Psychoacoustics: a Brief Historical Overview
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Modeling of the Head-Related Transfer Functions for Reduced Computation and Storage Charles Duncan Lueck Iowa State University
Iowa State University Capstones, Theses and Retrospective Theses and Dissertations Dissertations 1995 Modeling of the head-related transfer functions for reduced computation and storage Charles Duncan Lueck Iowa State University Follow this and additional works at: https://lib.dr.iastate.edu/rtd Part of the Electrical and Electronics Commons Recommended Citation Lueck, Charles Duncan, "Modeling of the head-related transfer functions for reduced computation and storage " (1995). Retrospective Theses and Dissertations. 10929. https://lib.dr.iastate.edu/rtd/10929 This Dissertation is brought to you for free and open access by the Iowa State University Capstones, Theses and Dissertations at Iowa State University Digital Repository. It has been accepted for inclusion in Retrospective Theses and Dissertations by an authorized administrator of Iowa State University Digital Repository. For more information, please contact [email protected]. INFORMATION TO USERS This mamiscr^t has been reproduced fFom the microfilin master. UMI films the text directly from the origmal or copy submitted. Thus, some thesis and dissertation copies are in typewriter face, while others may be from ai^ type of con^ter printer. Hie qnallQr of this repfodnction is dqiendent opon the quality of the copy submitted. Broken or indistinct print, colored or poor quality illustrations and photographs, prim bleedthroug^ substandard marginc^ and in^^rqper alignment can adverse^ affect rq)roduction. In the unlikely event that the author did not send UMI a complete manuscript and there are missing pages, these will be noted. Also, if unauthorized copyri^t material had to be removed, a note will indicate the deletion. Oversize materials (e.g^ maps, drawings, charts) are reproduced sectioning the original, beginning at the upper left-hand comer and continuing from left to light in equal sections with small overk^ Each original is also photogrs^hed in one exposure and is included in reduced form at the bade of the book. -
Chapter 5 Bioacoustics Approaches in Biodiversity Inventories
Chapter 5 Bioacoustics approaches in biodiversity inventories by Martin K. Obrist Swiss Federal Research Institute WSL, Biodiversity and Conservation Biology Zürcherstrasse 111, CH-8903 Birmensdorf, Switzerland Email: [email protected] Gianni Pavan Centro Interdisciplinare di Bioacustica e Ricerche Ambientali Dipartimento di Biologia Animale, Università di Pavia Via Taramelli 24, 27100 Pavia, Italy Email: [email protected] Jérôme Sueur Muséum national d'Histoire naturelle, Département Systématique et Evolution UMR 7205 CNRS OSEB, 45 rue Buffon, 75005 Paris, France Email: [email protected] Klaus Riede Zoologisches Forschungsmuseum Alexander Koenig Adenauerallee 160, 53113 Bonn, Germany Email: [email protected] Diego Llusia Fonoteca Zoológica, Museo Nacional de Ciencias Naturales (CSIC) José Gutierrez Abascal 2, 28006 Madrid, Spain Email: [email protected] Rafael Márquez Fonoteca Zoológica, Museo Nacional de Ciencias Naturales (CSIC) José Gutierrez Abascal 2, 28006 Madrid, Spain Email: [email protected] 68 Abstract Acoustic emissions of animals serve communicative purposes and most often contain species-specific and individual information exploitable to listeners, rendering bioacoustics predestined for biodiversity monitoring in visually inaccessible habitats. The physics of sound define the corner stones of this communicative framework, which is employed by animal groups from insects to mammals, of which examples of vocalisations are presented. Recording bioacoustic signals allows reproducible identification and documentation of species’ occurrences, but it requires technical prerequisites and behavioural precautions that are summarized. The storing, visualizing and analysing of sound recordings is illustrated and major software tools are shortly outlined. Finally, different approaches to bioacoustic monitoring are described, tips for setting up an acoustic inventory are compiled and a key for procedural advancement and a checklist to successful recording are given. -
The Musical Influences of Nature: Electronic Composition and Ornithomusicology
University of Huddersfield Repository McGarry, Peter The Musical Influences of Nature: Electronic Composition and Ornithomusicology Original Citation McGarry, Peter (2020) The Musical Influences of Nature: Electronic Composition and Ornithomusicology. Masters thesis, University of Huddersfield. This version is available at http://eprints.hud.ac.uk/id/eprint/35489/ The University Repository is a digital collection of the research output of the University, available on Open Access. Copyright and Moral Rights for the items on this site are retained by the individual author and/or other copyright owners. Users may access full items free of charge; copies of full text items generally can be reproduced, displayed or performed and given to third parties in any format or medium for personal research or study, educational or not-for-profit purposes without prior permission or charge, provided: • The authors, title and full bibliographic details is credited in any copy; • A hyperlink and/or URL is included for the original metadata page; and • The content is not changed in any way. For more information, including our policy and submission procedure, please contact the Repository Team at: [email protected]. http://eprints.hud.ac.uk/ Peter McGarry U1261720 The Musical Influences of Nature: 1 Electronic Music and Ornithomusicology University Of Huddersfield The School of Music, Humanities and Media Masters Thesis Peter McGarry The Musical Influences of Nature: Electronic Composition and Ornithomusicology Supervisor: Dr. Geoffery Cox Submitted: 23/12/2020 Peter McGarry U1261720 The Musical Influences of Nature: 2 Electronic Music and Ornithomusicology Abstract Zoomusicology is the study of animal sounds through a musical lens and is leading to a new era of sonic ideas and musical compositions. -
Sprachrohr Heft 58
Sprachrohr Heft 58 ‐ Juni 2012 Vorschau AIA‐DAGA 2013 3 DEGA aktuell 6. DEGA‐Symposium 11 Mitgliederversammlung 11 Tag gegen Lärm 19 Ehrungen Helmholtz‐Medaille 24 Lothar‐Cremer‐Preis 28 DEGA‐Studienpreis 30 Helmholtz‐Medaille für Weitere Ehrungen 31 Prof. Wolfgang Fasold Fachausschüsse / Fachgruppen Lothar‐Cremer‐Preis für Arbeitsring Lärm der DEGA 34 Dr. Franz Zotter Bau‐ und Raumakustik 35 Elektroakustik 35 Fahrzeugakustik 37 Hörakustik 39 Lärm: Wirkungen und Schutz 42 Musikalische Akustik 42 Physikalische Akustik 44 Strömungsakustik 44 Ultraschall 45 DEGA‐Akademie 47 Aktuelles in Kürze 49 Publikationen 54 Geschichte der Akustik: Mitglieder / Fördermitglieder 57 Impressum / Kontakte 61 Heft 4 erschienen herausgegeben von der Deutschen Gesellschaft für Akustik e.V. AIA‐DAGA 2013 Vorschau AIA‐DAGA 2013 Die AIA‐DAGA 2013 ist Teil der Kon‐ ferenzreihe „Euroregio” der European Acoustics Association (EAA) und umfasst die 39. Deutsche und .die 40 Italienische Jahrestagung für Akustik und wird unterstützt von der Österrei‐ chischen (AAA) und der Schweize‐ rischen Gesellschaft für Akustik (SGA‐ SSA) sowie der Landesagentur für Umwelt / Autonome Provinz Bozen Südtirol. Nach vier Tagungen in Österreich 1990, in der Schweiz 1998, in Frank‐ reich 2004 und in den Niederlanden AIA‐DAGA 2013 2009 setzt die DEGA damit die erfolg‐ reiche Reihe von Gemeinschaftstagun‐ Gemeinschaftstagung für Akustik gen mit benachbarten akustischen EAA Euroregio, 18.‐21. März 2013 Gesellschaften fort. Auch bei der AIA‐ DAGA 2013 werden die Organisatoren einschließlich: mit allen Kräften für eine attraktive • 40. Italienische Jahrestagung für und ereignisreiche Tagung sorgen. Akustik (AIA) So werden u. a. in sechs Plenarvorträ‐ • 39. Deutsche Jahrestagung für gen aktuelle Trends und künftige Ent‐ Akustik (DAGA) wicklungen zu zentralen Fragen der Akustik aufgezeigt. -
Acoustics & Ultrasonics
Dr.R.Vasuki Associate professor & Head Department of Physics Thiagarajar College of Engineering Madurai-625015 Science of sound that deals with origin, propagation and auditory sensation of sound. Sound production Propagation by human beings/machines Reception Classification of Sound waves Infrasonic audible ultrasonic Inaudible Inaudible < 20 Hz 20 Hz to 20,000 Hz ˃20,000 Hz Music – The sound which produces rhythmic sensation on the ears Noise-The sound which produces jarring & unpleasant effect To differentiate sound & noise Regularity of vibration Degree of damping Ability of ear to recognize the components Sound is a form of energy Sound is produced by the vibration of the body Sound requires a material medium for its propagation. When sound is conveyed from one medium to another medium there is no bodily motion of the medium Sound can be transmitted through solids, liquids and gases. Velocity of sound is higher in solids and lower in gases. Sound travels with velocity less than the velocity 8 of light. c= 3x 10 V0 =330 m/s at 0° degree Lightning comes first than thunder VT= V0+0.6 T Sound may be reflected, refracted or scattered. It undergoes diffraction and interference. Pitch or frequency Quality or timbre Intensity or Loudness Pitch is defined as the no of vibrations/sec. Frequency is a physical quantity but pitch is a physiological quantity. Mosquito- high pitch Lion- low pitch Quality or timbre is the one which helps to distinguish between the musical notes emitted by the different instruments or voices even though they have the same pitch. Intensity or loudness It is the average rate of flow of acoustic energy (Q) per unit area(A) situated normally to the direction of propagation of sound waves. -
Psychoacoustics Perception of Normal and Impaired Hearing with Audiology Applications Editor-In-Chief for Audiology Brad A
PSYCHOACOUSTICS Perception of Normal and Impaired Hearing with Audiology Applications Editor-in-Chief for Audiology Brad A. Stach, PhD PSYCHOACOUSTICS Perception of Normal and Impaired Hearing with Audiology Applications Jennifer J. Lentz, PhD 5521 Ruffin Road San Diego, CA 92123 e-mail: [email protected] Website: http://www.pluralpublishing.com Copyright © 2020 by Plural Publishing, Inc. Typeset in 11/13 Adobe Garamond by Flanagan’s Publishing Services, Inc. Printed in the United States of America by McNaughton & Gunn, Inc. All rights, including that of translation, reserved. No part of this publication may be reproduced, stored in a retrieval system, or transmitted in any form or by any means, electronic, mechanical, recording, or otherwise, including photocopying, recording, taping, Web distribution, or information storage and retrieval systems without the prior written consent of the publisher. For permission to use material from this text, contact us by Telephone: (866) 758-7251 Fax: (888) 758-7255 e-mail: [email protected] Every attempt has been made to contact the copyright holders for material originally printed in another source. If any have been inadvertently overlooked, the publishers will gladly make the necessary arrangements at the first opportunity. Library of Congress Cataloging-in-Publication Data Names: Lentz, Jennifer J., author. Title: Psychoacoustics : perception of normal and impaired hearing with audiology applications / Jennifer J. Lentz. Description: San Diego, CA : Plural Publishing, -
Investigation of the Time Dependent Nature of Infrasound Measured Near a Wind Farm Branko ZAJAMŠEK1; Kristy HANSEN1; Colin HANSEN1
Investigation of the time dependent nature of infrasound measured near a wind farm Branko ZAJAMŠEK1; Kristy HANSEN1; Colin HANSEN1 1 University of Adelaide, Australia ABSTRACT It is well-known that wind farm noise is dominated by low-frequency energy at large distances from the wind farm, where the high frequency noise has been more attenuated than low-frequency noise. It has also been found that wind farm noise is highly variable with time due to the influence of atmospheric factors such as atmospheric turbulence, wake turbulence from upstream turbines and wind shear, as well as effects that can be attributed to blade rotation. Nevertheless, many standards that are used to determine wind farm compliance are based on overall A-weighted levels which have been averaged over a period of time. Therefore the aim of the work described in this paper is to investigate the time dependent nature of unweighted wind farm noise and its perceptibility, with a focus on infrasound. Measurements were carried out during shutdown and operational conditions and results show that wind farm infrasound could be detectable by the human ear although not perceived as sound. Keywords: wind farm noise, on and off wind farm, infrasound, OHC threshold, crest factor I-INCE Classification of Subjects Number(s): 14.5.4 1. INTRODUCTION Wind turbine noise is influenced by atmospheric effects, which cause significant variations in the sound pressure level magnitude over time. In particular, factors causing amplitude variations include wind shear (1), directivity (2) and variations in the wind speed and direction. Wind shear, wind speed variations and yaw error (deviation of the turbine blade angle from optimum with respect to wind direction) cause changes in the blade loading and in the worst case, can lead to dynamic stall (3). -
A Layer Model of Sound Quality
3rd International Workshop on Perceptual Quality of Systems (PQS 2010) 6-8 September 2010, Bautzen, Germany A Layer Model of Sound Quality Jens Blauert 1, Ute Jekosch 2 1 Institute of Communication Acoustics, Ruhr-University Bochum, Germany 2 Chair for Communication Acoustics, Technical University Dresden, Germany [email protected] Abstract There is indeed a wide agreement that − in congruence with Sound-quality is a complex and multi-layered phenomenon the classical trialism of soul, body and mind − there are three [1]. When analysing or modelling the formation process of basic kinds of percepts that our perceptual world is essentially sound-quality judgements, a variety of quality elements and composed of. Following [7], they may be denoted feelings, quality features [2] have to be taken into account, whereby the things and concepts. actual relevance and salience of each of them is situation dependent. In this paper, we present some ideas with the aim • Feelings (e.g., hunger, fear, pain, sadness, joy) are of structuring the quality-formation process into different lay- linked to processes inside the human body (incl. ers according to the degree of abstraction involved. Depending subcutane ones) and they usually are also perceptu- ally localized just there. on this degree, different sets of references and evaluation and assessment methods have to be employed. • Things (sensations) are percepts which are related to Index Terms: sound-quality assessment, abstraction level the sensory organs. In audition we usually call them auditory -
L Atdment OFFICF QO9ENT ROOM 36
*;JiQYL~dW~llbk~ieira - - ~-- -, - ., · LAtDMENT OFFICF QO9ENT ROOM 36 ?ESEARC L0ORATORY OF RL C.f:'__ . /j16baV"BLI:1!S INSTITUTE 0i'7Cn' / PERCEPTION OF MUSICAL INTERVALS: EVIDENCE FOR THE CENTRAL ORIGIN OF THE PITCH OF COMPLEX TONES ADRIANUS J. M. HOUTSMA JULIUS L. GOLDSTEIN LO N OPY TECHNICAL REPORT 484 OCTOBER I, 1971 MASSACHUSETTS INSTITUTE OF TECHNOLOGY RESEARCH LABORATORY OF ELECTRONICS CAMBRIDGE, MASSACHUSETTS 02139 The Research Laboratory of Electronics is an interdepartmental laboratory in which faculty members and graduate students from numerous academic departments conduct research. The research reported in this document was made possible in part by support extended the Massachusetts Institute of Tech- nology, Research Laboratory of Electronics, by the JOINT SER- VICES ELECTRONICS PROGRAMS (U. S. Army, U. S. Navy, and U.S. Air Force) under Contract No. DAAB07-71-C-0300, and by the National Institutes of Health (Grant 5 PO1 GM14940-05). Requestors having DOD contracts or grants should apply for copies of technical reports to the Defense Documentation Center, Cameron Station, Alexandria, Virginia 22314; all others should apply to the Clearinghouse for Federal Scientific and Technical Information, Sills Building, 5285 Port Royal Road, Springfield, Virginia 22151. THIS DOCUMENT HAS BEEN APPROVED FOR PUBLIC RELEASE AND SALE; ITS DISTRIBUTION IS UNLIMITED. MASSACHUSETTS INSTITUTE OF TECHNOLOGY RESEARCH LABORATORY OF ELECTRONICS Technical Report 484 October 1, 1971 PERCEPTION OF MUSICAL INTERVALS: EVIDENCE FOR THE CENTRAL ORIGIN OF COMPLEX TONES Adrianus J. M. Houtsma and Julius L. Goldstein This report is based on a thesis by A. J. M. Houtsma submitted to the Department of Electrical Engineering at the Massachusetts Institute of Technology, June 1971, in partial fulfillment of the requirements for the degree of Doctor of Philosophy. -
Loudness Standards in Broadcasting. Case Study of EBU R-128 Implementation at SWR
Loudness standards in broadcasting. Case study of EBU R-128 implementation at SWR Carbonell Tena, Damià Curs 2015-2016 Director: Enric Giné Guix GRAU EN ENGINYERIA DE SISTEMES AUDIOVISUALS Treball de Fi de Grau Loudness standards in broadcasting. Case study of EBU R-128 implementation at SWR Damià Carbonell Tena TREBALL FI DE GRAU ENGINYERIA DE SISTEMES AUDIOVISUALS ESCOLA SUPERIOR POLITÈCNICA UPF 2016 DIRECTOR DEL TREBALL ENRIC GINÉ GUIX Dedication Für die Familie Schaupp. Mit euch fühle ich mich wie zuhause und ich weiß dass ich eine zweite Familie in Deutschland für immer haben werde. Ohne euch würde diese Arbeit nicht möglich gewesen sein. Vielen Dank! iv Thanks I would like to thank the SWR for being so comprehensive with me and for letting me have this wonderful experience with them. Also for all the help, experience and time given to me. Thanks to all the engineers and technicians in the house, Jürgen Schwarz, Armin Büchele, Reiner Liebrecht, Katrin Koners, Oliver Seiler, Frauke von Mueller- Rick, Patrick Kirsammer, Christian Eickhoff, Detlef Büttner, Andreas Lemke, Klaus Nowacki and Jochen Reß that helped and advised me and a special thanks to Manfred Schwegler who was always ready to help me and to Dieter Gehrlicher for his comprehension. Also to my teacher and adviser Enric Giné for his patience and dedication and to the team of the Secretaria ESUP that answered all the questions asked during the process. Of course to my Catalan and German families for the moral (and economical) support and to Ema Madeira for all the corrections, revisions and love given during my stay far from home. -
Separation of Vocal and Non-Vocal Components from Audio Clip Using Correlated Repeated Mask (CRM)
University of New Orleans ScholarWorks@UNO University of New Orleans Theses and Dissertations Dissertations and Theses Summer 8-9-2017 Separation of Vocal and Non-Vocal Components from Audio Clip Using Correlated Repeated Mask (CRM) Mohan Kumar Kanuri [email protected] Follow this and additional works at: https://scholarworks.uno.edu/td Part of the Signal Processing Commons Recommended Citation Kanuri, Mohan Kumar, "Separation of Vocal and Non-Vocal Components from Audio Clip Using Correlated Repeated Mask (CRM)" (2017). University of New Orleans Theses and Dissertations. 2381. https://scholarworks.uno.edu/td/2381 This Thesis is protected by copyright and/or related rights. It has been brought to you by ScholarWorks@UNO with permission from the rights-holder(s). You are free to use this Thesis in any way that is permitted by the copyright and related rights legislation that applies to your use. For other uses you need to obtain permission from the rights- holder(s) directly, unless additional rights are indicated by a Creative Commons license in the record and/or on the work itself. This Thesis has been accepted for inclusion in University of New Orleans Theses and Dissertations by an authorized administrator of ScholarWorks@UNO. For more information, please contact [email protected]. Separation of Vocal and Non-Vocal Components from Audio Clip Using Correlated Repeated Mask (CRM) A Thesis Submitted to the Graduate Faculty of the University of New Orleans in partial fulfillment of the requirements for the degree of Master of Science in Engineering – Electrical By Mohan Kumar Kanuri B.Tech., Jawaharlal Nehru Technological University, 2014 August 2017 This thesis is dedicated to my parents, Mr. -
A Comparison of Viola Strings with Harmonic Frequency Analysis
University of Nebraska - Lincoln DigitalCommons@University of Nebraska - Lincoln Student Research, Creative Activity, and Performance - School of Music Music, School of 5-2011 A Comparison of Viola Strings with Harmonic Frequency Analysis Jonathan Paul Crosmer University of Nebraska-Lincoln, [email protected] Follow this and additional works at: https://digitalcommons.unl.edu/musicstudent Part of the Music Commons Crosmer, Jonathan Paul, "A Comparison of Viola Strings with Harmonic Frequency Analysis" (2011). Student Research, Creative Activity, and Performance - School of Music. 33. https://digitalcommons.unl.edu/musicstudent/33 This Article is brought to you for free and open access by the Music, School of at DigitalCommons@University of Nebraska - Lincoln. It has been accepted for inclusion in Student Research, Creative Activity, and Performance - School of Music by an authorized administrator of DigitalCommons@University of Nebraska - Lincoln. A COMPARISON OF VIOLA STRINGS WITH HARMONIC FREQUENCY ANALYSIS by Jonathan P. Crosmer A DOCTORAL DOCUMENT Presented to the Faculty of The Graduate College at the University of Nebraska In Partial Fulfillment of Requirements For the Degree of Doctor of Musical Arts Major: Music Under the Supervision of Professor Clark E. Potter Lincoln, Nebraska May, 2011 A COMPARISON OF VIOLA STRINGS WITH HARMONIC FREQUENCY ANALYSIS Jonathan P. Crosmer, D.M.A. University of Nebraska, 2011 Adviser: Clark E. Potter Many brands of viola strings are available today. Different materials used result in varying timbres. This study compares 12 popular brands of strings. Each set of strings was tested and recorded on four violas. We allowed two weeks after installation for each string set to settle, and we were careful to control as many factors as possible in the recording process.