Effects of the Zebra Mussel on Nitrogen Dynamics and the Microbial Community at the Sediment-Water Interface

Total Page:16

File Type:pdf, Size:1020Kb

Effects of the Zebra Mussel on Nitrogen Dynamics and the Microbial Community at the Sediment-Water Interface AQUATIC MICROBIAL ECOLOGY Vol. 21: 187-194.2000 Published March 31 Aquat Microb Ecol 1 Effects of the zebra mussel on nitrogen dynamics and the microbial community at the sediment-water interface Peter J. Lavrentyevll*, Wayne S. ~ardner~l*, Longyuan Yang3 'University of Michigan. Cooperative Institute for Limnology and Ecosystem Research. 2200 Bonisteel Boulevard. Ann Arbor. Michigan 48109. USA 2National Oceanographic Atmospheric Administration, Great Lakes Environmental Research Laboratory, 2205 Commonwealth Boulevard, Ann Arbor, Michigan 48105, USA 'Chinese Academy of Sciences, Nanjing Institute of Geography and Limnology, 73 East Beijing Road, Nanjing, Jiangsu 21008, PR China ABSTRACT: A flow-through expenment was conducted on intact cores of sedunents from Saginaw Bay, Lake Huron, to examine how trophic interactions between filter-feeding bivalve mussels and microbial populations could affect nitrogen dynamics at the sediment-water interface. The zebra mus- sels used in this experiment removed a large proportion of protozoa and phytoplankton from the over- lying water, particularly heterotrophic nanoplankton (up to 82 %), while bacterial population~showed less change. A 3-fold decrease in the protozoan to bacterial carbon ratio corresponded to a 2.5-fold increase in relative ammonium removal rates as estimated from the dark loss of '5N-ammonium. Excre- tion by the bivalves also increased net ammonium flux to the water, thus elevating the total calculated area1 ammonium removal rates to about 6-fold over rates observed in the control treatment. These data suggest that filter-feedng bivalves may significantly affect nitrogen transformation rates near the sed- iment-water interface by excreting ammonium and altering the microbial food web structure at the sediment-water interface. KEY WORDS: Nitrogen . Microbial food web . Sediment-water interface . Bivalve mussels INTRODUCTION If oxygen is present, as often is the case in shallow waters, a portion of ammonium may be oxidized to The sediment-water interface is a region of active nitrate (Ward 1986). In turn, the nitrate may be com- biological and biogeochernical processes, such as labile pletely or partially denitrified to nitrogen gas in adja- organic matter biodegradation and ammonium pro- cent sites (Seitzinger 1988). Understanding the mecha- duction in shallow coastal systems. Under such condi- nisms that control the extent of N transformations at tions, kinetic diffusion-reaction models based on equi- the sediment-water interface is important, because libration of ammonium between the sediments and these processes can affect the amount of mineralized N pore water do not adequately predict actual ammo- that is ultimately available to primary producers or lost nium flux into overlying waters (Ullman & Aller 1989). through denitrification. Trophic cascades involving bacterivorous protozoa can affect community N regeneration rates (Suzuki et Present addresses: al. 1996) and bacterial community structure in the water 'University of Akron, Department of Biology, Akron, Ohio 44325-3908, USA. E-mail: [email protected] column (Jiirgens & Giide 1994). Furthermore, plank- "University of Texas at Austin, Marine Science Institute, 750 tonic bacterivorous protozoa can inhibit the biogeo- Channel View Drive, Port Aransas, Texas 78373, USA chemical process of nitrification, directly by reducing 0 Inter-Research 2000 188 Aquat Microb Ecol21: 187-194,2000 bacterial numbers and indirectly by forcing bacteria to MATERIAL AND METHODS grow in colonies, whereas predation by larger zoo- plankton diminishes these effects (Lavrentyev et al. Material for this study was collected from Saginaw 1997). The important role of the bottom-dwelling pro- Bay, a large (about 82 km long and 42 km wide) bay tozoa in consuming heterotrophic bacterial production extending off the western edge of Lake Huron. The (e.g. Bak et al. 1995) supports the idea that similar cas- shallow (1 to 3.5 m depth) inner bay receives large cading trophic effects on nitrogen transformation may inflows of enriched waters from the Saginaw River. take place at the sediment-water interface. Here, rnicro- Since 1991, the zebra mussel has heavily infested the organisms are involved in complex interactions with inner bay (Nalepa et al. 1995). other benthic organisms that have significant effects Intact cores of sediments and the overlying water on nitrogen transformations (Dame et al. 1984, 1991, were collected by SCUBA divers from a site near Au Henriksen & Kemp 1988). Gres Point (43'56'N, 83 "52'W) on June 30, 1995. One of these organisms is the zebra mussel Dreis- These samples were taken using 76 mm internal diam- sena polymorpha, an invasive filter-feeding bivalve that eter plastic tubes. Simultaneously, several pebbles col- alters the structure of food webs in shallow areas by onized by the zebra mussel were collected for experi- fiitering particies (e.g. Naiepa et al. 1995) and excret- mentai additions. Severai 20 i carboys or surface water ing nutrients (Gardner et al. 1995b. Binelli et al. 1997). from the same site were collected to supply a flow- In this study, we examined how trophic interactions, through system. The samples were transported to the induced by zebra mussels, can modify the microbial laboratory in insulated coolers within a few hours after food web structure and nitrogen transformations at the collection. sediment-water interface. The sedirnents were placed in a system consisting Studying trophic interactions and nutrient transfor- of the cores (in the original collection tubes), a clear mations involving microorganisms at the sediment- polycarbonate vessel with intake lake water, a Techni- water interface presents methodological difficulties. con peristaltic pump, and an outflow collection vessel The use of a I5N tracer is necessary to study N dynam- (Fig. 1). This laminar flow system is an improved and ics because of close coupling between ammonium re- larger version of the flow-cell described earlier (Gard- generation, nitrification, and denitrification. The mass ner et al. 1991).It was designed with an 0-ring seal and analysis techniques for 15N require large sample vol- plunger that could be lowered to the desired position umes and involve multi-step sample preparations that without disturbing the surface sedirnents. The overflow increase the risk of contamination. The physical, che- tube released water as the plunger was positioned but mical and biological nature of the sedimentary matrix was closed during operation. Water was pumped over is impossible to replicate in the laboratory; yet, the the sediment surface at a rate of 1 m1 rnin-l. maintenance of this structure is crucial to many ben- The pebbles holding the zebra mussels were of dif- thic processes (Miller-Way & Twilley 1996).The neces- ferent size and shape and had large amounts of peri- sity to maintain sediment integrity during an experi- phyton on them. Mussels were removed from the peb- mental incubation huts the application of conventional bles by cutting the byssal threads with a razor blade size-fractionation and dilution techniques that are com- monly used to modify food web structure in planktonic Hand'e Overflow tube Inflow - 0 studies. Further, the presence of meroplanktonic pro- tozoa, which are able to migrate freely between sedi- ments and the water column, may greatly diminish the Outflow effects of experimental manipulations with inlet water in such studies. +- 0-ring The purpose of this study was to examine how trophic + Lake interactions between filter-feeding bivalve mussels and water I microbial populations could change nitrogen dynamics in controlled experimental systems using intact sedi- ments. To simulate a trophic cascade, we used the ri zebra mussel as a 'biological particle filter' in a sedi- ment core continuous flow cell. We used this approach in combination with high performance liquid chromato- U graphic analysis of ammonium concentration and atom Intake water Collection vessel % 15N to test the hypothesis that cascading trophic Fig. 1. The continuous flow through system. The diameter of effects involving bacterivorous protists affect nitrogen the core was 76 mm. The flow rate for the unfiltered water transformation at the sediment-water interface. was 1 m1 mix' Lavrentyev et al.: Casce~dlng effects on N dynamics 189 and rinsed with bay water to remove periphyton before passage across the dark core should not have ex- they were used in the experiment. Two adult mussels, ceeded that occurring in the inlet water held under shell length 22.3 mm * 0.69 SE, were added to each light/dark conditions. Therefore, the observed differ- triplicate core. By the time the system had reached ences in 15NH4+concentrations between the inflow and steady state, the zebra mussels remained either on the outflow waters were assumed to result from microbial top of the sedlments or attached to the side of the processes at or near the sediment-water interface. core tube above the sediment surface. Thus, they were Results from the flow-through core system, without positioned to filter overlying water rather than pore (incubation Days 2, 3, and 4) and with (incubation water. All zebra mussels remained alive during the Days 5, 6, and 7) I5NH4+additions, were used to cal- experiment and were still filtering water at the end of culate ammonium removal rates. Successive results the incubation. from each core were averaged before (n = 3) and after The cores and the inflow water from the sample site (n = 3) addition of I5NH4+to yield core-specific
Recommended publications
  • Zebra Mussels Georgia Is Home to Several Species of Mussels, but Thankfully Zebra Mussels Currently Are Not One of Them
    Zebra Mussels Georgia is home to several species of mussels, but thankfully zebra mussels currently are not one of them. A small mollusk having “zebra” stripes, it has spread throughout the country and has been described by the USGS as the “poster child of biological invasions”. In areas where it becomes established it can pose significant negative Photo: A Benson - USGS ecological and economic impacts through biofouling and outcompeting native species. Discoveries of Zebra Mussels Zebra Mussel Identification Though zebra mussels (Dreissena polymorpha) have been found in several states since their introduction via ballast water into the Great Lakes, the species has thus far not been found in Georgia. Zebra mussels can be confused with other mussel species, particularly the non-native quagga mussel (Dreissena bugensis). The guide below can help further distinguish the species. Should you have questions regarding identification of a mussel you have found, or if you suspect you have found a zebra mussel, RETAIN THE SPECIMEN and IMMEDIATELY contact your regional Georgia DNR Wildlife Resources Division Fisheries Office. Source: USGS https://nas.er.usgs.gov/queries/factsheet.aspx?speciesid=5 So, What Harm do Zebra Mussels Cause? A notorious mussel introduced into the Great Lakes via ballast water a few decades ago, zebra mussels have since spread to several states throughout the U.S. Though small in size, the mussel has been known to cause enormous-sized problems, most notably its biofouling capabilities that often result in clogged water lines for power plants, industrial facilities, and other commercial entities. Such biofouling has resulted in significant economic costs to several communities.
    [Show full text]
  • Risk Assessment for Three Dreissenid Mussels (Dreissena Polymorpha, Dreissena Rostriformis Bugensis, and Mytilopsis Leucophaeata) in Canadian Freshwater Ecosystems
    C S A S S C C S Canadian Science Advisory Secretariat Secrétariat canadien de consultation scientifique Research Document 2012/174 Document de recherche 2012/174 National Capital Region Région de la capitale nationale Risk Assessment for Three Dreissenid Évaluation des risques posés par trois Mussels (Dreissena polymorpha, espèces de moules dreissénidées Dreissena rostriformis bugensis, and (Dreissena polymorpha, Dreissena Mytilopsis leucophaeata) in Canadian rostriformis bugensis et Mytilopsis Freshwater Ecosystems leucophaeata) dans les écosystèmes d'eau douce au Canada Thomas W. Therriault1, Andrea M. Weise2, Scott N. Higgins3, Yinuo Guo1*, and Johannie Duhaime4 Fisheries & Oceans Canada 1Pacific Biological Station 3190 Hammond Bay Road, Nanaimo, BC V9T 6N7 2Institut Maurice-Lamontagne 850 route de la Mer, Mont-Joli, QC G5H 3Z48 3Freshwater Institute 501 University Drive, Winnipeg, MB R3T 2N6 4Great Lakes Laboratory for Fisheries and Aquatic Sciences 867 Lakeshore Road, PO Box 5050, Burlington, Ontario L7R 4A6 * YMCA Youth Intern This series documents the scientific basis for the La présente série documente les fondements evaluation of aquatic resources and ecosystems in scientifiques des évaluations des ressources et des Canada. As such, it addresses the issues of the écosystèmes aquatiques du Canada. Elle traite des day in the time frames required and the problèmes courants selon les échéanciers dictés. documents it contains are not intended as Les documents qu‟elle contient ne doivent pas être definitive statements on the subjects addressed considérés comme des énoncés définitifs sur les but rather as progress reports on ongoing sujets traités, mais plutôt comme des rapports investigations. d‟étape sur les études en cours. Research documents are produced in the official Les documents de recherche sont publiés dans la language in which they are provided to the langue officielle utilisée dans le manuscrit envoyé au Secretariat.
    [Show full text]
  • Quagga/Zebra Mussel Control Strategies Workshop April 2008
    QUAGGA AND ZEBRA MUSSEL CONTROL STRATEGIES WORKSHOP CONTENTS LIST OF TABLES ......................................................................................................................... iv LIST OF FIGURES .........................................................................................................................v BACKGROUND .............................................................................................................................1 OVERVIEW AND OBJECTIVE ....................................................................................................4 WORKSHOP ORGANIZATION ....................................................................................................5 LOCATION ...................................................................................................................................10 WORKSHOP PROCEEDINGS – THURSDAY, APRIL 3, 2008 ................................................10 AwwaRF Welcome ............................................................................................................10 Introductions, Logistics, and Workshop Objectives ..........................................................11 Expert #1 - Background on Quagga/Zebra Mussels in the West .......................................11 Expert #2 - Control and Disinfection - Optimizing Chemical Disinfections.....................12 Expert #3 - Control and Disinfection .................................................................................13 Expert #4 - Freshwater Bivalve Infestations;
    [Show full text]
  • RAPID RESPONSE PLAN for the ZEBRA MUSSEL (Dreissena Polymorpha) in MASSACHUSETTS
    RAPID RESPONSE PLAN FOR THE ZEBRA MUSSEL (Dreissena polymorpha) IN MASSACHUSETTS Prepared for the Massachusetts Department of Conservation and Recreation 251 Causeway Street, Suite 700 Boston, MA 02114-2104 Prepared by ENSR 2 Technology Park Drive Westford, MA 01886 June 2005 RAPID RESPONSE PLAN FOR THE ZEBRA MUSSEL (Dreissena polymorpha) IN MASSACHUSETTS Species Taxonomy and Identification....................................................................................................1 Species Origin and Geography..............................................................................................................1 Species Ecology.....................................................................................................................................2 Detection of Invasion .............................................................................................................................3 Species Confirmation.............................................................................................................................4 Quantifying the Extent of Invasion.........................................................................................................4 Species Threat Summary ......................................................................................................................5 Communication and Education..............................................................................................................5 Quarantine Options................................................................................................................................7
    [Show full text]
  • Zebra Mussels As Ecosystem Engineers: Their Contribution to Habitat Structure and Influences on Benthic Gastropods
    ZEBRA MUSSELS AS ECOSYSTEM ENGINEERS: THEIR CONTRIBUTION TO HABITAT STRUCTURE AND INFLUENCES ON BENTHIC GASTROPODS NIRVANI PERSAUD Marist College, Poughkeepsie, NY 12601 USA MENTOR SCIENTIST: DR. JORGE GUTIERREZ Institute of Ecosystem Studies, Millbrook, NY 12545 USA Abstract. In this study, the fractal properties of zebra mussel, Dreissena polymorpha, beds and the size and abundance of co-occurring gastropods were assessed. Data collected support the hypothesis that zebra mussels increase the roughness of intertidal bedrock. An analysis of plaster casts, made from rocks removed from Norrie Point (Hudson River, river mile 86), showed that the fractal dimension (FD) of the rocky substrates significantly decreases if mussels are removed (mussel covered rock mean FD: 1.43, bare rock mean FD:1.26). Fractal dimension values obtained from rocks with zebra mussels ranged between 1.03 and 1.52. However, variation in the size and density of snails did not correlate with the fractal dimension of these rocks. Further investigation comparing snail colonization rates in rocks with and without zebra mussels (or structural mimics) will help to elucidate whether modification of the fractal properties of the rocky substrate by ecosystem engineers affect gastropod abundance and distribution. INTRODUCTION Ecosystem engineers are defined as organisms that control the availability of resources to other organisms by causing physical state changes in biotic or abiotic materials (Jones et al. 1994, 1997). Many exotic species engineer the environment by altering its three-dimensional structure and, thus, the magnitude of a variety of resource flows (Crooks 2002). Aquatic mollusks are particularly important as engineers because of their ability to produce shells that often occur at high densities and persist over for long times (Gutiérrez et al.
    [Show full text]
  • Zebra and Quagga Mussels
    SPECIES AT A GLANCE Zebra and Quagga Mussels Two tiny mussels, the zebra mussel (Dreissena poly- morpha) and the quagga mussel (Dreissena rostriformis bugensis), are causing big problems for the economy and the environment in the west. Colonies of millions of mussels can clog underwater infrastructure, costing Zebra mussel (Actual size is 1.5 cm) taxpayers millions of dollars, and can strip nutrients from nearly all the water in a lake in a single day, turning entire ecosystems upside down. Zebra and quagga mussels are already well established in the Great Lakes and Missis- sippi Basin and are beginning to invade Western states. It Quagga mussel takes only one contaminated boat to introduce zebra and (Actual size is 2 cm) quagga mussels into a new watershed; once they have Amy Benson, U.S. Geological Survey Geological Benson, U.S. Amy been introduced, they are virtually impossible to control. REPORT THIS SPECIES! Oregon: 1-866-INVADER or Oregon InvasivesHotline.org; Washington: 1-888-WDFW-AIS; California: 1-916- 651-8797 or email [email protected]; Other states: 1-877-STOP-ANS. Species in the news Learning extensions Resources Oregon Public Broadcasting’s Like a Mussel out of Water Invasion of the Quagga Mussels! slide coverage of quagga mussels: www. show: waterbase.uwm.edu/media/ opb.org/programs/ofg/episodes/ cruise/invasion_files/frame.html view/1901 (Only viewable with Microsoft Internet Explorer) Why you should care How they got here and spread These tiny invaders have dramatically changed Zebra and quagga mussels were introduced to the entire ecosystems, and they cost taxpayers billions Great Lakes from the Caspian and Black Sea region of dollars every year.
    [Show full text]
  • Zebra Mussel (Dreissena Polymorpha (Pallas, 1771)
    Zebra Mussel (Dreissena polymorpha (Pallas, 1771) The zebra mussel, Dreissena polymorpha, was originally described by the famous Russian scientist and explorer Pyotr Simon Pallas from a population in a tributary of the Ural River in the Caspian Sea Basin (Pallas 1771). The common name of these mussels is derived from the zebra-like stripes on their shells. Once adult mussels (sexually mature) are attached to a substrate by their byssal threads, they generally remain there for life; this is particularly true for larger mussels. Aided by the expansion of commercial boat traffic through newly constructed canals, this species spread west from Russia into most of Europe during the 19th century. Zebra mussels were found for the first time in North America in 1988 in Lake St. Clair - the waterbody connecting Lake Huron with Lake Erie (Hebert et al. 1989). Estimated to be 2-3 years old, they were likely transported there as planktonic (i.e., floating) larvae or as attached juveniles or adults in the freshwater ballast of a transatlantic ship. Since their introduction, zebra mussels have spread throughout all the Great Lakes, the Hudson, Ohio, Illinois, Tennessee, Mississippi and Arkansas rivers, as well as other streams, lakes and rivers, which altogether cross 21 states and the provinces of Quebec and Ontario. The zebra mussel has become the most serious non-indigenous biofouling pest ever to be introduced into North American freshwater systems. It has the ability to tolerate a wide range of conditions and is extremely adaptable. It has the potential to significantly alter the ecosystem in any body of water it inhabits.
    [Show full text]
  • Zebra Mussel
    Charles Ramcharan Ohio Sea Grant David Dennis COMMON NAME: Zebra mussel SCIENTIFIC NAME: Dreissena polymorpha (Pallas 1769) NATIVE DISTRIBUTION: Freshwater rivers and lakes in eastern Europe and western Asia. U.S. distribution: The species was first discovered in Lake St. Clair (between Lake Huron and Lake Erie) in 1988 and since has been found in 23 states. Individuals have spread rapidly throughout the Great Lakes region and in the large navigable rivers of the eastern Mississippi drainage including the Mississippi, Tennessee, Cumberland, Ohio, U.S. Geological Survey Geological U.S. Arkansas and Illinois rivers. The species can also be found in the Hudson River and Lake Champlain along the Atlantic Coast. Barge traffic in these large rivers assisted in dispersing the zebra mussel during its first few years in the U.S. Much of this recent dispersal has been attributed to recreational activities such as boating and fishing. Habitat: Zebra mussels prefer large lakes and rivers with plenty of flow passing over them, which ensures a steady supply of algae. It was first thought that they needed to attach to a firm bottom. However, scientists have found zebra mussels on sandy-bottomed portions of the Great Lakes where they attach to each other. Life cycle: Generally, individuals are small, averaging only about 2 to 3 cm (about 1 inch) in length. The maximum size is approximately 5 cm (2 inches). The life span of the zebra mussel is four to five years. Females generally reproduce in their second year. Eggs are expelled by the females and fer- tilized outside the body by the males; this process usually occurs in the spring or summer.
    [Show full text]
  • Quagga Mussel (Dreissena Bugensis)
    Zebra Mussel (Dreissena polymorpha) Quagga Mussel (Dreissena bugensis) What are they & where are they found? The Zebra mussel and its clammy cousin the quagga mussel are small freshwater bivalve mollusks named after their distinct zebra‐like stripes. They can be found in freshwater rivers, lakes, reservoirs and brackish water habitats. FACT: Quagga mussels were named after the “Quagga”, an extinct relative of the zebra. (http://en.wikipedia.org/wiki/Quagga) What do they look like? These revolting relatives are frequently mistaken for one another due to their similar appearance and habitat preferences. Like their namesakes, both zebra and quagga mussels have alternating dark (brown, black, or green) and light (yellow, white, or cream) banding on their shells. However, color patterns vary widely between individuals of both species. Shell stripes may be bold, faint, horizontal, vertical or absent from the mussel all together – talk about phenotypic plasticity! Both mussels are relatively small (< 1.5 inches) and generally D‐ shaped. Quagga mussels have a rounded appearance, with a convex ventral (hinge) surface, and two asymmetrical shell halves that meet to form a curved line. Zebra mussels have a more triangular shaped appearance, with a flat ventral surface, and two symmetrical shell halves that meet to form a straight line. Zebra and quagga mussels are relatively short‐lived species (2‐5 years), but they more than make up for this attribute by being extremely prolific breeders. Adult females of both species can produce 30,000 to 1 million eggs per year. Microscopic planktonic larvae, called veligers, float freely in the water column for 2‐5 weeks before settling onto a suitable substrate to feed and mature.
    [Show full text]
  • Mussel Mania – Cause and Effect Lesson Plan
    1 + Examining Cause and Effect Aquatic Invasive Species Grade Level: 3-8 Summary: Students become native mussels, invasive zebra mussels, perch, walleye, or “plankton movers” in a game Activity Duration: designed to help them understand how harmful invasive species Warm-up: 15 minutes can affect the balance within aquatic ecosystems. Activity: 20 minutes Wrap-up: 10 minutes Topic: Impacts of Aquatic Invasive Species Overview: Theme: Cause and Effect in Human and Natural Systems Warm-Up : Understanding Interactions Freshwater Mussels and Invasive Species Objectives: Activity: Simulating aquatic The students will: habitats and introducing an 1. Explain why native freshwater mussels are important to invasive species ecosystems. Wrap-Up 2. Identify the effects of zebra mussels on other aquatic organisms. 3. Describe three ways that zebra mussels can take over habitat in Minnesota waters. 4. List two ways in which human activity has introduced zebra mussels and two ways that people spread zebra mussels in Minnesota waters. Tools for building science 5. Describe the life cycle of a freshwater mussel, including literacy and understanding the how the larval forms of many mussel species require fish nature of science hosts during a stage of their development. This lesson is adapted from “Fishing: Get in the Habitat! Leader’s Guide, Lesson 3:7 – Mussel Mania” with permission from the MN DNR MinnAqua Program. http://tinyurl.com/mussel-mania http://undsci.berkeley.edu/ YouTube Video Series Introducing the Next Generation Science Standards http://tinyurl.com/ajy3fhq Cause and Effect - Science Institute 2014-2015 2 Next Generation Science Standards Crosscutting Concepts: Case and Effect Cause and effect is often the next step in science, after a discovery of patterns or events that occur together with regularity.
    [Show full text]
  • Frequently Asked Questions About the Zebra Mussel
    Frequently Asked Questions about the Zebra Mussel What is the scientific name? The scientific name is Dreissena polymorpha. What is it? Zebra mussels are a type of mollusk, which also include a wide variety of organisms such as squids, octopuses, snails, oysters, scallops, and clams. What does it look like? Mussels are also called 'bivalves'. This means they have two shells or valves (a right valve and a left valve). The zebra mussel gets its name because of the dark, striped pattern on each valve. Usually the shell is a light color (tan, beige) with the zig-zag stripes. However, some are almost completely all brown and the stripes are not pronounced. Even more rare are those nearly all light colored with little striping. How big do they get? Generally, zebra mussels are small, averaging about an inch long. Two inches is approximately the maximum size. Their life span is four to five years. Where are they from? Zebra mussels are native to freshwater rivers and lakes in Eastern Europe and western Asia. In 1769, Pallas first described populations of this species from the Caspian Sea and Ural River in Russia. When were they first found in the United States? Zebra mussels were first discovered in Lake St. Clair in 1988. Lake St. Clair is located east of Detroit, Michigan between Lake Huron and Lake Erie. Where are they? Zebra mussel spread rapidly throughout the Great Lakes region and in the large navigable rivers of the eastern Mississippi drainage including the Mississippi, Tennessee, Cumberland, Ohio, Arkansas, and Illinois rivers. They can also be found in the Hudson River on the Atlantic Slope.
    [Show full text]
  • First Record of the Brackish Water Dreissenid Bivalve Mytilopsis Leucophaeata in the Northern Baltic Sea
    Aquatic Invasions (2006) Volume 1, Issue 1: 38-41 DOI 10.3391/ai.2006.1.1.9 © 2006 The Author(s) Journal compilation © 2006 REABIC (http://www.reabic.net) This is an Open Access article Research article First record of the brackish water dreissenid bivalve Mytilopsis leucophaeata in the northern Baltic Sea Ari O. Laine1*, Jukka Mattila2 and Annukka Lehikoinen2 1Finnish Institute of Marine Research, P.O. Box 2, FIN-00561 Helsinki, Finland 2STUK - Radiation and Nuclear Safety Authority, Research and Environmental Surveillance, Laippatie 4, P.O. Box 14, FIN-00881 Helsinki, Finland *Corresponding author E-mail: [email protected] Received 11 January 2006; accepted in revised form 23 January 2006 Abstract Conrad’s false mussel, Mytilopsis leucophaeata has been found in the central Gulf of Finland, which is the first record of this brackish water dreissenid species in the northern Baltic Sea. In 2003 a strong recruitment of young dreissenid bivalves was observed and in 2004 dense assemblages consisting of adult M. leucophaeata were discovered in an area affected by cooling water discharges from a nuclear power plant. The introduction of the species has obviously taken place via ballast water transport, resulting in a successful establishment in a favourable warm water environment. Based on the wide salinity tolerance, M. leucophaeata might also colonize areas inhabited by functionally similar bivalves if able to survive the cold winter conditions. Key words: Mytilopsis leucophaeata, Dreissenidae, invasions, Baltic Sea, cooling waters Introduction population has probably gone extinct. Recently, a local but obviously established population was Conrad’s false mussel, Mytilopsis leucophaeata found in river Warnow estuary, northern (Conrad 1831) (Bivalvia, Dreissenidae) is Germany (Darr and Zettler 2000).
    [Show full text]