse terminates in some cases (" supernova events ") with the formation of a neutron star. In other cases, where the star core is more massive, the collapse goes to completion. A black hole is formed. Given such a black hole, one has no way, even in principle, of measuring or even defining — one believes — how many baryons and leptons this object contains. In this sense one thinks of the law of conservation of baryons (and leptons) as being transcended in the phenomenon of complete collapse. Black holes formed in the gravitational collapse of stars with big dense cores are dotted here and there about this and other galaxies, if present expectations are correct. A star in the final stages of collapse to a neutron star or a black hole is a powerful source of gravitational radiation : waves in the geometry of space. Gravitational radiation also emerges with great strength from two compact masses in close gravitational interaction, whether the two objects are neutron stars or black holes, or one of each. 1.2 SPACE FROM RIEMANN TO EINSTEIN Space itself, until Bernhard Riemann's Gôttingen inaugural lecture3 of 10 June 1854, could be viewed as an ideal Euclidean perfection standing unmoved high above the battles of matter and energy. Einstein translated Riemann's vision of a dynamic geometry into clear-cut mathematical terms. Einstein geometrodynamics has withstood test and attack for over half a century. In the conception of Riemann and Einstein space tells matter how to move. But matter in turn tells space how to curve. Only so can the principle of action and reaction be upheld ! In a revolution, chained-up space broke loose and ceased to be the passive arena for physics. It became an active participant. The agent of this revolution, the Einstein who endowed geometry with a life of its own, also established rules for the governance of this new dynamic entity. Those rules tell us what we have now known for a decade, the structure of an edifice more magnificent than space : superspace. Superspace is the rigid and per­ fect arena, infinite in number of dimensions, in which the geometry of the Universe executes its dyna­ mic changes : expansion, vibration, undulation, attainment of maximum dimensions, recontraction and collapse. Important as it is to mention superspace for a fuller perspective of what Einstein's geome­ trodynamics is today, it is also true that one can dispense with mention of superspace so long as one looks apart, as we shall here, from quantum fluctuations in the geometry of space, and from the quan­ tum effects that dominate the final stages of gravitational collapse. Classical geometrodynamics is rich enough as a field of investigation! 48 1.3 THE LOCAL CHARACTER OF GRAVITATION4 Matter gets its moving orders from spacetime; and spacetime is curved by matter : these are the two central principles of classical general relativity.
Recommended publications
  • [email protected] PROF. REMO RUFFINI and PROF. ROY
    PROF. REMO RUFFINI AND PROF. ROY PATRICK KERR PRESENT THE LATEST RESULTS OF ICRANET RESEARCH TO PROF. STEPHEN HAWKING IN CAMBRIDGE, ENGLAND, AT THE INSTITUTE DAMTP AND AT THE INSTITUTE OF ASTRONOMY OF THE UNIVERSITY OF CAMBRIDGE IN ENGLAND Professor Remo Ruffini, Director of ICRANet, and Professor Roy Patrick Kerr, the discoverer of the world famous "Black Hole Kerr metric" and appointed professor “Yevgeny Mikhajlovic Lifshitz - ICRANet Chair”, have had a 4 days intensive meeting at the University of Cambridge, both at DAMTP and at the Institute of Astronomy, with Professor Stephen Hawking (see photos: 1, 2 e 3) and the resident scientists: they illustrated recent progress made by scientists of ICRANet. The presentation, can be seen on www.icranet.org/documents/Ruffini-Cambridge2017.pdf, includes: - GRB 081024B and GRB 140402A: two additional short GRBs from binary neutron star mergers, by Y. Aimuratov, R. Ruffini, M. Muccino, et al.; Ap.J in press. This ICRANet activity presents the evidence of two new short gamma-ray bursts (S-GRBs) from the mergers of neutron stars binaries forming a Kerr black hole. The existence of a common GeV emission precisely following the black hole formation has been presented. Yerlan Aimuratov is a young scientist from the ICRANet associated University in Alamaty Kazakistan. A free-available version of the article can be found on: https://arXiv.org/abs/1704.08179 - X-ray Flares in Early Gamma-ray Burst Afterglow, by R. Ruffini, Y. Wang, Y. Aimuratov, et al.; Ap.J submitted. This work analyses the early X-ray flares, followed by a "plateau" and then by the late decay of the X-ray afterglow, ("flare-plateau-afterglow phase") observed by Swift-XRT.
    [Show full text]
  • Global Program
    PROGRAM Monday morning, July 13th La Sapienza Roma - Aula Magna 09:00 - 10:00 Inaugural Session Chairperson: Paolo de Bernardis Welcoming addresses Remo Ruffini (ICRANet), Yvonne Choquet-Bruhat (French Académie des Sciences), Jose’ Funes (Vatican City), Ricardo Neiva Tavares (Ambassador of Brazil), Sargis Ghazaryan (Ambassador of Armenia), Francis Everitt (Stanford University) and Chris Fryer (University of Arizona) Marcel Grossmann Awards Yakov Sinai, Martin Rees, Sachiko Tsuruta, Ken’Ichi Nomoto, ESA (acceptance speech by Johann-Dietrich Woerner, ESA Director General) Lectiones Magistrales Yakov Sinai (Princeton University) 10:00 - 10:35 Deterministic chaos Martin Rees (University of Cambridge) 10:35 - 11:10 How our understanding of cosmology and black holes has been revolutionised since the 1960s 11:10 - 11:35 Group Picture - Coffee Break Gerard 't Hooft (University of Utrecht) 11:35 - 12:10 Local Conformal Symmetry in Black Holes, Standard Model, and Quantum Gravity Plenary Session: Mathematics and GR Katarzyna Rejzner (University of York) 12:10 - 12:40 Effective quantum gravity observables and locally covariant QFT Zvi Bern (UCLA Physics & Astronomy) 12:40 - 13:10 Ultraviolet surprises in quantum gravity 14:30 - 18:00 Parallel Session 18:45 - 20:00 Stephen Hawking (teleconference) (University of Cambridge) Public Lecture Fire in the Equations Monday afternoon, July 13th Code Classroom Title Chairperson AC2 ChN1 MHD processes near compact objects Sergej Moiseenko FF Extended Theories of Gravity and Quantum Salvatore Capozziello, Gabriele AT1 A Cabibbo Cosmology Gionti AT3 A FF3 Wormholes, Energy Conditions and Time Machines Francisco Lobo Localized selfgravitating field systems in the AT4 FF6 Dmitry Galtsov, Michael Volkov Einstein and alternatives theories of gravity BH1:Binary Black Holes as Sources of Pablo Laguna, Anatoly M.
    [Show full text]
  • Anousheh Ansari
    : Fort Worth Astronomical Society (Est. 1949) August 2010 Astronomical League Member At the August Meeting: Special Guest Anousheh Ansari Club Calendar – 2 – 3 Skyportunities Star Party & Club Reports – 5 House Calls by Ophiuchus – 6 Hubble’s Amazing Rescue – 8 Your Most Important Optics -- 9 Stargazers’ Diary – 11 1 Milky Way Over Colorado by Jim Murray August 2010 Sunday Monday Tuesday Wednesday Thursday Friday Saturday 1 2 3 4 5 6 7 Third Qtr Moon Challenge binary star for August: Make use of the New Viking 1 Orbiter 11:59 pm Moon Weekend for Alvan Clark 11 (ADS 11324) (Serpens Cauda) ceases operation better viewing at the 30 years ago Notable carbon star for August: Dark Sky Site Mars : Saturn O V Aquilae 1.9 Conjunction Mercury at greatest Challenge deep-sky object for August: eastern elongation Venus, Mars and Abell 53 (Aquila) Saturn all within a this evening binocular field of First in-flight New Moon view for the first 12 New Moon shuttle repair Neal Armstrong Weekend Weekend days of August. 15 years ago born 80 years ago 8 9 10 11 12 13 14 New Moon Moon at Perigee Double shadow (224,386 miles) transit on Jupiter 3RF Star Party 10:08 pm 1 pm 5:12am High in SSW Museum Star (A.T. @ 5:21 am) Party Venus : Saturn O . 3 of separation Perseid Meteor Watch Party @ 3RF New Moon Magellan enters Fairly consistent show Weekend orbit around Venus of about 60 per hour 20 years ago 15 16 17 18 19 20 21 Algol at Minima 2:45 am - In NE First Qtr Moon Total Solar 1:14 pm Eclipse in 7 years Nearest arc of totality takes in FWAS Grand Island NE St Joseph MO Meeting With Neptune @ Columbia MO Venus at greatest Opposition Anousheh Algol at Minima eastern elongation N of Nashville TN 11:34pm Low In NE 5 am N of Charleston SC Ansari this evening 22 23 24 25 26 27 28 Full Moon Moon at Apogee 2:05 pm (252,518.miles) GATE CODES Smallest of 2010 1 am to the (within 11 hrs of apogee) DARK SKY SITE will be changed st September 1 BE SURE YOU ARE CURRENT WITH DUES to Astroboy’s Day Job Venus : Mars receive new codes O 2 Conjunction 29 31 30 Anousheh Ansari’s Mission Patch at right.
    [Show full text]
  • Staff, Visiting Scientists and Graduate Students 2011
    Staff, Visiting Scientists and Graduate Students at the Pescara Center December 2011 2 Contents ICRANet Faculty Staff……………………………………………………………………. p. 17 Adjunct Professors of the Faculty .……………………………………………………… p. 35 Lecturers…………………………………………………………………………………… p. 72 Research Scientists ……………………………………………………………………….. p. 92 Short-term Visiting Scientists …………………………………………………………... p. 99 Long-Term Visiting Scientists …………………………………………………………... p. 117 IRAP Ph. D. Students ……………………………………………………………………. p. 123 IRAP Ph. D. Erasmus Mundus Students………………………………………………. p. 142 Administrative and Secretarial Staff …………………………………………………… p. 156 3 4 ICRANet Faculty Staff Belinski Vladimir ICRANet Bianco Carlo Luciano University of Rome “Sapienza” and ICRANet Einasto Jaan Tartu Observatory, Estonia Novello Mario Cesare Lattes-ICRANet Chair CBPF, Rio de Janeiro, Brasil Rueda Jorge A. University of Rome “Sapienza” and ICRANet Ruffini Remo University of Rome “Sapienza” and ICRANet Vereshchagin Gregory ICRANet Xue She-Sheng ICRANet 5 Adjunct Professors Of The Faculty Aharonian Felix Albert Benjamin Jegischewitsch Markarjan Chair Dublin Institute for Advanced Studies, Dublin, Ireland Max-Planck-Institut für Kernphysis, Heidelberg, Germany Amati Lorenzo Istituto di Astrofisica Spaziale e Fisica Cosmica, Italy Arnett David Subramanyan Chandrasektar- ICRANet Chair University of Arizona, Tucson, USA Chakrabarti Sandip P. Centre for Space Physics, India Chardonnet Pascal Université de la Savoie, France Chechetkin Valeri Mstislav Vsevolodich Keldysh-ICRANet Chair Keldysh institute
    [Show full text]
  • Lecture 3 Evolution of X-Ray Binaries.Pptx
    Evolution of X-ray binaries Rudy Wijnands Anton Pannekoek Institute for Astronomy University of Amsterdam 30 May 2017 Bologna, Italy Evolution of a binary • Many stars are in binary systems • Stellar evolution can be significantly altered due to mass loss and mass transfer • Binary orbit can expand or shrink considerably during the evolution – Conservative or non-conservative mass transfer Conservative mass transfer • Total mass is conserved – Mtotal = m1 + m2 = constant • Total angular moment is conserved – Consider only Jorbit as Jspin<< Jorbit • Then one can proof that • If more massive star transfers mass – dm1/dt < 0 and m1 > m2 – Then P and a decreases until masses become equal for minimum P and a à runaway Roche-lobe mass transfer! – If mass transfer continues, then orbit expands again Non-conservative mass transfer • General case • What happens if either mass or angular moment are not conserved? – Mass is not conserved when • Mass transfer and loss through stellar wind • Very rapid Roche-lobe overflow – Receiving star cannot accrete all mass and mass is loss through L2 point – Angular moment is not conserved when • Magnetic braking through stellar wind – Wind is forced to co-rotate at large distance with the rotation of the star • Gravitational radiation for close compact binaries • E.g., wind from primary escapes system § dm1/dt < 0, and dm2/dt = 0, • General case for mass transfer in circular orbits § With KJ the change in angular moment § Conservative mass transfer: § Stellar wind loss case: Evolution of a binary • Many stars
    [Show full text]
  • CURRICULUM VITAE: Dr Richard Ignace
    CURRICULUM VITAE: Dr Richard Ignace Address: Department of Physics & Astronomy Office of Undergraduate Research College of Arts & Sciences Honors College EAST TENNESSEE STATE UNIVERSITY EAST TENNESSEE STATE UNIVERSITY Johnson City, TN 37614 Johnson City, TN 37614 Email: [email protected] [email protected] Web: faculty.etsu.edu/ignace www.etsu.edu/honors/ug research Phone/Fax: (423) 439-6904 / (423) 439-6905 (423) 439-6073 / (423) 439-6080 EDUCATION Ph.D. in Astronomy, University of Wisconsin 1996 M.S. in Physics, University of Wisconsin 1994 M.S. in Astronomy, University of Wisconsin 1993 B.S. in Astronomy, Indiana University 1991 POSITIONS HELD Aug 2016–present, Consultant, Tri-Alpha Energy Jan 2015–present, Director of Undergraduate Research Activities, East Tennessee State University Aug 2013–present, Full Professor: East Tennessee State University Aug 2007–Jul 2013, Associate Professor: East Tennessee State University Aug 2003–Jul 2007, Assistant Professor: East Tennessee State University Sep 2002–Jul 2003, Assistant Scientist: University of Wisconsin Aug 1999–Aug 2002, Visiting Assistant Professor: University of Iowa Nov 1996–Aug 1999, Postdoctoral Research Assistant: University of Glasgow SELECTED PROFESSIONAL ACTIVITIES Involved with service to discipline, institution, and community As Director of Undergraduate Research & Creative Activities, I administrate grant programs and activ- ities that support undergraduate scholarship, plus advocate for undergraduate research. Successful with publishing scholarly articles and competing for grant funding; author of the astron- omy textbook “Astro4U: An Introduction to the Science of the Cosmos,” of the popular astronomy book “Understanding the Universe,” and co-editor of the conference proceedings “The Nature and Evolution of Disks around Hot Stars” Principal organizer for STELLAR POLARIMETRY: FROM BIRTH TO DEATH, Jun 2011; and THE NATURE AND EVOLUTION OF DISKS AROUND HOT STARS, Jul 2004.
    [Show full text]
  • Jet Propulsion Laboratory ANNUAL REPORT Tonight, on the Planet Mars, the United States of America Made History
    National Aeronautics and Space Administration 2 0 1 2 Jet Propulsion Laboratory ANNUAL REPORT Tonight, on the planet Mars, the United States of America made history. The successful landing of Curiosity. President Barack Obama Cover: One of the first views from Mars Curiosity shortly after landing, captured by a fish-eye lens on one of the rover’s front hazard-avoid- ance cameras. Inside Cover: The team in mission control erupts in joy when Curiosity’s first picture reaches Earth. This page: Tiny moon Tethys (upper left) dwarfed by Saturn and its rings, as captured by the Cassini spacecraft. 2 Director’s Message Far page: A colorful bow shock in dust clouds sur- 6 Exploring Mars rounding the giant star Contents Zeta Ophiuchi, imaged 16 Planetary Ventures by the Spitzer Space Telescope. 26 The Home Planet 34 Astronomy and Physics 40 Interplanetary Network 46 Science and Technology 52 Public Engagement 58 Achieving Excellence Can it get any better than this? That would have been an excellent question to ask me the night of August 5, 2012. And I know what my answer would have been: It’s hard to imagine how. Of course, the defining moment for JPL in 2012 was the amaz- ing landing of Mars Science Laboratory’s Curiosity rover that Sunday evening. After all the hard work of design and fabrication Director’s Message Director’s and testing, and redesign as the launch slipped by two years, there was nothing to compare to standing in mission control on the arrival evening and watching as the spacecraft executed its incredibly complex landing sequence that ended with the rover safe on the Red Planet’s surface.
    [Show full text]
  • GEORGE HERBIG and Early Stellar Evolution
    GEORGE HERBIG and Early Stellar Evolution Bo Reipurth Institute for Astronomy Special Publications No. 1 George Herbig in 1960 —————————————————————– GEORGE HERBIG and Early Stellar Evolution —————————————————————– Bo Reipurth Institute for Astronomy University of Hawaii at Manoa 640 North Aohoku Place Hilo, HI 96720 USA . Dedicated to Hannelore Herbig c 2016 by Bo Reipurth Version 1.0 – April 19, 2016 Cover Image: The HH 24 complex in the Lynds 1630 cloud in Orion was discov- ered by Herbig and Kuhi in 1963. This near-infrared HST image shows several collimated Herbig-Haro jets emanating from an embedded multiple system of T Tauri stars. Courtesy Space Telescope Science Institute. This book can be referenced as follows: Reipurth, B. 2016, http://ifa.hawaii.edu/SP1 i FOREWORD I first learned about George Herbig’s work when I was a teenager. I grew up in Denmark in the 1950s, a time when Europe was healing the wounds after the ravages of the Second World War. Already at the age of 7 I had fallen in love with astronomy, but information was very hard to come by in those days, so I scraped together what I could, mainly relying on the local library. At some point I was introduced to the magazine Sky and Telescope, and soon invested my pocket money in a subscription. Every month I would sit at our dining room table with a dictionary and work my way through the latest issue. In one issue I read about Herbig-Haro objects, and I was completely mesmerized that these objects could be signposts of the formation of stars, and I dreamt about some day being able to contribute to this field of study.
    [Show full text]
  • Supernova Star Maps
    Supernova Star Maps Which Stars in the Night Sky Will Go Su pernova? About the Activity Allow visitors to experience finding stars in the night sky that will eventually go supernova. Topics Covered Observation of stars that will one day go supernova Materials Needed • Copies of this month's Star Map for your visitors- print the Supernova Information Sheet on the back. • (Optional) Telescopes A S A Participants N t i d Activities are appropriate for families Cre with children over the age of 9, the general public, and school groups ages 9 and up. Any number of visitors may participate. Location and Timing This activity is perfect for a star party outdoors and can take a few minutes, up to 20 minutes, depending on the Included in This Packet Page length of the discussion about the Detailed Activity Description 2 questions on the Supernova Helpful Hints 5 Information Sheet. Discussion can start Supernova Information Sheet 6 while it is still light. Star Maps handouts 7 Background Information There is an Excel spreadsheet on the Supernova Star Maps Resource Page that lists all these stars with all their particulars. Search for Supernova Star Maps here: http://nightsky.jpl.nasa.gov/download-search.cfm © 2008 Astronomical Society of the Pacific www.astrosociety.org Copies for educational purposes are permitted. Additional astronomy activities can be found here: http://nightsky.jpl.nasa.gov Star Maps: Stars likely to go Supernova! Leader’s Role Participants’ Role (Anticipated) Materials: Star Map with Supernova Information sheet on back Objective: Allow visitors to experience finding stars in the night sky that will eventually go supernova.
    [Show full text]
  • IRAP Phd Relativistic Astrophysics Ph.D
    the International IRAP PhD Relativistic Astrophysics Ph.D. The field of relativistic astrophysics has become one of the fastest pro- gressing fields of scientific devel- opment. This is due to the fortunate inter- action of a vast number of inter- national observational and exper- imental facilities in space, on the ground, underground, in the polar ice caps, and in the deep ocean, supported by a powerful theoreti- cal framework based on Einstein’s theory of general relativity and rel- ativistic quantum field theory. In 1995, the International Center for Relativistic Astrophysics in Rome (ICRA) initiated an Interna- tional Network of Centers in the field of Relativistic Astrophysics (ICRANet) which has this year ac- quired the status of International Organization. The ICRANet com- bines the research powers of lead- ing institutions in the Americas, Australia, Asia and Europe. The coordinating center is located in the town of Pescara, Italy. In parallel with these activities, the International Relativistic Astro- physics Ph.D. Program (IRAP PhD) has been created with the goal of training a highly qualified number of Ph.D. students in this exciting field of research. So far, the par- ticipating institutions are: ETH Zurich, Freie Universität Berlin, Observatoire de la Côte d’Azur, Université de Nice-Sophia An- tipolis, Università di Roma “La Sapienza”, Université de Savoie. The IRAP-PhD is granted by all these institutions. Each program cycle lasts three years. The cours- es and related scientific activities cover a broad range of scientific topics including the mathematical and geometrical structure of space- time, relativistic field theories of fundamental interactions both at the classical and quantum levels, astronomical and astrophysical ob- servational techniques, and the as- sociated phenomenological and theoretical descriptions.
    [Show full text]
  • Stars, Constellations, and Dsos [50 Pts]
    Reach for the Stars B – KEY Bonus (+1) TRAPPIST-1 Part I: Stars, Constellations, and DSOs [50 pts] 1. Kepler’s SNR 2. Tycho’s SNR 3. M16 (Eagle Nebula) 4. Radiation pressure (wind) from young stars 5. Cas A 6. Extinction (from interstellar dust) 7. 30 Dor 8. [T10] Tarantula Nebula 9. LMC 10. Sgr A* 11. Gravitational interaction with orbiting stars (based on movement over time) 12. M42 (Orion Nebula) 13. [T8] Trapezium 14. (Charles) Messier 15. NGC 7293 (Helix Nebula) –OR– M57 (Ring Nebula) 16. TP-AGB (thermal pulse AGB) 17. Binary system –OR– stellar winds –OR– stellar rotation –OR– magnetic fields 18. Geminga 19. [T4] Jets from pulsar spin poles 20. X-ray 21. NGC 3603 22. Among the most massive & luminous stars known 23. T Tauri 24. FUors (FU Orionis stars) 25. NGC 602 26. Open cluster 27. LMC –AND– SMC 28. Irregular 29. Tidal forces –OR– gravity of MW 30. M1 (Crab Nebula) 31. PWN (pulsar wind nebula) 32. X-ray 33. M17 (Omega Nebula) 34. Omega Nebula –OR– Swan Nebula –OR– Checkmark Nebula –OR– Horseshoe Nebula 35. NGC 6618 36. Zeta Ophiuchi 37. Bow shock (from moving quickly through the ISM) 38. It “wobbles” across the sky (moves perpendicular to overall proper motion) 39. Procyon (α CMi) 40. Mizar –AND– Alcor 41. Mizar 42. Pollux (β Gem) 43. [T5] High rotational velocity 44. Altair (α Aql) –OR– Regulus (α Leo) –OR– Vega (α Lyr) 45. Polaris (α UMi) 46. Precession 47. Binary with observed Doppler shift of spectral lines 48. Beta Cephei variable (β Cep) 49.
    [Show full text]
  • Making the Invisible Visible: a History of the Spitzer Infrared Telescope Facility (1971–2003)/ by Renee M
    MAKING THE INVISIBLE A History of the Spitzer Infrared Telescope Facility (1971–2003) MONOGRAPHS IN AEROSPACE HISTORY, NO. 47 Renee M. Rottner MAKING THE INVISIBLE VISIBLE A History of the Spitzer Infrared Telescope Facility (1971–2003) MONOGRAPHS IN AEROSPACE HISTORY, NO. 47 Renee M. Rottner National Aeronautics and Space Administration Office of Communications NASA History Division Washington, DC 20546 NASA SP-2017-4547 Library of Congress Cataloging-in-Publication Data Names: Rottner, Renee M., 1967– Title: Making the invisible visible: a history of the Spitzer Infrared Telescope Facility (1971–2003)/ by Renee M. Rottner. Other titles: History of the Spitzer Infrared Telescope Facility (1971–2003) Description: | Series: Monographs in aerospace history; #47 | Series: NASA SP; 2017-4547 | Includes bibliographical references. Identifiers: LCCN 2012013847 Subjects: LCSH: Spitzer Space Telescope (Spacecraft) | Infrared astronomy. | Orbiting astronomical observatories. | Space telescopes. Classification: LCC QB470 .R68 2012 | DDC 522/.2919—dc23 LC record available at https://lccn.loc.gov/2012013847 ON THE COVER Front: Giant star Zeta Ophiuchi and its effects on the surrounding dust clouds Back (top left to bottom right): Orion, the Whirlpool Galaxy, galaxy NGC 1292, RCW 49 nebula, the center of the Milky Way Galaxy, “yellow balls” in the W33 Star forming region, Helix Nebula, spiral galaxy NGC 2841 This publication is available as a free download at http://www.nasa.gov/ebooks. ISBN 9781626830363 90000 > 9 781626 830363 Contents v Acknowledgments
    [Show full text]