Neoproterozoic Glacial Origin of the Great Unconformity 2
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
2018-5 PGS Newsletter
SEPTEMBER 2018 PGS NEWSLETTER VOL LXXI NO 1 September 12, 2018 Tectonics of the Social hour 6:00 PM Midcontinent: Looking Dinner 7:00 PM West (Geologically) Program 8:00 PM Dinner costs from Pittsburgh $30.00 per person $10.00 student member Across the Craton Reservations Email your name and number of attendees in your party to: pgsreservations @gmail.com You can also reserve and pay via PayPal at: https://www.pittsburgh geologicalsociety.org/ Dr. Stephen Marshak Location Foster’s Restaurant University of Illinois, Urbana-Champaign Foster Plaza Bldg. 10 Green Tree PA Deadline for reservations is noon on Monday, Sept. 10. Speaker Abstract Geologists have long held a fascination with and magnetotelluric arrays) that serve to mountain belts, because of their scenic beauty, characterize variations in crustal thickness, the and because they offer cross sections that intensity of faulting, and the relationship of provide access to rocks once deep in the crust. seismicity to structure; 2) structure-contour Datable igneous and metamorphic rocks in maps that help characterize the nature of mountain belts provide a basis for developing a displacement in fault-and-fold zones; 3) chronology of tectonism. The USA subsidence curves that constrain the timing of Midcontinent region doesn't display such basin subsidence; 4) a digital elevation model drama. These interior plains, which extend (DEM) of the Great Unconformity (the contact from Pittsburgh west to the Rockies, are part of between Precambrian and Paleozoic strata), North America's cratonic platform, a region in that gives a clearer image of structural relief which crust that formed over 1 billion years ago between basins and domes; 5) results from a lies buried beneath a veneer of nearly flat-lying thermochronologic study of the Great Phanerozoic sedimentary strata. -
Grand Canyon
U.S. Department of the Interior Geologic Investigations Series I–2688 14 Version 1.0 4 U.S. Geological Survey 167.5 1 BIG SPRINGS CORRELATION OF MAP UNITS LIST OF MAP UNITS 4 Pt Ph Pamphlet accompanies map .5 Ph SURFICIAL DEPOSITS Pk SURFICIAL DEPOSITS SUPAI MONOCLINE Pk Qr Holocene Qr Colorado River gravel deposits (Holocene) Qsb FAULT CRAZY JUG Pt Qtg Qa Qt Ql Pk Pt Ph MONOCLINE MONOCLINE 18 QUATERNARY Geologic Map of the Pleistocene Qtg Terrace gravel deposits (Holocene and Pleistocene) Pc Pk Pe 103.5 14 Qa Alluvial deposits (Holocene and Pleistocene) Pt Pc VOLCANIC ROCKS 45.5 SINYALA Qti Qi TAPEATS FAULT 7 Qhp Qsp Qt Travertine deposits (Holocene and Pleistocene) Grand Canyon ၧ DE MOTTE FAULT Pc Qtp M u Pt Pleistocene QUATERNARY Pc Qp Pe Qtb Qhb Qsb Ql Landslide deposits (Holocene and Pleistocene) Qsb 1 Qhp Ph 7 BIG SPRINGS FAULT ′ × ′ 2 VOLCANIC DEPOSITS Dtb Pk PALEOZOIC SEDIMENTARY ROCKS 30 60 Quadrangle, Mr Pc 61 Quaternary basalts (Pleistocene) Unconformity Qsp 49 Pk 6 MUAV FAULT Qhb Pt Lower Tuckup Canyon Basalt (Pleistocene) ၣm TRIASSIC 12 Triassic Qsb Ph Pk Mr Qti Intrusive dikes Coconino and Mohave Counties, Pe 4.5 7 Unconformity 2 3 Pc Qtp Pyroclastic deposits Mr 0.5 1.5 Mၧu EAST KAIBAB MONOCLINE Pk 24.5 Ph 1 222 Qtb Basalt flow Northwestern Arizona FISHTAIL FAULT 1.5 Pt Unconformity Dtb Pc Basalt of Hancock Knolls (Pleistocene) Pe Pe Mၧu Mr Pc Pk Pk Pk NOBLE Pt Qhp Qhb 1 Mၧu Pyroclastic deposits Qhp 5 Pe Pt FAULT Pc Ms 12 Pc 12 10.5 Lower Qhb Basalt flows 1 9 1 0.5 PERMIAN By George H. -
'Great Unconformity' on the North China Craton Using New Detrital
1 Measuring the ‘Great Unconformity’ on the North China Craton using new 2 detrital zircon age data 3 4 Tianchen He1*, Ying Zhou1, Pieter Vermeesch1, Martin Rittner1, Lanyun Miao2, Maoyan Zhu2, Andrew 5 Carter3, Philip A. E. Pogge von Strandmann1,3 & Graham A. Shields1 6 7 1 Department of Earth Sciences, University College London, Gower Street, London WC1E 6BT, UK 8 2 State Key Laboratory of Palaeobiology and Stratigraphy, Nanjing Institute of Geology and 9 Palaeontology, Chinese Academy of Sciences, Nanjing 210008, China 10 3 Department of Earth and Planetary Sciences, Birkbeck College, University of London, Malet Street, 11 London WC1E 7HX, UK 12 *Corresponding author (e-mail: [email protected]) 13 14 Abstract: New detrital zircon ages confirm that Neoproterozoic strata of the southeastern North China 15 Craton (NCC) are mostly of early Tonian age, but that the Gouhou Formation, previously assigned to 16 the Tonian, is Cambrian in age. A discordant hiatus of >150-300 million years occurs across the NCC, 17 spanning most of the late Tonian, Cryogenian, Ediacaran and early Cambrian periods. This widespread 18 unconformable surface is akin to the ‘Great Unconformity’ seen elsewhere in the world, and highlights 19 a major shift in depositional style from largely erosional, marked by low rates of net deposition, during 20 the mid-late Neoproterozoic to high rates of transgressive deposition during the mid-late Cambrian. 21 Comparison between age spectra for southeastern NCC and northern India are consistent with a 22 provenance affinity linking the NCC and East Gondwana by ~510 Ma. 23 24 Supplementary material: The full sample list and U-Pb data are available at: 25 26 It has long been recognized that the traditional Precambrian–Cambrian (Ediacaran–Cambrian) 27 boundary interval is characterized worldwide by low rates of deposition and/or a major unconformity, 28 known as the ‘Great Unconformity’ (Brasier & Lindsay 2001, Peters & Gaines 2012). -
The Meaning of the Great Unconformity and Sauk
JOURNAL OF CREATION 28(1) 2014 || PERSPECTIVES distinctive stratigraphic surface in The meaning the rock record.”1 The Great Unconformity is also of the Great considered a unique feature within Unconformity the last 900 Ma of uniformitarian time.2 The Tonto Group in the Grand and Sauk Canyon is also recognized as covering about half of North America and is Megasequence called the Sauk Megasequence,1 the bottom of six megasequences that Michael J. Oard supposedly account for sedimen- tation over North America. The Sauk sequence is well defined lithologically he Great Unconformity, first on top of the upper crust and locally defined in the Grand Canyon T on Precambrian sedimentary and in 1869, separates the Cambrian metasedimentary rocks. However, Tapeats Sandstone from the underlying the other five sequences are based Precambrian rocks (the geological on many assumptions, such as fossil column and timescale are used for dating and not lithology, and are discussion purposes only). There commonly missing large sections in is some confusion in the Grand North America (see below). Canyon in that there is a second major unconformity between the Precambrian sedimentary rocks and The Great Unconformity in the igneous and metamorphic rocks Montana and Wyoming (figure 1). The uniformitarian origin of the Great Unconformity is supposed I have observed the Great Un- to be slow denudation over about a conformity at several locations in billion years that resulted in a nearly Wyoming and Montana. Whereas flat planation surface. Then after the Great Unconformity is near the this denudation, a shallow marine bottom of 1,200 m of flat strata in the transgression deposited the Tapeats Grand Canyon, it occurs at the tops of Sandstone, Bright Angel Shale, and some mountain ranges in Wyoming Muav Limestone in a fining upward and Montana. -
Francis A. Macdonald
Francis A. Macdonald Professor of Geology Department of Earth Sciences 2111 Webb Hall University of California at Santa Barbara Santa Barbara, CA 93106 (857) 998-9993 [email protected] Education Ph.D. Earth and Planetary Sciences, Harvard University, Cambridge, MA, 2009. B.S. Geological and Planetary Sciences, California Institute of Technology, Pasadena, CA, 2001. Experience § Professor of Geology, University of California, Santa Barbara, CA, 2018-present. § Professor of Earth and Planetary Sciences, Harvard University, Cambridge, MA, 2017- 2018. § John L. Loeb Associate Professor of the Natural Sciences, Harvard University, Cambridge, MA, 2014-2017. § Associate Professor, Harvard University, Cambridge, MA, 2013-2014. § Assistant Professor, Harvard University, Cambridge, MA, 2009-2013. § Research Assistant, USGS Astrogeology, Flagstaff, AZ, 2004. § Lab Manager, Paleomagnetics Laboratory, Caltech, Pasadena, CA, 2002-2004. § Field Technician, Aguoron Paleoproterozoic Drilling Project, South Africa, 2002-2003. § Field Technician, Geophysical cruise ship, South Pacific, 2000-2001. § Research Assistant, Caltech, 1999-2000. Awards § Macelwene Medal (American Geophysical Union Early Career Award), 2019. § Reviewer Award, Geology, for consistently prompt, insightful, meticulous, and tactful reviews, 2015. § Donath Medal (Geological Society of America Young Scientist Award), 2014. § Star Family Prize for Excellence in Advising Award, Harvard College, 2012. § Ian Hamilton Golden Brunton Award, for excellence in field mapping, Caltech, 2001. Grants & Fellowships § NSF Frontier Research in Earth Systems: Do arc-continent collisions in the tropics set global climate state? 2019-present § NSF Sedimentary Geology and Paleontology: Collaborative Research: Did the formation of the Great Unconformity trigger oxygenation and the Cambrian explosion? 2018- present. § Inter-Continental Drilling Program (ICDP): Geological Research through Integrated Neoproterozoic Drilling, Ediacaran-Cambrian transition (GRIND-ECT) for scientific drilling in Brazil, Namibia, and South China. -
G E O L O G Y This Interpretive Site Is Located Near a Significant Geologic Boundary
G E O L O G Y This interpretive site is located near a significant geologic boundary. • You are standing approximately 450 feet west of a geologic contact called the “Great Unconformity” that By the beginning of the Paleozoic era, approximately 540 million years ago, the Precambrian‐age rocks had separates older Precambrian‐age rocks from younger Paleozoic‐age rocks. been eroded down to a nearly level surface. A seaway encroached from the west about 525 million years ago, • To the west (left) are metamorphic rocks of Precambrian age. As you drive toward Mount Rushmore, resulting in the accumulation of sedimentary rocks. The erosional surface between the Precambrian rocks and Precambrian‐age rocks include schist, amphibolite, quartzite, and granite. A large road cut in schist is 1.7 the younger, overlying Paleozoic rocks represents a break in time of approximately 1 billion years where rocks miles to the southwest. were not preserved. This break in time is called the “Great Unconformity.” It is marked below in the aerial • To the east are gently‐dipping younger sedimentary rocks of Paleozoic age. The road cut 0.2 miles to the east photo and is located on the hillside about 450 feet to the east‐northeast of this location. is in the Pahasapa Limestone. An outcrop of Pahasapa Limestone is also visible as a distant ridgeline N Stratobowl approximately 4 miles to the north. The Paleozoic and Tertiary sedimentary rocks deposited near this interpretive site include, from youngest to oldest: West Pahasapa Limestone Gravel deposit Minnelusa Formation -
Diachronous Development of Great Unconformities Before Neoproterozoic Snowball Earth
Diachronous development of Great Unconformities before Neoproterozoic Snowball Earth Rebecca M. Flowersa,1, Francis A. Macdonaldb, Christine S. Siddowayc, and Rachel Havraneka aDepartment of Geological Sciences, University of Colorado, Boulder, CO 80309; bEarth Science Department, University of California, Santa Barbara, CA 93106; and cDepartment of Geology, The Colorado College, Colorado Springs, CO 80903 Edited by Paul F. Hoffman, University of Victoria, Victoria, Canada, and approved March 6, 2020 (received for review July 30, 2019) The Great Unconformity marks a major gap in the continental precisely because the Great Unconformities mark a large gap in geological record, separating Precambrian basement from Phan- the rock record, the erosion history leading to their formation erozoic sedimentary rocks. However, the timing, magnitude, cannot be investigated directly by study of preserved units. spatial heterogeneity, and causes of the erosional event(s) and/ Past work leads to at least four general models for the timing or depositional hiatus that lead to its development are unknown. and magnitude of pre-Great Unconformity continental erosion, We present field relationships from the 1.07-Ga Pikes Peak batho- which are depicted in Fig. 1. Some have proposed major erosion lith in Colorado that constrain the position of Cryogenian and of the continents associated with assembly of the supercontinent Cambrian paleosurfaces below the Great Unconformity. Tavakaiv Rodinia and mantle upwelling below it prior to 850 Ma (Hy- sandstone injectites with an age of ≥676 ± 26 Ma cut Pikes Peak pothesis 1) or with the early diachronous breakup of Rodinia granite. Injection of quartzose sediment in bulbous bodies indi- between 850 and 717 Ma (Hypothesis 2) (10–17). -
Chapter 5. Paleozoic Invertebrate Paleontology of Grand Canyon National Park
Chapter 5. Paleozoic Invertebrate Paleontology of Grand Canyon National Park By Linda Sue Lassiter1, Justin S. Tweet2, Frederick A. Sundberg3, John R. Foster4, and P. J. Bergman5 1Northern Arizona University Department of Biological Sciences Flagstaff, Arizona 2National Park Service 9149 79th Street S. Cottage Grove, Minnesota 55016 3Museum of Northern Arizona Research Associate Flagstaff, Arizona 4Utah Field House of Natural History State Park Museum Vernal, Utah 5Northern Arizona University Flagstaff, Arizona Introduction As impressive as the Grand Canyon is to any observer from the rim, the river, or even from space, these cliffs and slopes are much more than an array of colors above the serpentine majesty of the Colorado River. The erosive forces of the Colorado River and feeder streams took millions of years to carve more than 290 million years of Paleozoic Era rocks. These exposures of Paleozoic Era sediments constitute 85% of the almost 5,000 km2 (1,903 mi2) of the Grand Canyon National Park (GRCA) and reveal important chronologic information on marine paleoecologies of the past. This expanse of both spatial and temporal coverage is unrivaled anywhere else on our planet. While many visitors stand on the rim and peer down into the abyss of the carved canyon depths, few realize that they are also staring at the history of life from almost 520 million years ago (Ma) where the Paleozoic rocks cover the great unconformity (Karlstrom et al. 2018) to 270 Ma at the top (Sorauf and Billingsley 1991). The Paleozoic rocks visible from the South Rim Visitors Center, are mostly from marine and some fluvial sediment deposits (Figure 5-1). -
Cenozoic Stratigraphy and Paleogeography of the Grand Canyon, AZ Amanda D'el
Pre-Cenozoic Stratigraphy and Paleogeography of the Grand Canyon, AZ Amanda D’Elia Abstract The Grand Canyon is a geologic wonder offering a unique glimpse into the early geologic history of the North American continent. The rock record exposed in the massive canyon walls reveals a complex history spanning more than a Billion years of Earth’s history. The earliest known rocks of the Southwestern United States are found in the Basement of the Grand Canyon and date Back to 1.84 Billion years old (Ga). The rocks of the Canyon can Be grouped into three distinct sets Based on their petrology and age (Figure 1). The oldest rocks are the Vishnu Basement rocks exposed at the Base of the canyon and in the granite gorges. These rocks provide a unique clue as to the early continental formation of North America in the early PrecamBrian. The next set is the Grand Canyon Supergroup, which is not well exposed throughout the canyon, But offers a glimpse into the early Beginnings of Before the CamBrian explosion. The final group is the Paleozoic strata that make up the Bulk of the Canyon walls. Exposure of this strata provides a detailed glimpse into North American environmental changes over nearly 300 million years (Ma) of geologic history. Together these rocks serve not only as an awe inspiring Beauty But a unique opportunity to glimpse into the past. Vishnu Basement Rocks The oldest rocks exposed within the Grand Canyon represent some of the earliest known rocks in the American southwest. John Figure 1. Stratigraphic column showing Wesley Paul referred to them as the “dreaded the three sets of rocks found in the Grand rock” Because they make up the walls of some Canyon, their thickness and approximate of the quickest and most difficult rapids to ages (Mathis and Bowman, 2006). -
Neoproterozoic Glacial Origin of the Great Unconformity
Neoproterozoic glacial origin of the Great Unconformity C. Brenhin Kellera,b,1, Jon M. Hussonc, Ross N. Mitchelld, William F. Bottkee, Thomas M. Gernonf, Patrick Boehnkeg,h, Elizabeth A. Belli, Nicholas L. Swanson-Hysellb, and Shanan E. Petersj aBerkeley Geochronology Center, Berkeley, CA 94709; bDepartment of Earth and Planetary Science, University of California, Berkeley, CA 94720; cSchool of Earth and Ocean Sciences, University of Victoria, Victoria, BC V8W 2Y2, Canada; dDepartment of Applied Geology, Curtin University, Perth, WA 6845, Australia; eSouthwest Research Institute, Boulder, CO 80302; fOcean and Earth Science, University of Southampton, Southampton SO17 1BJ, United Kingdom; gDepartment of the Geophysical Sciences, The University of Chicago, Chicago, IL 60637; hChicago Center for Cosmochemistry, Chicago, IL 60637; iDepartment of Earth, Planetary, and Space Sciences, University of California, Los Angeles, Los Angeles, CA 90095; and jDepartment of Geoscience, University of Wisconsin–Madison, Madison, WI 53706 Edited by Paul F. Hoffman, University of Victoria, Victoria, BC, Canada, and approved November 29, 2018 (received for review March 21, 2018) The Great Unconformity, a profound gap in Earth’s stratigraphic A Discontinuous Global Unconformity record often evident below the base of the Cambrian system, The extent and magnitude of secular variation in preserved sed- has remained among the most enigmatic field observations in iment abundance across the Proterozoic–Phanerozoic boundary Earth science for over a century. While long associated directly or were first quantified by Ronov et al. (ref. 4 and Dataset S2), esti- indirectly with the occurrence of the earliest complex animal fos- mating preserved sediment volume flux over the past 1.6 Gy from sils, a conclusive explanation for the formation and global extent mapped sedimentary basin areas and stratigraphic thicknesses. -
The Shinumo Quadrangle, Grand Canyon District, Arizona
DEPARTMENT OF THE INTERIOR UNITED STATES GEOLOGICAL SURVEY , ' ' ' *< ! !-" GEORGE OTIS SMITH, DIRECTOB BULLETIN 549 THE SHINUMO QUADRANGLE GRAND CANYON DISTRICT ARIZONA BY L. F. NOBLE WASHINGTON GOVERNMENT PRINTING OFFICE 1914 CONTENTS. Preface, by F. L. Kansome................................................. Introduction.............................................................. Location and geography................................................ Field work............................................................ Literature............................................................ Acknowledgments.........................................."............ Physiography of the Grand Canyon district................................. 15 Topography of the Shinumo quadrangle...................................... 2l Climate. .........=...................................................... 25 Vegetation............................................................... 27 Indian ruins.............................................................. 28 Geology.................................................................. 29 Age and character of the rocks.......................................... 29 . Series of rocks discriminated........................................... 31 Proterozoic rocks..................................................... I 32 Archean system.................................................... 32 Vishnu schist.................................................. 32 Name................................................... -
Young Earth Flood Geology in the Grand Canyon John H
Cedarville University DigitalCommons@Cedarville Science and Mathematics Faculty Publications Department of Science and Mathematics 3-2017 Young Earth Flood Geology in the Grand Canyon John H. Whitmore Cedarville University, [email protected] Follow this and additional works at: http://digitalcommons.cedarville.edu/ science_and_mathematics_publications Part of the Biblical Studies Commons, and the Geology Commons Recommended Citation Whitmore, John H., "Young Earth Flood Geology in the Grand Canyon" (2017). Science and Mathematics Faculty Publications. 355. http://digitalcommons.cedarville.edu/science_and_mathematics_publications/355 This Article is brought to you for free and open access by DigitalCommons@Cedarville, a service of the Centennial Library. It has been accepted for inclusion in Science and Mathematics Faculty Publications by an authorized administrator of DigitalCommons@Cedarville. For more information, please contact [email protected]. YOUNG EARTH FLOOD GEOLOGY IN THE GRAND CANYON by John Whitmore I grew up in a Christian home and was first attracted to encountered potential challenges between my faith and geology when my eighth-grade Earth Science class took a geology. In a paper I wrote for my freshman honors English weeklong field trip around Ohio collecting fossils. I went class on Darwin’s Origin of Species, I compromised. I tried on that trip again the next year and was hooked; I wanted to put evolution and millions of years within the Genesis to become a paleontologist. A year later, I traveled to the account. I wasn’t happy with this approach because I knew Grand Canyon for the first time. I’ll never forget looking Scripture didn’t clearly suggest such a view, but I didn’t know over the edge; I couldn’t believe something could be that what else to do.