Isolation of Human Pathogen Escherichia Albertii from Faeces of Seals (Leptonychotes Weddelli) in James Ross Island, Antarctica

Total Page:16

File Type:pdf, Size:1020Kb

Isolation of Human Pathogen Escherichia Albertii from Faeces of Seals (Leptonychotes Weddelli) in James Ross Island, Antarctica CZECH POLAR REPORTS 3 (2): 173-183, 2013 Isolation of human pathogen Escherichia albertii from faeces of seals (Leptonychotes weddelli) in James Ross Island, Antarctica Ivo Sedláček1*, Linda Grillová2, Eva Kroupová1, Jitka Černohlávková1, David Šmajs2 1Czech Collection of Microorganisms, Department of Experimental Biology, Faculty of Science, Masaryk University, Tvrdého 14, 602 00 Brno, Czech Republic 2Department of Biology, Faculty of Medicine, Masaryk University, Kamenice 5, 602 00 Brno, Czech Republic Abstract A set of nine gram-negative fermenting rods biochemically identified as Escherichia coli was isolated from faeces of seals. These bacteria were characterized by phenotypic classification, 16S rDNA sequence analyses, automated ribotyping, study of whole-cell protein profiles by SDS-PAGE and finally by bacteriocin production. The results of our polyphasic taxonomic study supported the recognition of P4652, P4653 and P4740 isolates as true members of Escherichia albertii species – probably a major enteric human pathogen. To our best knowledge, this is the first evidence showing that E. albertii produces bacteriocin, colicin D. Obtained data unambiguously showed incon- venience of commercial identification systems to distinguish both Escherichia species due to missing data of E. albertii in the commercial databases. The results of Escherichia isolates taxonomy suggest seals as a novel source of human and animal pathogen, E. albertii in the Antarctic region. Key words: identification, bacteriocin, biotyping, ribotyping, SDS-PAGE The GenBank accession numbers for the 16S rRNA gene sequences of Escherichia albertii P4652 (CCM 8505) and P4653 are KF891381 and KF891382, respectively. DOI: 10.5817/CPR2013-2-18 ——— Received November 22, 2013, accepted December 12, 2013. *Corresponding author: Ivo Sedláček <[email protected]> Acknowledgements: This work was supported by the Operational Programme Education for Competitiveness project CEB (CZ.1.07/2.3.00/20.0183). The authors would also like to thank to the scientific infrastructure of the Czech Antarctic Station ‘‘J.G. Mendel’’ and its crew for their support (CzechPolar, project LM2010009). 173 I. SEDLÁČEK et al. Introduction Antarctica is the specific cold envi- enteropathogenic (EPEC) E. coli (Ooka et ronment area far from human activities al. 2012). This species is not only a human that exhibit totally natural ecosystem. pathogen but was found in wild and do- Analyses of microbiota from animals in- mestic birds worldwide, both healthy and habiting such cold environments reveal death birds (Oaks et al. 2010, Oh et al. their biodiversity and specific relation- 2011). The bird and human E. albertii iso- ships. Enteric bacteria in the gut of lates are heterogeneous and do not segre- animals may entail positive (e.g. probiotics gate on the basis of host, geographic ori- such as lactobacilli) but also detrimental gin, or disease status. Strains of E. albertii (e.g. Salmonella infections) consequences. possessed intimin (eae) and cytolethal dis- Regulation of the intestinal flora depends tending toxin (cdtB) genes as putative on complex interactions between many virulence factors (Oaks et al. 2010). Re- factors determined by the host environ- cently, the E. albertii was found as the ment, e.g. secretion of gastric acid, in- causative agent of human gastroenteritis testinal motility, local immunity, structure outbreak (Konno et al. 2012, Ooka et al. of the inner gut and mucous layers, as well 2013). as diet (Potti et al. 2002). The genus Escherichia spp., as well as many Escherichia, one of the most important bacterial species, produce antimicrobial a- enteric bacteria, is composed of five valid gents called bacteriocins (comprise coli- species, including the type species Esche- cins, microcins). Production of bacterio- richia coli and four less frequently en- cins is considered to be an important countered members: Escherichia herman- feature of interactions between microbial nii, Escherichia vulneris, Escherichia fer- populations (Cascales et al. 2007). Al- gusonii and Escherichia albertii (Euzéby though there is an evidence of the role of 1997). However, the current taxonomic some bacteriocins in bacterial virulence position of Escherichia spp. is little (Šmajs et al. 2010), in probiotic phenotype complicated. Comparative sequence analy- of E. coli strains (Šmajs et al. 2008), and sis between the genes for 16S rRNA of E. in E. coli colonization of gastrointestinal coli, E. vulneris, and E. hermannii placed tract (Gillor et al. 2009), the exact role of E. coli and E. vulneris together in a tightly bacteriocin production on bacterial popu- related cluster with shigellae, and E. her- lation level is unclear. New informa- mannii between Salmonella spp. and Ci- tion about the frequency of bacteriocins trobacter freundii (Cilia et al. 1996). and their molecular types help understand Recently, based on phylogenetic data, Eza- a bacteriocin role in bacterial populations ki (2010) suggested that only two species (Šmajs et al. 2012). of genus Escherichia should be valid, In this study, we have classified nine E. coli and E. albertii. strains of the genus Escherichia isolated Species E. albertii was described ten from faeces of seals (Leptonychotes wed- years ago by Huys and co-workers (2003) delli) in James Ross Island, Antarctica, in as the pathogen associated with diarrheal the austral summer of 2012-13. These disease in Bangladesh children. After- isolates were analysed on the basis of wards, E. albertii was found as probable e- phenotypic, genetic and phylogenetic data merging major human enteric pathogen be- to the species level and both E. coli and cause many strains might have been mis- E. albertii were proved. identified as enterohemorrhagic (EHEC) or 174 ESCHERICHIA ALBERTII FROM SEALS Material and Methods Bacterial strains The study was carried out in austral 21 to 49 days. The strains, originating summer of 2012-13 in James Ross Island, from different seals (Table 1), were iso- Antarctica (63.778338°S, 57.780993°W) lated on Columbia blood agar (Bio-Rad, and the culture-dependent technique was Czech Republic) by primo-cultivation of used to characterize the diversity of enteric samples maintained in E-Swabs (Dispolab, bacteria in faeces of seals (L. weddelli). A Czech Republic ). Subcultures, based on group of nine Escherichia strains was distinct colony differences, were cultivated isolated from faecal samples of randomly again on Columbia agar (Bio-Rad, Czech discovered seals in the Lachman cape in Republic) supplemented with 7% sheep the frame of cultivable faecal bacteria blood and after incubation at 30°C for 24 communities study project. The samples hours were used for further experiments. A were taken from seal faeces and/or rectum selected representative strain P4652 was with sterile swab/transport tube system E- deposited in the Czech Collection of Swabs (Dispolab, Czech Republic), kept at Microorganisms (http:\\www.sci.muni.cz\ 4°C and brought to the Czech Collection ccm) as Escherichia albertii CCM 8505. of Microorganisms, Masaryk University, Reference strains E. albertii CCM 7160T Czech Republic where they were plated and E. coli CCM 4225 and CCM 5172T and analysed. The time from sampling to were used for ribotyping and SDS-PAGE initial culture in the laboratory was from experiments. Isolate Source Isolate Source No: No: Escherichia albertii Escherichia coli P4652 fresh seal faeces (L. weddelli) P4656 seal faeces on iceberg (unknown species) P4653 fresh seal faeces (L. weddelli) P4657 seal faeces on iceberg (unknown species) P4740 fresh seal faeces (L. weddelli) P4664 fresh seal faeces (L. weddelli) P4665 fresh seal faeces (L. weddelli) P4722 smear from seal rectum (L. weddelli) P4733 fresh seal faeces (L. weddelli) Table 1. Source of isolation (Lachman Cape, James Ross Island, Antarctica). Phenotyping The phenotypic characteristics of the gas from glucose, motility, growth at 5°C isolates were initially performed using two and 37°C, beta glucuronidase, hydrolysis commercial identification kits ENTERO- of gelatine etc.) were additionally carried test 24 (Erba Lachema, Czech Republic) out according to Abbott et al. (2003) to and Biolog Identification System, GP2 confirm assignment of isolates into the Micro Plate (Biolog, USA) according to genus Escherichia and to supplement test the manufacturer’s instructions. Further- results with a few key tests missing in more, some physiological and biochemical identification kits. tube or plate tests (e.g. catalase, oxidase, 175 I. SEDLÁČEK et al. Bacteriocins Bacteriocin production was tested in (1.5%, w/v, solid agar) and a top layer seven strains identified biochemically as (0.7%, w/v, soft agar). As a relatively E. coli (P4652, P4653, P4656, P4657, unenriched medium, a Difco™ nutrient P4664, P4665 and P4733) in parallel using broth (Difco Laboratories, USA) 8 g l-1, four different agar plates containing TY NaCl 5 g l-1, was used for 1.5% (w/v) agar agar, nutrient agar, TY agar supplemented plates. For induction of colicin production, with mitomycin C, and TY agar supple- the base agar layer was supplemented with mented with trypsin (Šmajs et al. 2010). 0.01% (w/v) mitomycin C. To test pro- The rich TY medium consisted of yeast tease sensitivity of the inhibitive agents, extract (Hi-Media) 5 g l-1, tryptone (Hi- 0.1% (w/v) trypsin was added to the base Media) 8 g l-1, and sodium chloride 5 g l-1; layer of agar. the TY agar consisted of a base layer Detection of bacteriocin producers, identification of bacteriocin types and
Recommended publications
  • Escherichia Vulneris As a Cause of Bacteremia in a Patient with Chronic
    110 Correspondence 3. Auerbach O. Acute generalized miliary tuberculosis. Am J Pathol 12. Takhtani D, Gupta S, Suman K, Kakkar N, Challa S, Wig JD, et al. 1944;20:121—36. Radiology of pancreatic tuberculosis: a report of three cases. Am 4. Bhansali SK. Abdominal tuberculosis. Experience with 300 cases. J Gastroenterol 1996;91:1832—4. Am J Gastroenterol 1977;67:324—37. 13. Chen CH, Yang CC, Yeh YH, Yang JC, Chou DA. Pancreatic 5. Franco-Paredes C, Leonard M, Jurado R, Blumberg HM, Smith RM. tuberculosis with obstructive jaundice–—a case report. Am J Tuberculosis of the pancreas: report of two cases and review of Gastroenterol 1999;94:2534—6. the literature. Am J Med Sci 2002;323:54—8. 14. Varshney S, Johnson CD. Tuberculosis of the pancreas. Postgrad 6. Pombo F, Diaz Candamio MJ, Rodriguez E, Pombo S. Pancreatic Med J 1995;71:564—6. tuberculosis: CT findings. Abdom Imaging 1998;23:394—7. 7. Demir K, Kaymakoglu S, Besisik F, Durakoglu Z, Ozdil S, Kaplan Y, Ariel S. Eyal* et al. Solitary pancreatic tuberculosis in immunocompetent V.O.L. Karusseit patients mimicking pancreatic carcinoma. J Gastroenterol Hepa- Department of Surgery, University of Pretoria, tol 2001;16:1071—4. Pretoria, South Africa 8. Liu Q, He Z, Bie P.Solitary pancreatic tuberculous abscess mimick- ing pancreatic cystadenocarcinoma: a case report. BMC Gastro- *Corresponding author. Tel.: +27 82 375 4155 enterol 2003;3:1—6. E-mail address: [email protected] 9. Rezeig MA, Fashir BM, Al-Suhaibani H, Al-Fadda M, Amin T, Eisa H.
    [Show full text]
  • The Shiga Toxin Producing Escherichia Coli
    microorganisms Review An Overview of the Elusive Passenger in the Gastrointestinal Tract of Cattle: The Shiga Toxin Producing Escherichia coli Panagiotis Sapountzis 1,* , Audrey Segura 1,2 , Mickaël Desvaux 1 and Evelyne Forano 1 1 Université Clermont Auvergne, INRAE, UMR 0454 MEDIS, 63000 Clermont-Ferrand, France; [email protected] (A.S.); [email protected] (M.D.); [email protected] (E.F.) 2 Chr. Hansen Animal Health & Nutrition, 2970 Hørsholm, Denmark * Correspondence: [email protected] Received: 22 May 2020; Accepted: 7 June 2020; Published: 10 June 2020 Abstract: For approximately 10,000 years, cattle have been our major source of meat and dairy. However, cattle are also a major reservoir for dangerous foodborne pathogens that belong to the Shiga toxin-producing Escherichia coli (STEC) group. Even though STEC infections in humans are rare, they are often lethal, as treatment options are limited. In cattle, STEC infections are typically asymptomatic and STEC is able to survive and persist in the cattle GIT by escaping the immune defenses of the host. Interactions with members of the native gut microbiota can favor or inhibit its persistence in cattle, but research in this direction is still in its infancy. Diet, temperature and season but also industrialized animal husbandry practices have a profound effect on STEC prevalence and the native gut microbiota composition. Thus, exploring the native cattle gut microbiota in depth, its interactions with STEC and the factors that affect them could offer viable solutions against STEC carriage in cattle. Keywords: cattle; STEC colonization; microbiota; bacterial interactions 1. Introduction The domestication of cattle, approximately 10,000 years ago [1], brought a stable supply of protein to the human diet, which was instrumental for the building of our societies.
    [Show full text]
  • Extensive Microbial Diversity Within the Chicken Gut Microbiome Revealed by Metagenomics and Culture
    Extensive microbial diversity within the chicken gut microbiome revealed by metagenomics and culture Rachel Gilroy1, Anuradha Ravi1, Maria Getino2, Isabella Pursley2, Daniel L. Horton2, Nabil-Fareed Alikhan1, Dave Baker1, Karim Gharbi3, Neil Hall3,4, Mick Watson5, Evelien M. Adriaenssens1, Ebenezer Foster-Nyarko1, Sheikh Jarju6, Arss Secka7, Martin Antonio6, Aharon Oren8, Roy R. Chaudhuri9, Roberto La Ragione2, Falk Hildebrand1,3 and Mark J. Pallen1,2,4 1 Quadram Institute Bioscience, Norwich, UK 2 School of Veterinary Medicine, University of Surrey, Guildford, UK 3 Earlham Institute, Norwich Research Park, Norwich, UK 4 University of East Anglia, Norwich, UK 5 Roslin Institute, University of Edinburgh, Edinburgh, UK 6 Medical Research Council Unit The Gambia at the London School of Hygiene and Tropical Medicine, Atlantic Boulevard, Banjul, The Gambia 7 West Africa Livestock Innovation Centre, Banjul, The Gambia 8 Department of Plant and Environmental Sciences, The Alexander Silberman Institute of Life Sciences, Edmond J. Safra Campus, Hebrew University of Jerusalem, Jerusalem, Israel 9 Department of Molecular Biology and Biotechnology, University of Sheffield, Sheffield, UK ABSTRACT Background: The chicken is the most abundant food animal in the world. However, despite its importance, the chicken gut microbiome remains largely undefined. Here, we exploit culture-independent and culture-dependent approaches to reveal extensive taxonomic diversity within this complex microbial community. Results: We performed metagenomic sequencing of fifty chicken faecal samples from Submitted 4 December 2020 two breeds and analysed these, alongside all (n = 582) relevant publicly available Accepted 22 January 2021 chicken metagenomes, to cluster over 20 million non-redundant genes and to Published 6 April 2021 construct over 5,500 metagenome-assembled bacterial genomes.
    [Show full text]
  • Symposium Abstracts
    Symposium Abstracts S1 Microbiological Environmental Testing and Validation: Leading-edge Issues for Low-moisture Foods JEAN-LOUIS CORDIER, Nestlé Nutrition, Operations/Quality Management, Vevey, Switzerland DONALD L. ZINK, Food and Drug Administration, Center for Food Safety and Applied Nutrition, College Park, MD, USA STEVEN J. GOODFELLOW, Deibel Laboratories, Inc., Gainesville, FL, USA MARK A. MOORMAN, Kellogg Company, Battle Creek, MI, USA ROBERT L. BUCHANAN, University of Maryland, Center for Food Safety and Security Systems, College Park, MD, USA Recent outbreaks of foodborne illness in several low-moisture foods (i.e., peanuts, peanut butter, cookie dough, etc.) have brought a growing public awareness of the complexities involved with the processing of this category of foods where traditional sanitation practices Symposium may not be applied or practical. As a result, the food industry and FDA have rallied to bring together best available thinking and practices necessary to assure control over foodborne hazards in such processes. However, one leading edge area that still remains a subject that offers opportunities for improvement is how control measures are verified in these processing environments through microbiological testing.This symposium will “zero in” on the challenges that face both food processors and food regulators in the area of environmental monitoring for these low moisture continuous processes. S2 Data Deluge, Interacting Players and Complex Networks in Food Sciences – Computational Tools to Tackle Food- related Complexities RéKA ALBERT, Pennsylvania State University, University Park, PA, USA MARK TAMPLIN, Food Safety Centre, Hobart, TAS, Australia GARY BARKER, Institute of Food Research, Norwich, United Kingdom JÓZSEF BARANYI, Institute of Food Research, Norwich, United Kingdom Food Science is one of the most multi-disciplinary sciences, consequently a holistic approach is not only desirable but rather a necessity, in order to integrate various food-related complex systems.
    [Show full text]
  • Escherichia Hermannii Infections in Humans: a Systematic Review
    Tropical Medicine and Infectious Disease Review Escherichia hermannii Infections in Humans: A Systematic Review Petros Ioannou Department of Internal Medicine & Infectious Diseases, University Hospital of Heraklion, Heraklion, Crete PC 71500, Greece; [email protected]; Tel.: +30-2810-392728, Fax: +30-2810-392359 Received: 7 January 2019; Accepted: 18 January 2019; Published: 21 January 2019 Abstract: Eshcerichia hermannii is a member of the Enterobacteriaceae, first described in 1982 and reclassified as a distinct species in the Escherichia genus after identifying biochemical and genomic differences from E. coli. It is a rare cause of human infections and is supposed to be a co-infector rather than an autonomous cause of infection. The aim of this systematic review was to record and evaluate all available evidence regarding human infections by E. hermannii. A systematic review of PubMed (through 21 December 2018) for studies providing epidemiological, clinical, and microbiological information, as well as treatment data and outcomes of E. hermannii infections was performed. A total of 16 studies, containing data of 17 patients, were eventually included in the analysis. The most common E. hermannii infections were bacteremias, urinary tract, and central nervous system infections. The complication rate, like the occurrence of sepsis, was high. Cephalosporins and aminoglycosides were the most common agents used for treatment. This systematic review describes bacterial infections by E. hermannii and provides information on the epidemiology, clinical presentation, antibiotic resistance, treatment, and outcomes associated with these infections. Keywords: Escherichia hermannii; bacteremia; UTI; urinary tract infection 1. Introduction Escherichia hermannii is a gram-negative bacterium that belongs in the family of Enterobacteriaceae and was first described in 1982 [1].
    [Show full text]
  • Escherichia Coli Patógeno Extra Intestinal (Expec): Atributos De Virulencia, Epidemiología Molecular Y Resistencia a Antibióticos
    Escherichia coli patógeno extra intestinal (ExPEC): Atributos de virulencia, Epidemiología Molecular y Resistencia a Antibióticos Tesis de Doctorado PEDECIBA Área Biología, Sub-área Microbiología Rafael Vignoli Orientador: Dr. Alejandro Chabalgoity Co-orientador: Dr. Gabriel Gutkind Departamento de Bacteriología y Virología Instituto de Higiene-Facultad de Medicina Montevideo-Uruguay Abreviaturas: ABC ATP binding cassette AMM Alta Más a Molecular AUC ROC Area bajo la Curva ROC BLEA β-lactamasa de Espectro Ampliado BLEE β-lactamasa de Espectro Extendido BMM Baja Más a Molecular CEACAMs Moléculas de antígeno carcinoembrionario relacionado a adhesión celular CIM Concentrción Inhibitoria Mínima CLSI Clinical and Laboratory Standards Institute CNF-1 Factor necrosante de toxicidad tipo 1 DAF Decay Accelerating Factor Dam deoxi-adenosin metiltransferasa EUCAST European Committee on Antimicrobial Susceptibility Testing ExPEC E. coli patógenas extra intestinales GCA Grupo Clonal A GF Grupos Filogenéticos GRTFQ Genes de Resistencia Transferibles a Fluoro Quinolonas GTPasa guanosina trifosfatasa IS Secuencia de Inserción ITU Infección del Tracto Urinario MATE Multidrug And Toxic-compound Extrusion MFS Major Facilitator Superfamily MLST Multi Locus Sequence Typing (Tipificación de Secuencias Multi Locus) MPS Muerte Post Segregasional MR Manosa Resistente MRD Multi Resistentes a Drogas MS Manosa Sensible NAcGlc N-acetil glucosamina NAcMur N-acetilmurámico NADPH Nicotinamida Adenin di nucleótido fosfato forma reducida PBP Penicillin Binding Proteins
    [Show full text]
  • Axel Janssen Mechanisms and Evolution of Colistin Resistance in Clinical Enterobacteriaceae
    Mechanisms and evolution of colistin resistance in clinical Enterobacteriaceae Axel Janssen Mechanisms and evolution of colistin resistance in clinical Enterobacteriaceae Axel B. Janssen Mechanisms and evolution of colistin resistance in clinical Enterobacteriaceae PhD thesis, Utrecht University, Utrecht, the Netherlands Author: Axel B. Janssen Cover design: Axel B. Janssen Lay-out: Axel B. Janssen Printing: ProefschriftMaken ISBN: 978-94-6380-950-4 © Axel B. Janssen, 2020, Utrecht, the Netherlands. All rights reserved. No parts of this thesis may be reproduced, stored in a retrieval system, or transmitted in any form or by any means without prior permission of the author. The copyright of articles that have been published has been transferred to the respective journals. Printing of this thesis was financially supported by: the Netherlands Society of Medical Microbiology, the Royal Netherlands Society for Microbiology, Infection & Immunity Utrecht, and the University Medical Center Utrecht. Mechanisms and evolution of colistin resistance in clinical Enterobacteriaceae Mechanismen en evolutie van colistin resistentie in klinische Enterobacteriaceae (met een samenvatting in het Nederlands) Proefschrift ter verkrijging van de graad van doctor aan de Universiteit Utrecht op gezag van de rector magnificus, prof. dr. H.R.B.M. Kummeling, ingevolge het besluit van het college voor promoties in het openbaar te verdedigen op dinsdag 3 november 2020 des middags te 12.45 uur door Absalom Benjamin Janssen geboren op 31 oktober 1991 te Nijmegen Promotoren: Prof. dr. R.J.L. Willems Prof. dr. ir. W. van Schaik Beoordelingscommissie: Prof. dr. J.A.J.W. Kluytmans Prof. dr. S.H.M. Rooijakkers Prof. dr. J.W.A. Rossen Prof.
    [Show full text]
  • Performance Characterization of the IRIDICA™ BAC SFT Assay* for Detection and Identification of Diverse Bacteria and Candida in Tissues and Body fluids
    Performance characterization of the IRIDICA™ BAC SFT Assay* for detection and identification of diverse bacteria and Candida in tissues and body fluids Mark W. Frinder, David Metzgar, Megan Rounds, Heather E. Carolan, Donna M. Toleno, Rangarajan Sampath, David J. Ecker, Lawrence B. Blyn Ibis Biosciences, an Abbott Company, Carlsbad, CA, USA Color Key Table 2: Potentially interfering substances tested with the 4 core organisms at 3X Objectives: Identifying causal organisms in Results: The BAC SFT Assay was able to detect and identify all IRIDICA detections, matched LOD in synovial Fluid, muscle tissue, and diluent matrices.Data shown reflects IRIDICA detections, unmatched Standard of care detections, missed by IRIDICA tissue and body fluid infections through tested organisms at concentrations of 5 to 1000 CFU/sample, concentration in the final 5ml sample. No interference was observed (all 4 targets and their associated antibiotic resistance markers were successfully culture-based methods is time-consuming and the sensitivity of the assay was comparable between Burkholderia vietnamiensis (1) and challenging. Culture-based methods are tissue, body fluid, and sample diluent matrices (Figure 1). The detected in 3/3 samples). Micrococcus luteus (1) Corynebacterium striatum (1) often rendered ineffective by antibiotic assay was able to detect organisms in the presence of diverse Test Substance Concentration Test Substance Concentration Corynebacterium accolens (2) Propionibacterium acnes (5) Pseudomonas entomophila/putida (1) pre-treatment, the presence of fastidious or tissues or fluids (Table 1), and potentially interfering Bilirubin 171 µmol/L * Doxycycline 67.5 µmol/L Acinetobacter junii (4) Hemoglobin 2 g/L Fluconazole 245 µmol/L uncultureable species, and growth inhibition substances (Table 2).
    [Show full text]
  • One City; the Extent of Shiga- Toxin Producing Escherichia Coli in Cape Town
    One Health -One City; the extent of Shiga- toxin producing Escherichia coli in Cape Town. By University of Cape Town John Bosco Kalule Submitted to the University of Cape Town for the degree of Doctor of Philosophy in Medical Microbiology June 2017 The copyright of this thesis vests in the author. No quotation from it or information derived from it is to be published without full acknowledgement of the source. The thesis is to be used for private study or non- commercial research purposes only. Published by the University of Cape Town (UCT) in terms of the non-exclusive license granted to UCT by the author. University of Cape Town Declaration I, John Bosco Kalule, hereby declare that the work on which this thesis is based is my original work and that neither the whole work nor any part of it has been, is being, or is to be submitted for another degree in this or any other university. Signature: signature removed Date: 7th 08 2017 Supervisor: Professor Mark Patrick Nicol (MBBCh, M.Med (Med Microbiol), SA FCPath (Microbiol),PhD)1, 2, 3 1Division of Medical Microbiology, Department of Pathology, Faculty of Health Sciences, University of Cape Town, Cape Town, South Africa. 2Institute of Infectious Disease and Molecular Medicine, University of Cape Town, Cape Town, South Africa. 3National Health Laboratory Service of South Africa, Groote Schuur Hospital, Cape Town, South Africa Co-supervisors: Dr Karen. H. Keddy (BSc (Med), MBBCh, MMed (Microbiol), FCPath SA (Microbiol), DTM&H, PhD)4, 5 4Centre for Enteric Diseases, National Institute for Communicable Diseases, Johannesburg, South Africa.
    [Show full text]
  • Escherichia Coli and Shigella Species M
    INTERNATIONALJOURNAL OF SYSTEMATICBACTERIOLOGY, Apr. 1988, p. 201-206 Vol. 38. No. 2 0020-7713/88/040201-06$02.OO/O Specificity of a Monoclonal Antibody for Alkaline Phosphatase in Escherichia coli and Shigella Species M. 0. HUSSON,1*2*P. A. TRINELY2C. MIELCAREK,2 F. GAVINI,2 C. CARON,lq2D. IZARD,l AND H. LECLERC' Faculte' de Me'decine, Laboratoire de Bacte'riologie A, 59045 Lille Cedex, France' and Unite' Institut National de la Sante' et de la Recherche Me'dicale 146, Domaine dir CERTIA, 59650 Villeneuve-d'Ascq Cedex, France2 The specificity of monoclonal antibody 2E5 for the alkaline phosphatase of Escherichia coli was studied against the alkaline phosphatases of 251 other bacterial strains. The organisms used included members of the six species of the genus Escherichia (E. coli, E. fergusonii, E. hermannii, E. blattae, E. vulneris, E. adecarboxylata), 41 species representing the family Enterobacteriaceae, and, in addition, Pseudomonas aeruginosa, Aeromonas spp., Plesiomonas shigelloides, Acinetobacter calcoaceticus, and Vibrio cholerae non-01. Three methods were used. An enzyme-linked immunosorbent assay was performed against 21U of alkaline phosphatase per ml; immunofluorescence against bacterial cells and Western blotting against periplasmic proteins were also used. All of our experiments demonstrated the high specificity of monoclonal antibody 2E5. This antibody recognized only E. coli (118 strains tested) and the four species of the genus Shigella (S. sonnei, S. flexneri, S. boydii, S. dysenteriae; 12 strains tested). Since the description of hybridoma production by Kohler mouse immunized with purified Escherichia coli ATCC and Milstein in 1975 (14), many monoclonal antibodies 10536 alkaline phosphatase as described elsewhere (12).
    [Show full text]
  • International Journal of Systematic and Evolutionary Microbiology (2016), 66, 5575–5599 DOI 10.1099/Ijsem.0.001485
    International Journal of Systematic and Evolutionary Microbiology (2016), 66, 5575–5599 DOI 10.1099/ijsem.0.001485 Genome-based phylogeny and taxonomy of the ‘Enterobacteriales’: proposal for Enterobacterales ord. nov. divided into the families Enterobacteriaceae, Erwiniaceae fam. nov., Pectobacteriaceae fam. nov., Yersiniaceae fam. nov., Hafniaceae fam. nov., Morganellaceae fam. nov., and Budviciaceae fam. nov. Mobolaji Adeolu,† Seema Alnajar,† Sohail Naushad and Radhey S. Gupta Correspondence Department of Biochemistry and Biomedical Sciences, McMaster University, Hamilton, Ontario, Radhey S. Gupta L8N 3Z5, Canada [email protected] Understanding of the phylogeny and interrelationships of the genera within the order ‘Enterobacteriales’ has proven difficult using the 16S rRNA gene and other single-gene or limited multi-gene approaches. In this work, we have completed comprehensive comparative genomic analyses of the members of the order ‘Enterobacteriales’ which includes phylogenetic reconstructions based on 1548 core proteins, 53 ribosomal proteins and four multilocus sequence analysis proteins, as well as examining the overall genome similarity amongst the members of this order. The results of these analyses all support the existence of seven distinct monophyletic groups of genera within the order ‘Enterobacteriales’. In parallel, our analyses of protein sequences from the ‘Enterobacteriales’ genomes have identified numerous molecular characteristics in the forms of conserved signature insertions/deletions, which are specifically shared by the members of the identified clades and independently support their monophyly and distinctness. Many of these groupings, either in part or in whole, have been recognized in previous evolutionary studies, but have not been consistently resolved as monophyletic entities in 16S rRNA gene trees. The work presented here represents the first comprehensive, genome- scale taxonomic analysis of the entirety of the order ‘Enterobacteriales’.
    [Show full text]
  • Molecular Characterization of Cytolethal
    Hinenoya et al. BMC Microbiology 2014, 14:97 http://www.biomedcentral.com/1471-2180/14/97 RESEARCH ARTICLE Open Access Molecular characterization of cytolethal distending toxin gene-positive Escherichia coli from healthy cattle and swine in Nara, Japan Atsushi Hinenoya1, Kensuke Shima1,5, Masahiro Asakura1, Kazuhiko Nishimura1, Teizo Tsukamoto1, Tadasuke Ooka2, Tetsuya Hayashi2, Thandavarayan Ramamurthy3, Shah M Faruque4 and Shinji Yamasaki1* Abstract Background: Cytolethal distending toxin (CDT)-producing Escherichia coli (CTEC) has been isolated from patients with gastrointestinal or urinary tract infection, and sepsis. However, the source of human infection remains unknown. In this study, we attempted to detect and isolate CTEC strains from fecal specimens of healthy farm animals and characterized them phenotypically and genotypically. Results: By PCR analysis, the cdtB gene was detected in 90 and 14 out of 102 and 45 stool specimens of healthy cattle and swine, respectively, and none from 45 chicken samples. Subtypes of the cdtB genes (I to V) were further examined by restriction fragment length polymorphism analysis of the amplicons and by type-specific PCRs for the cdt-III and cdt-V genes. Of the 90 cdtB gene-positive cattle samples, 2 cdt-I,25cdt-III,1cdt-IV,52cdt-V and 1 both cdt-III and cdt-V gene-positive strains were isolated while 1 cdt-II and 6 cdt-V gene-positive were isolated from 14 cdtB positive swine samples. Serotypes of some isolates were identical to those of human isolates. Interestingly, a cdt-II gene-positive strain isolated from swine was for the first time identified as Escherichia albertii. Phylogenetic analysis grouped 87 E.
    [Show full text]