The Afterglows of Swift-Era Gamma-Ray Bursts. I. Comparing

Total Page:16

File Type:pdf, Size:1020Kb

The Afterglows of Swift-Era Gamma-Ray Bursts. I. Comparing Submitted to ApJ, 16th of July 2010 Preprint typeset using LATEX style emulateapj v. 08/22/09 THE AFTERGLOWS OF SWIFT -ERA GAMMA-RAY BURSTS. I. COMPARING PRE-SWIFT AND SWIFT ERA LONG/SOFT (TYPE II) GRB OPTICAL AFTERGLOWS ∗ D. A. Kann,1 S. Klose,1 B. Zhang,2 D. Malesani,3 E. Nakar,4,5 A. Pozanenko,6 A. C. Wilson,7 N. R. Butler,8,9 P. Jakobsson,10,11 S. Schulze,1,11 M. Andreev,12,13 L. A. Antonelli,14 I. F. Bikmaev,15 V. Biryukov,16,17 M. Bottcher,¨ 18 R. A. Burenin,6 J. M. Castro Ceron,´ 3,19 A. J. Castro-Tirado,20 G. Chincarini,21,22 B. E. Cobb,23,24 S. Covino,21 P. D’Avanzo,22,25 V. D’Elia,14,26 M. Della Valle,27,28,29 A. de Ugarte Postigo,21 Yu. Efimov,16 P. Ferrero,1,30 D. Fugazza,21 J. P. U. Fynbo,3 M. G˚alfalk,31 F. Grundahl,32 J. Gorosabel,20 S. Gupta,18 S. Guziy,20 B. Hafizov,33 J. Hjorth,3 K. Holhjem,34,35 M. Ibrahimov,33 M. Im,36 G. L. Israel,14 M. Je´linek,20 B. L. Jensen,3 R. Karimov,33 I. M. Khamitov,37 U.¨ Kızıloglu,ˇ 38 E. Klunko,39 P. Kubanek,´ 19 A. S. Kutyrev,40 P. Laursen,3 A. J. Levan,41 F. Mannucci,42 C. M. Martin,43 A. Mescheryakov,6 N. Mirabal,44 J. P. Norris,45 J.-E. Ovaldsen,46 D. Paraficz,3 E. Pavlenko,17 S. Piranomonte,14 A. Rossi,1 V. Rumyantsev,17 R. Salinas,47 A. Sergeev,12,13 D. Sharapov,33 J. Sollerman,3,31 B. Stecklum,1 L. Stella,14 G. Tagliaferri,21 N. R. Tanvir,48 J. Telting,33 V. Testa,14 A. C. Updike,49 A. Volnova,50 D. Watson,3 K. Wiersema,48,51 D. Xu3 Submitted to ApJ, 16th of July 2010 ABSTRACT We have gathered optical photometry data from the literature on a large sample of Swift-era gamma- ray burst (GRB) afterglows including GRBs up to September 2009, for a total of 76 GRBs, and present an additional three pre-Swift GRBs not included in an earlier sample. Furthermore, we publish 840 additional new photometry data points on a total of 42 GRB afterglows, including large data sets for GRBs 050319, 050408, 050802, 050820A, 050922C, 060418, 080413A and 080810. We analyzed the light curves of all GRBs in the sample and derived spectral energy distributions for the sample with the best data quality, allowing us to estimate the host galaxy extinction. We transformed the afterglow light curves into an extinction-corrected z = 1 system and compared their luminosities with a sample of pre-Swift afterglows. The results of a former study, which showed that GRB afterglows clustered and exhibited a bimodal distribution in luminosity space, is weakened by the larger sample. We found that the luminosity distribution of the two afterglow samples (Swift-era and pre-Swift) are very similar, and that a subsample for which we were not able to estimate the extinction, which is fainter than the main sample, can be explained by assuming a moderate amount of line-of-sight host extinction. We derived bolometric isotropic energies for all GRBs in our sample, and found only a tentative correlation between the prompt energy release and the optical afterglow luminosity at one day after the GRB in the z = 1 system. A comparative study of the optical luminosities of GRB afterglows with echelle spectra (which show a high number of foreground absorbing systems) and those without reveals no indication that the former are statistically significantly more luminous. Furthermore, we propose the existence of an upper ceiling on afterglow luminosities and study the luminosity distribution at early times, which was not accessible before the advent of the Swift satellite. Most GRBs feature afterglows that are dominated by the forward shock from early times on. Finally, we present the first indications of a class of long GRBs which form a bridge between the typical high- luminosity, high-redshift events and nearby low-luminosity events (which are also associated with spectroscopic SNe) in terms of energetics and observed redshift distribution, indicating a continuous distribution overall. Subject headings: gamma rays: bursts arXiv:0712.2186v4 [astro-ph] 16 Jul 2010 ∗ BASED IN PART ON OBSERVATIONS OBTAINED WITH 5 THE VERY LARGE TELESCOPE UNDER ESO PROGRAM Raymond and Beverly Sackler School of Physics & Astronomy, Tel Aviv University, Tel Aviv 69978, Israel 075.D-0787, PI TAGLIAFERRI. ALSO BASED PARTLY ON 6 OBSERVATIONS MADE WITH THE ITALIAN TELESCOPIO Space Research Institute (IKI), 84/32 Profsoyuznaya Str, NAZIONALE GALILEO (TNG) OPERATED ON THE ISLAND Moscow 117997, Russia 7 Department of Astronomy, University of Texas, Austin, TX ´ OF LA PALMA BY THE FUNDACION GALILEO GALILEI 78712, USA OF THE INAF (ISTITUTO NAZIONALE DI ASTROFISICA) 8 Townes Fellow, Space Sciences Laboratory, University of Cali- AT THE SPANISH OBSERVATORIO DEL ROQUE DE LOS fornia, Berkeley, CA, 94720-7450, USA MUCHACHOS OF THE INSTITUTO DE ASTROFISICA DE 9 Astronomy Department, University of California, 445 Camp- CANARIAS UNDER PROGRAM TAC 1238. bell Hall, Berkeley, CA 94720-3411, USA 1 Th¨uringer Landessternwarte Tautenburg, Sternwarte 5, D– 10 Centre for Astrophysics Research, University of Hertfordshire, 07778 Tautenburg, Germany College Lane, Hatfield, Herts, AL10 9AB, UK 2 Department of Physics and Astronomy, University of Nevada, 11 Centre for Astrophysics and Cosmology, Science Institute, Las Vegas, NV 89154 University of Iceland, Dunhagi 5, IS 107 Reykjavik, Iceland 3 Dark Cosmology Centre, Niels Bohr Institute, University of 12 Terskol Branch of Institute of Astronomy of RAS, Kabardino- Copenhagen, Juliane Maries Vej 30, DK-2100 København Ø, Den- Balkaria Republic 361605 Russian Federation mark 13 International Centre of Astronomical and Medico-Ecological 4 Division of Physics, Mathematics, and Astronomy, California Research of NASU, 27 Akademika Zabolotnoho St. 03680 Kyiv, Institute of Technology, Pasadena, CA 91125, USA Ukraine 2 Kann et al. 1. INTRODUCTION is that early afterglows are not as bright as expected, The study of the optical afterglows of gamma-ray and early optical faintness seems to be the norm rather bursts (GRBs), first discovered over a decade ago than the exception (Roming et al. 2006). Furthermore, (van Paradijs et al. 1997), has taken a great leap for- Swift-era optical afterglows are usually observed to have ward with the launch of the Swift satellite (Gehrels et al. fainter magnitudes than those of the pre-Swift era (e.g., 2004). Its high γ-ray sensitivity and rapid repointing ca- Berger et al. 2005a,b; Fiore et al. 2007) (mainly due to pabilities have ushered in an era of dense early afterglow even faint afterglows often being discovered thanks to observations. In the optical regime, one sobering result the rapid XRT positions), and also lie at higher red- shifts (Jakobsson et al. 2006a; Bagoly et al. 2006), with the most distant up to now at z =8.2 (Tanvir et al. 2009; 14 INAF, Osservatorio Astronomico di Roma, via Frascati 33, 00040, Monteporzio Catone (RM), Italy Salvaterra et al. 2009b). For recent reviews of the impact 15 Kazan State University and Academy of Sciences of Tatarstan, of Swift on GRB research, see Zhang (2007), M´esz´aros Kazan, Russia (2006) and Gehrels et al. (2009). 16 Crimean Laboratory of the Sternberg Astronomical Institute, The pre-Swift afterglows have been studied exten- Nauchny, Crimea, 98409, Ukraine 17 SRI “Crimean Astrophysical Observatory” (CrAO), Nauchny, sively, both in terms of their light curve behavior (e.g. Crimea, 98409, Ukraine Panaitescu & Kumar 2002; Zeh et al. 2006, and refer- 18 Astrophysical Institute, Department of Physics and Astron- ences therein), and via their spectral energy distributions omy, Clippinger 339, Ohio University, Athens, OH 45701, USA (e.g., Stratta et al. 2004; Kann et al. 2006; Starling et al. 19 European Space Agency (ESA), European Space Astronomy Centre (ESAC), P.O. Box - Apdo. de correos 78, 28691 Villanueva 2007a), which allow conclusions to be drawn concerning de la Ca˜nada, Madrid, Spain the rest frame line-of-sight extinction and even the dust 20 Instituto de Astrof´ısica de Andaluc´ıa (IAA-CSIC), Apartado type in some cases. In our previous study (Kann et al. de Correos, 3004, E-18080 Granada, Spain 2006, henceforth K06), we found that the afterglows that 21 INAF, Osservatorio Astronomico di Brera, via E. Bianchi 46, 23807 Merate (LC), Italy met our selection criteria typically had little line-of-sight 22 Universit`a degli studi di Milano-Bicocca, Dipartimento di extinction, and that the dust properties were best de- Fisica, piazza delle Scienze 3, 20126 Milano, Italy scribed by Small Magellanic Cloud (SMC) dust, which 23 Department of Astronomy, Yale University, P.O. Box 208101, shows no UV bump and strong FUV extinction (e.g., Pei New Haven, CT 06520, USA 24 Department of Astronomy, 601 Campbell Hall, University of 1992). These results were confirmed by Starling et al. California, Berkeley, CA 94720–3411 (2007a), who studied a smaller sample but also incor- 25 Dipartimento di Fisica e Matematica, Universit`adell’Insubria, porated X-ray afterglow data, as well as Schady et al. via Valleggio 11, 22100 Como, Italy (2007a, 2010), who also employed joint optical-to-X-ray 26 ASI-Science Data Centre, Via Galileo Galilei, I-00044 Fras- cati, Italy fits as well as UVOT (and ground-based) data. 27 INAF, Osservatorio Astronomico di Capodimonte, Salita Almost six years after the launch of Swift, the amount Moiariello, 16 80131, Napoli, Italy of published data on optical/NIR GRB afterglows have 28 European Southern Observatory, Karl Schwarschild Strasse 2, become sufficient to compile a large sample comparable D-85748 Garching bei M¨unchen, Germany 29 International Centre for Relativistic Astrophysics Network, to the pre-Swift sample studied by K06, and to deter- Piazzale della Republica 2, Pescara, Abruzzo, Italy mine if some of the afterglows detected by Swift are truly 30 Instituto de Astrof´ısica de Canarias, C/ V´ıa L´actea, s/n fundamentally different to those of the pre-Swift era.
Recommended publications
  • Astronomical Distances
    The Act of Measurement I: Astronomical Distances B. F. Riley The act of measurement causes astronomical distances to adopt discrete values. When measured, the distance to the object corresponds through an inverse 5/2 power law – the Quantum/Classical connection – to a sub-Planckian mass scale on a level or sub-level of one or both of two geometric sequences, of common ratio 1/π and 1/e, that descend from the Planck mass and may derive from the geometry of a higher-dimensional spacetime. The distances themselves lie on the levels and sub-levels of two sequences, of common ratio π and e, that ascend from the Planck length. Analyses have been performed of stellar distances, the semi-major axes of the planets and planetary satellites of the Solar System and the distances measured to quasars, galaxies and gamma-ray bursts. 1 Introduction Using Planck units the Quantum/Classical connection, characterised by the equation (1) maps astronomical distances R – in previous papers only the radii of astronomical bodies [1, 2] – onto sub-Planckian mass scales m on the mass levels and sub-levels1 of two geometric sequences that descend from the Planck mass: Sequence 1 of common ratio 1/π and Sequence 3 of common ratio 1/e.2 The sequences may derive from the geometry of a higher-dimensional spacetime [3]. First, we show that several distances associated with the Alpha Centauri system correspond through (1) to the mass scales of principal levels3 in Sequences 1 and 3. We then show that the mass scales corresponding through (1) to the distances from both Alpha Centauri and the Sun to the other stars lie on the levels and sub-levels of Sequences 1 and 3.
    [Show full text]
  • HET Publication Report HET Board Meeting 3/4 December 2020 Zoom Land
    HET Publication Report HET Board Meeting 3/4 December 2020 Zoom Land 1 Executive Summary • There are now 420 peer-reviewed HET publications – Fifteen papers published in 2019 – As of 27 November, nineteen published papers in 2020 • HET papers have 29363 citations – Average of 70, median of 39 citations per paper – H-number of 90 – 81 papers have ≥ 100 citations; 175 have ≥ 50 cites • Wide angle surveys account for 26% of papers and 35% of citations. • Synoptic (e.g., planet searches) and Target of Opportunity (e.g., supernovae and γ-ray bursts) programs have produced 47% of the papers and 47% of the citations, respectively. • Listing of the HET papers (with ADS links) is given at http://personal.psu.edu/dps7/hetpapers.html 2 HET Program Classification Code TypeofProgram Examples 1 ToO Supernovae,Gamma-rayBursts 2 Synoptic Exoplanets,EclipsingBinaries 3 OneorTwoObjects HaloofNGC821 4 Narrow-angle HDF,VirgoCluster 5 Wide-angle BlazarSurvey 6 HETTechnical HETQueue 7 HETDEXTheory DarkEnergywithBAO 8 Other HETOptics Programs also broken down into “Dark Time”, “Light Time”, and “Other”. 3 Peer-reviewed Publications • There are now 420 journal papers that either use HET data or (nine cases) use the HET as the motivation for the paper (e.g., technical papers, theoretical studies). • Except for 2005, approximately 22 HET papers were published each year since 2002 through the shutdown. A record 44 papers were published in 2012. • In 2020 a total of fifteen HET papers appeared; nineteen have been published to date in 2020. • Each HET partner has published at least 14 papers using HET data. • Nineteen papers have been published from NOAO time.
    [Show full text]
  • SPACETIME SINGULARITIES: the STORY of BLACK HOLES
    1 SPACETIME SINGULARITIES: The STORY of BLACK HOLES We have already seen that the Big Bang is a kind of 'singularity' in the structure of spacetime. To the question "what was before the Big Bang?", one can reply, at least in the context of GR, that the question actually has no meaning - that time has no meaning 'before' the Big Bang. The point is that the universe can be ¯nite in extent in both time and space, and yet have no boundary in either. We saw what a curved space which is ¯nite in size but has no boundary means for a 2-d surface - a balloon is an example. Notice that if we made a balloon that curved smoothly except at one point (we could, for example, pinch it at this point) we could say that the balloon surface curvature was singular (ie., in¯nite) at this point. The idea of a 4-d spacetime with no boundary in spacetime, but with a ¯nite spacetime 4-dimensional volume, is a simple generalization of this. And just as it makes no sense, inside a 2-d balloon, to ask where the boundary is, we can have spacetime geometries which have no boundary in space or time, or where spacetime 'terminates' at a singularity. All of this is easy to say, but the attitude of most early workers in GR was to ignore the possible existence of singularities, and/or hope that they would just go away. The reaction of Einstein to the discovery of singular solutions to his equations was quite striking.
    [Show full text]
  • The Two-Component Jet of GRB 080413B⋆
    A&A 526, A113 (2011) Astronomy DOI: 10.1051/0004-6361/201015320 & c ESO 2011 Astrophysics The two-component jet of GRB 080413B R. Filgas1, T. Krühler1,2, J. Greiner1,A.Rau1, E. Palazzi3,S.Klose4, P. Schady1, A. Rossi4,P.M.J.Afonso1, L. A. Antonelli5,C.Clemens1,S.Covino6,P.D’Avanzo6, A. Küpcü Yolda¸s7,8,M.Nardini1, A. Nicuesa Guelbenzu4, F. Olivares1,E.A.C.Updike9,andA.Yolda¸s1,8 1 Max-Planck-Institut für extraterrestrische Physik, Giessenbachstraße 1, 85748 Garching, Germany, e-mail: [email protected] 2 Universe Cluster, Technische Universität München, Boltzmannstraße 2, 85748 Garching, Germany 3 INAF - IASF di Bologna, via Gobetti 101, 40129 Bologna, Italy 4 Thüringer Landessternwarte Tautenburg, Sternwarte 5, 07778 Tautenburg, Germany 5 INAF - Osservatorio Astronomico di Roma, via di Frascati 33, 00040 Monteporzio Catone (Roma), Italy 6 INAF - Osservatorio Astronomico di Brera, via Bianchi 46, 23807 Merate, Italy 7 European Southern Observatory, Karl-Schwarzschild-Straße 2, 85748 Garching, Germany 8 Institute of Astronomy, University of Cambridge, Madingley Road, CB3 0HA Cambridge, UK 9 Department of Physics and Astronomy, Clemson University, Clemson, SC 29634-0978, USA Received 1 July 2010 / Accepted 2 October 2010 ABSTRACT Aims. The quick and precise localization of GRBs by the Swift telescope allows the early evolution of the afterglow light curve to be captured by ground-based telescopes. With GROND measurements we can investigate the optical/near-infrared light curve of the afterglow of gamma-ray burst 080413B in the context of late rebrightening. Methods. Multi-wavelength follow-up observations were performed on the afterglow of GRB 080413B.
    [Show full text]
  • Astronomy 2009 Index
    Astronomy Magazine 2009 Index Subject Index 1RXS J160929.1-210524 (star), 1:24 4C 60.07 (galaxy pair), 2:24 6dFGS (Six Degree Field Galaxy Survey), 8:18 21-centimeter (neutral hydrogen) tomography, 12:10 93 Minerva (asteroid), 12:18 2008 TC3 (asteroid), 1:24 2009 FH (asteroid), 7:19 A Abell 21 (Medusa Nebula), 3:70 Abell 1656 (Coma galaxy cluster), 3:8–9, 6:16 Allen Telescope Array (ATA) radio telescope, 12:10 ALMA (Atacama Large Millimeter/sub-millimeter Array), 4:21, 9:19 Alpha (α) Canis Majoris (Sirius) (star), 2:68, 10:77 Alpha (α) Orionis (star). See Betelgeuse (Alpha [α] Orionis) (star) Alpha Centauri (star), 2:78 amateur astronomy, 10:18, 11:48–53, 12:19, 56 Andromeda Galaxy (M31) merging with Milky Way, 3:51 midpoint between Milky Way Galaxy and, 1:62–63 ultraviolet images of, 12:22 Antarctic Neumayer Station III, 6:19 Anthe (moon of Saturn), 1:21 Aperture Spherical Telescope (FAST), 4:24 APEX (Atacama Pathfinder Experiment) radio telescope, 3:19 Apollo missions, 8:19 AR11005 (sunspot group), 11:79 Arches Cluster, 10:22 Ares launch system, 1:37, 3:19, 9:19 Ariane 5 rocket, 4:21 Arianespace SA, 4:21 Armstrong, Neil A., 2:20 Arp 147 (galaxy pair), 2:20 Arp 194 (galaxy group), 8:21 art, cosmology-inspired, 5:10 ASPERA (Astroparticle European Research Area), 1:26 asteroids. See also names of specific asteroids binary, 1:32–33 close approach to Earth, 6:22, 7:19 collision with Jupiter, 11:20 collisions with Earth, 1:24 composition of, 10:55 discovery of, 5:21 effect of environment on surface of, 8:22 measuring distant, 6:23 moons orbiting,
    [Show full text]
  • The Naked-Eye Optical Transient OT 120926
    The Naked-eye Optical Transient OT 120926 Yue Zhao Department of Physics, Lanzhou University, Lanzhou, China, and Department of Physics and Astronomy, York University, Toronto, Ontario, Canada Patrick B. Hall, Paul Delaney, J. Sandal Department of Physics and Astronomy, York University, Toronto, Ontario, Canada Abstract: A previously unknown optical transient has been observed in the constellation Bootes. The transient flared to brighter than 5th magnitude, which is comparable to the visual magnitudes of the nearby stars π Bootes and ο Bootes. This article describes the relative astrometry and photometry work we have done regarding the transient. Introduction: Distant astronomical sources normally invisible to the naked eye which transiently brighten by more than a magnitude to naked-eye visibility (V<6) are of considerable scientific interest. Specific examples include a flare on the Be star HD 160202 (peak V~1, Bakos 1968), SN 1987A (peak V=2.96, Hamuy et al. 1988), GRB 080319B (peak V=5.3, Cwiok et al. 2008, Bloom et al. 2009), and possibly OT 060420 (apparent peak V=4.7, Shamir & Nemiroff 2006). Cataclysmic variable eruptions and flares on M dwarf stars can also in principle create naked-eye transients. M dwarf flares can have peak brightenings, in units of magnitudes of ΔV=6 (Stelzer et al. 2006, Kowalski et al. 2013) and even ΔV=9 (Stanek et al. 2013, Schmidt et al. 2013) or ΔB=9.5 (Schaefer 1990). Cataclysmic variables such as classical novae or dwarf novae of the WZ Sge subtype can brighten by up to ΔV=7.5 magnitudes (Harrison et al.
    [Show full text]
  • Staff, Visiting Scientists and Graduate Students 2013
    Staff, Visiting Scientists and Graduate Students at the Pescara Center December 2013 Contents ICRANet Faculty Staff……………………………………………………………………. p. 12 Adjunct Professors of the Faculty .……………………………………………………… p. 39 Lecturers…………………………………………………………………………………… p. 83 Research Scientists ……………………………………………………………………….. p. 100 Visiting Scientists ………………………………………………………………………... p. 109 IRAP Ph. D. Students ……………………………………………………………………. p. 130 IRAP Ph. D. Erasmus Mundus Students………………………………………………. p. 161 Administrative and Secretarial Staff …………………………………………………… p. 184 ICRANet Faculty Staff Belinski Vladimir ICRANet Bianco Carlo Luciano University of Rome “Sapienza” and ICRANet Einasto Jaan Tartu Observatory, Estonia Izzo Luca University of Rome “Sapienza” Novello Mario Cesare Lattes-ICRANet Chair CBPF, Rio de Janeiro, Brasil Rueda Jorge A. University of Rome “Sapienza” and ICRANet Ruffini Remo University of Rome “Sapienza” and ICRANet Vereshchagin Gregory ICRANet Xue She-Sheng ICRANet 1 Adjunct Professors Of The Faculty Aharonian Felix Albert Benjamin Jegischewitsch Markarjan Chair Dublin Institute for Advanced Studies, Dublin, Ireland Max-Planck-Institut für Kernphysis, Heidelberg, Germany Amati Lorenzo Istituto di Astrofisica Spaziale e Fisica Cosmica, Italy Arnett David Subramanyan Chandrasektar- ICRANet Chair University of Arizona, Tucson, USA Chakrabarti Sandip P. Centre for Space Physics, India Chardonnet Pascal Université de la Savoie, France Chechetkin Valeri Mstislav Vsevolodich Keldysh-ICRANet Chair Keldysh institute for Applied Mathematics
    [Show full text]
  • The Astronomer Magazine Index
    The Astronomer Magazine Index The numbers in brackets indicate approx lengths in pages (quarto to 1982 Aug, A4 afterwards) 1964 May p1-2 (1.5) Editorial (Function of CA) p2 (0.3) Retrospective meeting after 2 issues : planned date p3 (1.0) Solar Observations . James Muirden , John Larard p4 (0.9) Domes on the Mare Tranquillitatis . Colin Pither p5 (1.1) Graze Occultation of ZC620 on 1964 Feb 20 . Ken Stocker p6-8 (2.1) Artificial Satellite magnitude estimates : Jan-Apr . Russell Eberst p8-9 (1.0) Notes on Double Stars, Nebulae & Clusters . John Larard & James Muirden p9 (0.1) Venus at half phase . P B Withers p9 (0.1) Observations of Echo I, Echo II and Mercury . John Larard p10 (1.0) Note on the first issue 1964 Jun p1-2 (2.0) Editorial (Poor initial response, Magazine name comments) p3-4 (1.2) Jupiter Observations . Alan Heath p4-5 (1.0) Venus Observations . Alan Heath , Colin Pither p5 (0.7) Remarks on some observations of Venus . Colin Pither p5-6 (0.6) Atlas Coeli corrections (5 stars) . George Alcock p6 (0.6) Telescopic Meteors . George Alcock p7 (0.6) Solar Observations . John Larard p7 (0.3) R Pegasi Observations . John Larard p8 (1.0) Notes on Clusters & Double Stars . John Larard p9 (0.1) LQ Herculis bright . George Alcock p10 (0.1) Observations of 2 fireballs . John Larard 1964 Jly p2 (0.6) List of Members, Associates & Affiliations p3-4 (1.1) Editorial (Need for more members) p4 (0.2) Summary of June 19 meeting p4 (0.5) Exploding Fireball of 1963 Sep 12/13 .
    [Show full text]
  • HET Publication Report HET Board Meeting 4/5 June 2020 Zoom Land
    HET Publication Report HET Board Meeting 4/5 June 2020 Zoom Land 1 Executive Summary • There are now 410 peer-reviewed HET publications – Fifteen papers published in 2019 – As of 22 May, nine published papers in 2020 • HET papers have 28229 citations – Average of 69, median of 38 citations per paper – H-number of 90 – 76 papers have ≥ 100 citations; 170 have ≥ 50 cites • Wide angle surveys account for 27% of papers and 35% of citations. • Synoptic (e.g., planet searches) and Target of Opportunity (e.g., supernovae and γ-ray bursts) programs have produced 46% of the papers and 47% of the citations. • Listing of the HET papers (with ADS links) is given at http://personal.psu.edu/dps7/hetpapers.html 2 HET Program Classification Code TypeofProgram Examples 1 ToO Supernovae,Gamma-rayBursts 2 Synoptic Exoplanets,EclipsingBinaries 3 OneorTwoObjects HaloofNGC821 4 Narrow-angle HDF,VirgoCluster 5 Wide-angle BlazarSurvey 6 HETTechnical HETQueue 7 HETDEXTheory DarkEnergywithBAO 8 Other HETOptics Programs also broken down into “Dark Time”, “Light Time”, and “Other”. 3 Peer-reviewed Publications • There are now 410 journal papers that either use HET data or (nine cases) use the HET as the motivation for the paper (e.g., technical papers, theoretical studies). • Except for 2005, approximately 22 HET papers were published each year since 2002 through the shutdown. A record 44 papers were published in 2012. • In 2019 a total of fifteen HET papers appeared; nine have been published to date in 2019. • Each HET partner has published at least 14 papers using HET data. • Nineteen papers have been published from NOAO time.
    [Show full text]
  • O Personenregister
    O Personenregister A alle Zeichnungen von Sylvia Gerlach Abbe, Ernst (1840 – 1904) 100, 109 Ahnert, Paul Oswald (1897 – 1989) 624, 808 Airy, George Biddell (1801 – 1892) 1587 Aitken, Robert Grant (1864 – 1951) 1245, 1578 Alfvén, Hannes Olof Gösta (1908 – 1995) 716 Allen, James Alfred Van (1914 – 2006) 69, 714 Altenhoff, Wilhelm J. 421 Anderson, G. 1578 Antoniadi, Eugène Michel (1870 – 1944) 62 Antoniadis, John 1118 Aravamudan, S. 1578 Arend, Sylvain Julien Victor (1902 – 1992) 887 Argelander, Friedrich Wilhelm August (1799 – 1875) 1534, 1575 Aristarch von Samos (um −310 bis −230) 627, 951, 1536 Aristoteles (−383 bis −321) 1536 Augustus, Kaiser (−62 bis 14) 667 Abbildung O.1 Austin, Rodney R. D. 907 Friedrich W. Argelander B Baade, Wilhelm Heinrich Walter (1893 – 1960) 632, 994, 1001, 1535 Babcock, Horace Welcome (1912 – 2003) 395 Bahtinov, Pavel 186 Baier, G. 408 Baillaud, René (1885 – 1977) 1578 Ballauer, Jay R. (*1968) 1613 Ball, Sir Robert Stawell (1840 – 1913) 1578 Balmer, Johann Jokob (1825 – 1898) 701 Abbildung O.2 Bappu, Manali Kallat Vainu (1927 – 1982) 635 Aristoteles Barlow, Peter (1776 – 1862) 112, 114, 1538 Bartels, Julius (1899 – 1964) 715 Bath, Karl­Ludwig 104 Bayer, Johann (1572 – 1625) 1575 Becker, Wilhelm (1907 – 1996) 606 Bekenstein, Jacob David (*1947) 679, 1421 Belopolski, Aristarch Apollonowitsch (1854 – 1934) 1534 Benzenberg, Johann Friedrich (1777 – 1846) 910, 1536 Bergh, Sidney van den (*1929) 1166, 1576, 1578 Bertone, Gianfranco 1423 Bessel, Friedrich Wilhelm (1784 – 1846) 628, 630, 1534 Bethe, Hans Albrecht (1906 – 2005) 994, 1010, 1535 Binnewies, Stefan (*1960) 1613 Blandford, Roger David (*1949) 723, 727 Blazhko, Sergei Nikolajewitsch (1870 – 1956) 1293 Blome, Hans­Joachim 1523 Bobrovnikoff, Nicholas T.
    [Show full text]
  • An Illuminating Blast from the Universe's Past
    An illuminating blast from the Universe’s past — The incredible story of the brightest gamma ray burst ever seen Four decades ago, blasts of gamma-ray The dazzling afterglow radiation were discovered originating was watched by Swift’s X-ray Telescope (left) from the farthest regions of the Universe. and Optical/Ultraviolet Once poorly understood, these powerful Telescope (right). fits of stellar rage known as gamma-ray Credit: NASA/Swift/ bursts are now revealing themselves. On Stefan Immler, et al. 19 March 2008 astronomers had perhaps the best view yet of a gamma-ray burst thanks to an array of observatories and telescopes that saw a jet of material firing towards the Earth at an astounding 99.99995 percent of the speed of light. The burst, officially known as GRB 080319B, was not just emitting gamma rays. It was shining in visible light too, thanks to the energy emitted from the violent afterglow. This afterglow is difficult to observe, but with telescopes around the globe watching — some even before the burst was actually discovered (thanks to a fortunate coincidence as they were observing another burst in the same direction) — astronomers could study the burst in unprecedented detail. The visi- ble-light glow from the burst was so bright that, for just under a minute, peo- ple could have seen it with the naked eye. The Swift space observatory is dedi- The lucky few who might have spotted cated to studying gamma-ray bursts. Credit: NASA. the burst, could have seen further than anyone else on Earth as the burst broke the record for the most distant object vis- ible to the naked eye (magnitude 5.8).
    [Show full text]
  • Download (13MB)
    CSIllAGATLASZ kistávcsövEkhez 1. kiadas 2008 - lépték deklinációs irányban 4,5 cm/10 fok - csillagok 8",’0-ig, legalább -30° deklinációig 430 változó, ami valóban eléri maximumban a 9"’0-t és legalább 1™0 amplitúdója van í ■ \ - ezernél több kettős legalább 2” tágassággal és 64 oldal ¡1 9?0-nál fényesebb komponensekkel 30 térkép j'J& A - 16,5x23 cm minden mélyég-objektum 12' 0~ig keménytábla - a Tejút J. Hopmann ’30-as években készült 2 940 Forint vizuális (!) felmérése alapján 10 árnyalatban s-november • • ; ;:c A teljes tőlünk látható égboltot csillag­ £j£Vi. V.* « . • ■ , * " ’ képenként! felosztásban látjuk. • ••• ■ • /• ■ 1 t ■ ¡K ,■ ima*’’.:’ A térképlapok melletti oldalak az adott ■r 'Ù: égterület legfontosabb, legizgalmasabb 1 Cvgntis . V** • - : látnivalóiról közölnek kistávcsővel DSSHfiSK. ■ ■, ■ készült rajzokat és megfigyelésükhöz •' Vulpccuta kedvet csináló adatokat, résztérképeket. -f 5V >r * %■ A bevezetőben hasznos tanácsokat v A kapunk az égi tájékozódáshoz, a megfi­ gyelésekhez és a távcső használatához. „A változókat, kettősöket, mélyege­ eredeti méret! ket nem katalógusadatok alapján / tüntettem fel, hanem saját és más •• ■ - .5 2 • Cassiöpe.ia-. ;, magyar amatőrök megfigyelései alapján 3 szubjektív kategóriába s y s soroltam őket: 45 \ I. kát.: alap, minden objektum. tock 2 7. 6 5 4 ... II. kát.: változók legalább 8m maxi­ 663 Q 381 mummal, érdekesebb fénygörbével, 225: • 6 5 9 :‘-4*4 stb. Kettősök legalább 10" tágas­ . ■> sággal, szép színkontraszttal. V. • -JC Mélyegek, melyek 50 mm-rel Persei • •’ •-■■436 *. * 4 5 7 ^ : többnyire már láthatók. rhalmaz RW Cas • III. kát.: változók legalább 7m maxi­ mummal, nagyon könnyű és érdekes megfigyelhetőséggel. Kettősök: kis nagyítással is gyönyörű és könnyen észlelhető „tanpéldányok’’. Mélyegek: bármivel látványosak, de m ár 8-10 cm-rel lélegzetelállítók.” Vzp Geobook Hungary Kiadó, 2000 Szentendre, Péter-Pál u.
    [Show full text]