The Future of Z > 7 Astronomy with Gamma-Ray Bursts

Total Page:16

File Type:pdf, Size:1020Kb

The Future of Z > 7 Astronomy with Gamma-Ray Bursts The Future of z > 7 Astronomy with Gamma-Ray Bursts Sandra Savaglio Max-Planck Institute for Extraterrestrial Physics GRB 011121 redshift z = 0.362 3.98 Gyr ago Long-duration Gamma-Ray Burst: Short-duration Gamma-Ray Burst: Core Collapse SN Merger of Neutron Stars/Black Holes 172: number of GRBs with measured redshift today 6.7: highest redshift known 1051 ergs: typical energy emitted in photons, in a couple of minutes 10 billion years: the time required by the sun to emit the same energy 1054 ergs: energy emitted in gravitational waves and neutrinos Rate: 1/105 yr−1 / galaxy (a few / day detectable on Earth ) What can we investigate? A partial view.... 1. Star formation under extreme conditions 2. Massive stars (supernovae, WR) 3. Black Holes 4. Reionization of the universe 5. Cosmic chemical evolution 6. SFR history of the universe 7. Small galaxies at high redshift 8. First stars at z>7 9. Cosmology GRBs as cosmological probes GRB 080913 GRB 011121 most distant galaxy Big Bang most distant quasar GRB redshift record holder: GRB 080913 (z = 6.7) log N = 0.0, x =1.0 z=6.710 HI HI log NHI = 21.0, xHI=0.0 z=6.692 at z=6.74 " Ly 0 (arbitrary units) ! F 7500 8000 8500 9000 9500 Wavelength (Å) J. Greiner, T. Kruehler, J.P.U. Fynbo, A. Rossi, R. Schwarz, S. Klose, S. Savaglio, N.R. Tanvir, S. McBreen, T. Totani, B.B. Zhang, X.F. Wu, D. Watson, S.D. Barthelmy, A.P. Beardmore, P. Ferrero, N. Gehrels, D.A. Kann, N. Kawai, A. Kuepcue Yoldas, P. Meszaros, B. Milvang-Jensen, S.R. Oates, D. Pierini, P. Schady, K. Toma, P.M. Vreeswijk, A. Yoldas, B. Zhang, P. Afonso, K. Aoki, D.N. Burrows, C. Clemens, R. Filgas, Z. Haiman, D.H. Hartmann, G. Hasinger, J. Hjorth, E. Jehin, A.J. Levan, E.W. Liang, D. Malesani, T.-S. Pyo, S. Schulze, G. Szokoly, H. Terada, K. Wiersema (2009) GRB 080319B: the brightest source recorded by humanity -40 GRB 080319B z = 0.937 GRB 050904 (7.5 Gyr ago) Visual GRB 990123 magnitude -35 m=5.6 Most Luminous QSO Known -30 [AB] r M -25 distribution SDSS QSO -20 SN 2006gy 6.7 hours after m=19.1 10-4 10-2 100 102 Time Since Explosion [day] Bloom et al. (2008 March 24, ApJ Submitted, 42 pages) 2008: the Year of Gamma-Ray Bursts -40 GRB 080319B -35 Most Luminous QSO Known GRB 080319B -30 [AB] Brightest source recorded by humanity r M -25 distribution SDSS QSO -20 10-4 10-2 100 102 Time Since Explosion [day] log N = 0.0, x =1.0 z=6.710 HI HI log NHI = 21.0, xHI=0.0 z=6.692 at z=6.74 " Ly GRB 080913 Second most distant object known 0 (arbitrary units) ! F 7500 8000 8500 9000 9500 Wavelength (Å) GRB redshift distribution GRB redshift Near IR Berger et al. (2007) Berger etal. GRB host GRB 050904z=6.3 confirmed galaxyatz>5 Smallest spectroscopically Z/Z M ✶ ☉ ~ 10 ~1/6 9.5 M ☉ Only seenwithGRBs Only –18 –1 –2 –1 flux (10 erg s cm Å ) (2006) etal. Totani 1.5 0.0 0.5 1.0 7000 GRB afterglow Savaglio. Glazebrook &LeBorgne(2009) Glazebrook Savaglio. 7500 Ly-! 1.0 0.0 8700 SED ofGRBhost 8000 observed wavelength (Å) 9500 8500 Ly-" 9000 CIV at z=4.840 S II, Si II Si II* 9500 O I C II 10000 Only seen with GRBs Fine structure lines in ISM out of Milky Way GRB 060418 z=1.490 Vreeswijk, Ledoux, Smette, Ellison, Jaunsen, Andersen, Fruchter, Fynbo, Hjorth, Kaufer, Møller, Petitjean, Savaglio, Wijers (2007) Only seen with GRBs 2175 Å dust bump at high redshift Wavelength [Å] GRB rest frame 1000 2000 3000 4000 5000 6000 7000 18 19 100 2175 Å dust bump 20 GRB 070802 z=2.45 Jy] µ 21 10 AB Magnitude 22 Flux density [ 23 LMC−like: A =1.8 24 V 1 SMC−like: AV=1.0 MW−like: AV=0.9 Data 5000 10000 15000 20000 25000 Wavelength [Å] observers frame Krühler, Küpcü Yoldaş, Greiner, Clemens, McBreen, Primak, Savaglio, Yoldaş, Szokoly, Klose (2008) Only seen with GRBs 2175 Å dust bump at high redshift 2.0 ) 2 1.5 GRB 080607 z=3.036 1.0 AV = 3.2 0.5 Relative Flux (erg/s/Ang/cm 0.0 4000 4500 5000 5500 ) 2 Wavelength (Ang) 6 2175 Å bump 4 2 0 6000 7000 8000 9000 Relative Flux (erg/s/Ang/cm Wavelength (Ang) Prochaska et al. (2009) flux (10–18 erg s–1 cm–2 Å–1) 0.0 0.0 0.5 0.5 1.0 1.0 1.5 1.5 7000 7000 Totani et al. (2006) etal. Totani GRB 050904atz=6.3 GRB 050904atz=6.3 7500 7500 Ly-! Reionization of the universe Reionization oftheuniverse 1.0 1.0 0.0 0.0 8700 8700 8000 8000 observed wavelength(Å) observed wavelength(Å) 9500 9500 8500 8500 Ly-" 9000 9000 CIV at z=4.840 S II, Sii II Sii II* 9500 9500 O I C II 10000 10000 Reionization of the universe IGM largelyIGM was already ionized largely ionized byat z = 6z.3 = 6.3 GRB 050904 at z=6.3 Totani et al. (2006) Star formation rate density of the universe t [Gyr] Chary, Berger, & Cowie (2007) 13 8 42 1 1 ] -0.3 (1+z) -3 0.1 3.4 -3.5 (1+z) (1+z) Mpc -1 -2 yr 10 . GRB: Yüksel et al. (2008) Hopkins & Beacom (2006) [M LBG: Bouwens et al. (2008) * -3 . R 10 Mannucci et al. (2007) Verma et al. (2007) LAE: Ota et al. (2008) -4 10 0 1 234 5 6 7 8 z Yüksel, Kistler, Beacom, & Hopkins (2008) Rasmussen (NBI) Rasmussen Board P.I. : S. D’Odorico (ESO), F. Hammer (GEPI), L. Kaper (Univ. Amsterdam), R. Pallavicini (INAF), P. Kjaergaard Kjaergaard P. (INAF), Pallavicini R. Amsterdam), (Univ. Kaper L. Hammer(GEPI), F. D’Odorico (ESO), S. : Prototype instrument for ELT instrumentfor Prototype flux (10–18 erg s–1 cm–2 Å–1) 1.5 0.0 0.5 1.0 GRB 050904 at z=6.3 (Totani etal.2006) GRB 050904atz=6.3(Totani 7000 7500 Ly-! GRB 050904 at z=11.3 1.0 0.0 8700 8000 observed wavelength(Å) 9500 8500 Ly-" 9000 CIV at z=4.840 S II, Si II Si II* 9500 O I C II 10000 WhatPrototype can we instrument expect with for ELT?ELT (S. D’Odorico, private communication) GRB 080319B at z = 9 with ELT NIR magnitude m = 11.5 -40 -40 GRB 080319B GRB 080319B at z = 9 z = 0.937 (0.5 Gyr after BB) (7.5 Gyr ago) -35 -35 Most Luminous QSO Known Most Luminous QSO Known -30 -30 [AB] [AB] r r M M -25 -25 distribution SDSS QSO distribution SDSS QSO -20 -20 -4 -2 0 2 10 10 10 10 10-3 10-1- 10 1000 Time Since Explosion [day] Observed Time Since Explosion [day] 34.7 hours after m = 25.0 Conclusions ➊ GRBs shining through a universe hard to see in other ways ➋ GRBs very promising probes of z > 7 universe ➌ Ideal targets for ELTs .
Recommended publications
  • Astronomical Distances
    The Act of Measurement I: Astronomical Distances B. F. Riley The act of measurement causes astronomical distances to adopt discrete values. When measured, the distance to the object corresponds through an inverse 5/2 power law – the Quantum/Classical connection – to a sub-Planckian mass scale on a level or sub-level of one or both of two geometric sequences, of common ratio 1/π and 1/e, that descend from the Planck mass and may derive from the geometry of a higher-dimensional spacetime. The distances themselves lie on the levels and sub-levels of two sequences, of common ratio π and e, that ascend from the Planck length. Analyses have been performed of stellar distances, the semi-major axes of the planets and planetary satellites of the Solar System and the distances measured to quasars, galaxies and gamma-ray bursts. 1 Introduction Using Planck units the Quantum/Classical connection, characterised by the equation (1) maps astronomical distances R – in previous papers only the radii of astronomical bodies [1, 2] – onto sub-Planckian mass scales m on the mass levels and sub-levels1 of two geometric sequences that descend from the Planck mass: Sequence 1 of common ratio 1/π and Sequence 3 of common ratio 1/e.2 The sequences may derive from the geometry of a higher-dimensional spacetime [3]. First, we show that several distances associated with the Alpha Centauri system correspond through (1) to the mass scales of principal levels3 in Sequences 1 and 3. We then show that the mass scales corresponding through (1) to the distances from both Alpha Centauri and the Sun to the other stars lie on the levels and sub-levels of Sequences 1 and 3.
    [Show full text]
  • HET Publication Report HET Board Meeting 3/4 December 2020 Zoom Land
    HET Publication Report HET Board Meeting 3/4 December 2020 Zoom Land 1 Executive Summary • There are now 420 peer-reviewed HET publications – Fifteen papers published in 2019 – As of 27 November, nineteen published papers in 2020 • HET papers have 29363 citations – Average of 70, median of 39 citations per paper – H-number of 90 – 81 papers have ≥ 100 citations; 175 have ≥ 50 cites • Wide angle surveys account for 26% of papers and 35% of citations. • Synoptic (e.g., planet searches) and Target of Opportunity (e.g., supernovae and γ-ray bursts) programs have produced 47% of the papers and 47% of the citations, respectively. • Listing of the HET papers (with ADS links) is given at http://personal.psu.edu/dps7/hetpapers.html 2 HET Program Classification Code TypeofProgram Examples 1 ToO Supernovae,Gamma-rayBursts 2 Synoptic Exoplanets,EclipsingBinaries 3 OneorTwoObjects HaloofNGC821 4 Narrow-angle HDF,VirgoCluster 5 Wide-angle BlazarSurvey 6 HETTechnical HETQueue 7 HETDEXTheory DarkEnergywithBAO 8 Other HETOptics Programs also broken down into “Dark Time”, “Light Time”, and “Other”. 3 Peer-reviewed Publications • There are now 420 journal papers that either use HET data or (nine cases) use the HET as the motivation for the paper (e.g., technical papers, theoretical studies). • Except for 2005, approximately 22 HET papers were published each year since 2002 through the shutdown. A record 44 papers were published in 2012. • In 2020 a total of fifteen HET papers appeared; nineteen have been published to date in 2020. • Each HET partner has published at least 14 papers using HET data. • Nineteen papers have been published from NOAO time.
    [Show full text]
  • Arxiv:0902.2419V2 [Astro-Ph.HE] 6 Aug 2009 Ls Ntecr/AS R Ae Ntebimodal Diagram 1993) the Duration-Hardness Al
    2009, ApJ, in press Preprint typeset using LATEX style emulateapj v. 08/22/09 DISCERNING THE PHYSICAL ORIGINS OF COSMOLOGICAL GAMMA-RAY BURSTS BASED ON MULTIPLE OBSERVATIONAL CRITERIA: THE CASES OF Z =6.7 GRB 080913, Z =8.3 GRB 090423, AND SOME SHORT/HARD GRBS Bing Zhang1, Bin-Bin Zhang1, Francisco J. Virgili1, En-Wei Liang2, D. Alexander Kann3, Xue-Feng Wu4,5, Daniel Proga1, Hou-Jun Lv2, Kenji Toma4, Peter Mesz´ aros´ 4,6, David N. Burrows4, Peter W. A. Roming4, Neil Gehrels7 Draft version October 2, 2018 ABSTRACT The two high-redshift gamma-ray bursts, GRB 080913 at z = 6.7 and GRB 090423 at z = 8.3, recently detected by Swift appear as intrinsically short, hard GRBs. They could have been recognized by BATSE as short/hard GRBs should they have occurred at z 1. In order to address their physi- cal origin, we perform a more thorough investigation on two physica≤ lly distinct types (Type I/II) of cosmological GRBs and their observational characteristics. We reiterate the definitions of Type I/II GRBs and then review the following observational criteria and their physical motivations: supernova association, specific star forming rate of the host galaxy, location offset, duration, hardness, spectral lag, statistical correlations, energetics and collimation, afterglow properties, redshift distribution, lu- minosity function, and gravitational wave signature. Contrary to the traditional approach of assigning the physical category based on the gamma-ray properties (duration, hardness, and spectral lag), we take an alternative approach to define the Type I and Type II Gold Samples using several criteria that are more directly related to the GRB progenitors (supernova association, host galaxy type, and specific star forming rate).
    [Show full text]
  • SPACETIME SINGULARITIES: the STORY of BLACK HOLES
    1 SPACETIME SINGULARITIES: The STORY of BLACK HOLES We have already seen that the Big Bang is a kind of 'singularity' in the structure of spacetime. To the question "what was before the Big Bang?", one can reply, at least in the context of GR, that the question actually has no meaning - that time has no meaning 'before' the Big Bang. The point is that the universe can be ¯nite in extent in both time and space, and yet have no boundary in either. We saw what a curved space which is ¯nite in size but has no boundary means for a 2-d surface - a balloon is an example. Notice that if we made a balloon that curved smoothly except at one point (we could, for example, pinch it at this point) we could say that the balloon surface curvature was singular (ie., in¯nite) at this point. The idea of a 4-d spacetime with no boundary in spacetime, but with a ¯nite spacetime 4-dimensional volume, is a simple generalization of this. And just as it makes no sense, inside a 2-d balloon, to ask where the boundary is, we can have spacetime geometries which have no boundary in space or time, or where spacetime 'terminates' at a singularity. All of this is easy to say, but the attitude of most early workers in GR was to ignore the possible existence of singularities, and/or hope that they would just go away. The reaction of Einstein to the discovery of singular solutions to his equations was quite striking.
    [Show full text]
  • The Two-Component Jet of GRB 080413B⋆
    A&A 526, A113 (2011) Astronomy DOI: 10.1051/0004-6361/201015320 & c ESO 2011 Astrophysics The two-component jet of GRB 080413B R. Filgas1, T. Krühler1,2, J. Greiner1,A.Rau1, E. Palazzi3,S.Klose4, P. Schady1, A. Rossi4,P.M.J.Afonso1, L. A. Antonelli5,C.Clemens1,S.Covino6,P.D’Avanzo6, A. Küpcü Yolda¸s7,8,M.Nardini1, A. Nicuesa Guelbenzu4, F. Olivares1,E.A.C.Updike9,andA.Yolda¸s1,8 1 Max-Planck-Institut für extraterrestrische Physik, Giessenbachstraße 1, 85748 Garching, Germany, e-mail: [email protected] 2 Universe Cluster, Technische Universität München, Boltzmannstraße 2, 85748 Garching, Germany 3 INAF - IASF di Bologna, via Gobetti 101, 40129 Bologna, Italy 4 Thüringer Landessternwarte Tautenburg, Sternwarte 5, 07778 Tautenburg, Germany 5 INAF - Osservatorio Astronomico di Roma, via di Frascati 33, 00040 Monteporzio Catone (Roma), Italy 6 INAF - Osservatorio Astronomico di Brera, via Bianchi 46, 23807 Merate, Italy 7 European Southern Observatory, Karl-Schwarzschild-Straße 2, 85748 Garching, Germany 8 Institute of Astronomy, University of Cambridge, Madingley Road, CB3 0HA Cambridge, UK 9 Department of Physics and Astronomy, Clemson University, Clemson, SC 29634-0978, USA Received 1 July 2010 / Accepted 2 October 2010 ABSTRACT Aims. The quick and precise localization of GRBs by the Swift telescope allows the early evolution of the afterglow light curve to be captured by ground-based telescopes. With GROND measurements we can investigate the optical/near-infrared light curve of the afterglow of gamma-ray burst 080413B in the context of late rebrightening. Methods. Multi-wavelength follow-up observations were performed on the afterglow of GRB 080413B.
    [Show full text]
  • Astronomy 2009 Index
    Astronomy Magazine 2009 Index Subject Index 1RXS J160929.1-210524 (star), 1:24 4C 60.07 (galaxy pair), 2:24 6dFGS (Six Degree Field Galaxy Survey), 8:18 21-centimeter (neutral hydrogen) tomography, 12:10 93 Minerva (asteroid), 12:18 2008 TC3 (asteroid), 1:24 2009 FH (asteroid), 7:19 A Abell 21 (Medusa Nebula), 3:70 Abell 1656 (Coma galaxy cluster), 3:8–9, 6:16 Allen Telescope Array (ATA) radio telescope, 12:10 ALMA (Atacama Large Millimeter/sub-millimeter Array), 4:21, 9:19 Alpha (α) Canis Majoris (Sirius) (star), 2:68, 10:77 Alpha (α) Orionis (star). See Betelgeuse (Alpha [α] Orionis) (star) Alpha Centauri (star), 2:78 amateur astronomy, 10:18, 11:48–53, 12:19, 56 Andromeda Galaxy (M31) merging with Milky Way, 3:51 midpoint between Milky Way Galaxy and, 1:62–63 ultraviolet images of, 12:22 Antarctic Neumayer Station III, 6:19 Anthe (moon of Saturn), 1:21 Aperture Spherical Telescope (FAST), 4:24 APEX (Atacama Pathfinder Experiment) radio telescope, 3:19 Apollo missions, 8:19 AR11005 (sunspot group), 11:79 Arches Cluster, 10:22 Ares launch system, 1:37, 3:19, 9:19 Ariane 5 rocket, 4:21 Arianespace SA, 4:21 Armstrong, Neil A., 2:20 Arp 147 (galaxy pair), 2:20 Arp 194 (galaxy group), 8:21 art, cosmology-inspired, 5:10 ASPERA (Astroparticle European Research Area), 1:26 asteroids. See also names of specific asteroids binary, 1:32–33 close approach to Earth, 6:22, 7:19 collision with Jupiter, 11:20 collisions with Earth, 1:24 composition of, 10:55 discovery of, 5:21 effect of environment on surface of, 8:22 measuring distant, 6:23 moons orbiting,
    [Show full text]
  • The Afterglows of Swift-Era Short and Long Gamma-Ray Bursts
    The Afterglows of Swift-era Short and Long Gamma-Ray Bursts Dissertation zur Erlangung des akademischen Grades Dr. rer. nat. vorgelegt dem Rat der Physikalisch-Astronomischen Fakult¨at der Friedrich-Schiller-Universit¨atJena eingereicht von Dipl.-Phys. David Alexander Kann geboren am 15.02.1977 in Trier Gutachter 1. Prof. Dr. Artie Hatzes, Th¨uringer Landessternwarte Tautenburg, Sternwarte 5, 07778 Tautenburg 2. Prof. Dr. J¨orn Wilms, Dr. Remeis-Sternwarte, Sternwartstraße 7, 96049 Bamberg 3. PD Dr. Hans-Thomas Janka, Max-Planck-Institut fr Astrophysik, Karl-Schwarzschild-Str. 1, 85748 Garching Tag der letzten Rigorosumspr¨ufung: 13. 07. 2011 Tag der ¨offentlichen Verteidigung: 13. 07. 2011 Zusammenfassung Das Ph¨anomen der Gammastrahlenausbr¨uche (Englisch: Gamma-Ray Bursts, kurz: GRBs) war auch lange nach ihrer Entdeckung vor ¨uber vier Jahrzehnten ein großes R¨atsel. Selbst heute, ¨uber ein Jahrzehnt seit Beginn der “Ara¨ der Nachgl¨uhen” (engl.: Afterglows) sind noch viele Fragen unbeantwortet. Das akzeptierte Bild, welches einen Großteil der Daten erkl¨aren kann ist, dass GRBs erzeugt werden, wenn ein massereicher Himmelsk¨orper (en- tweder ein Stern, der die Hauptreihe verlassen hat, oder miteinander verschmelzende kom- pakte Objekte) in kosmologischer Distanz zu einem schnell rotierenden Objekt kollabiert (ein Schwarzes Loch oder vielleicht ein kurzlebiger Magnetar), welches ultrarelativistische Materieausw¨urfe (sogenannte “Jets”) entlang der Polachse ausschleudert. Die interne Dissi- pation von Energie in dem Jet f¨uhrt zu kollimierter nicht-thermischer Strahlung bei hohen Energien (der eigentliche GRB), w¨ahrend Schockfronten, die bei der Interaktion des Jets mit der interstellaren Materie erzeugt werden, zu einem langlebigen abklingenden Afterglows f¨uhren. Die gesammelten physikalischen Prozesse, die die GRB-Emission beschreiben, werden als das Standard-Feuerballmodell bezeichnet.
    [Show full text]
  • The Naked-Eye Optical Transient OT 120926
    The Naked-eye Optical Transient OT 120926 Yue Zhao Department of Physics, Lanzhou University, Lanzhou, China, and Department of Physics and Astronomy, York University, Toronto, Ontario, Canada Patrick B. Hall, Paul Delaney, J. Sandal Department of Physics and Astronomy, York University, Toronto, Ontario, Canada Abstract: A previously unknown optical transient has been observed in the constellation Bootes. The transient flared to brighter than 5th magnitude, which is comparable to the visual magnitudes of the nearby stars π Bootes and ο Bootes. This article describes the relative astrometry and photometry work we have done regarding the transient. Introduction: Distant astronomical sources normally invisible to the naked eye which transiently brighten by more than a magnitude to naked-eye visibility (V<6) are of considerable scientific interest. Specific examples include a flare on the Be star HD 160202 (peak V~1, Bakos 1968), SN 1987A (peak V=2.96, Hamuy et al. 1988), GRB 080319B (peak V=5.3, Cwiok et al. 2008, Bloom et al. 2009), and possibly OT 060420 (apparent peak V=4.7, Shamir & Nemiroff 2006). Cataclysmic variable eruptions and flares on M dwarf stars can also in principle create naked-eye transients. M dwarf flares can have peak brightenings, in units of magnitudes of ΔV=6 (Stelzer et al. 2006, Kowalski et al. 2013) and even ΔV=9 (Stanek et al. 2013, Schmidt et al. 2013) or ΔB=9.5 (Schaefer 1990). Cataclysmic variables such as classical novae or dwarf novae of the WZ Sge subtype can brighten by up to ΔV=7.5 magnitudes (Harrison et al.
    [Show full text]
  • High Excitation Lines of HCN and HCO+ in the Cloverleaf Quasar
    iramNumber 75 infoAugust 2010 Word from the Director Dear IRAM Newsletter Readers, High excitation lines of + You will find hereafter the new issue of HCN and HCO in the the IRAM Newsletter, which also includes the call for proposals for the winter semester 2010/2011. Cloverleaf quasar Since the last issue, important by Michel Guélin on behalf of an IRAM Grenoble & Granada team enhancements have been made at the IRAM facilities. I would like to underline the successful commissioning of the new PdBI correlator, WideX, which is now fully operational and working within expectations. the leaves of a lucky Since March, many scientific results were clover. obtained using WideX that would have Sub-arcsec resolution been impossible or very difficult before. One such example includes the 3 mm observations of spectrum of the Cloverleaf, which was the CO J=7-6 line obtained in only 3 hours and displays with PdBI show multiple molecular emission lines. It illustrates the powerful combination the same pattern of WideX with the PdBI broadband (Kneib et al. 1998). receivers. Modeling of the lens and source shows The Large Programs continue to be a CO emission arises he Cloverleaf (H1413+117), the success and this issue describes the from a tilted disk results of a program that is studying archetype of gravitationally lensed T 0.8 kpc in radius (Venturini & Solomon the molecular gas content in galaxies at quasars, is one of the most luminous redshifts 1<z<3. 2003). The physical conditions in the and best studied objects of the distant disk are however ill constrained from the Universe.
    [Show full text]
  • The Afterglows of Swift-Era Gamma-Ray Bursts. I. Comparing
    Submitted to ApJ, 16th of July 2010 Preprint typeset using LATEX style emulateapj v. 08/22/09 THE AFTERGLOWS OF SWIFT -ERA GAMMA-RAY BURSTS. I. COMPARING PRE-SWIFT AND SWIFT ERA LONG/SOFT (TYPE II) GRB OPTICAL AFTERGLOWS ∗ D. A. Kann,1 S. Klose,1 B. Zhang,2 D. Malesani,3 E. Nakar,4,5 A. Pozanenko,6 A. C. Wilson,7 N. R. Butler,8,9 P. Jakobsson,10,11 S. Schulze,1,11 M. Andreev,12,13 L. A. Antonelli,14 I. F. Bikmaev,15 V. Biryukov,16,17 M. Bottcher,¨ 18 R. A. Burenin,6 J. M. Castro Ceron,´ 3,19 A. J. Castro-Tirado,20 G. Chincarini,21,22 B. E. Cobb,23,24 S. Covino,21 P. D’Avanzo,22,25 V. D’Elia,14,26 M. Della Valle,27,28,29 A. de Ugarte Postigo,21 Yu. Efimov,16 P. Ferrero,1,30 D. Fugazza,21 J. P. U. Fynbo,3 M. G˚alfalk,31 F. Grundahl,32 J. Gorosabel,20 S. Gupta,18 S. Guziy,20 B. Hafizov,33 J. Hjorth,3 K. Holhjem,34,35 M. Ibrahimov,33 M. Im,36 G. L. Israel,14 M. Je´linek,20 B. L. Jensen,3 R. Karimov,33 I. M. Khamitov,37 U.¨ Kızıloglu,ˇ 38 E. Klunko,39 P. Kubanek,´ 19 A. S. Kutyrev,40 P. Laursen,3 A. J. Levan,41 F. Mannucci,42 C. M. Martin,43 A. Mescheryakov,6 N. Mirabal,44 J. P. Norris,45 J.-E. Ovaldsen,46 D. Paraficz,3 E. Pavlenko,17 S. Piranomonte,14 A.
    [Show full text]
  • Staff, Visiting Scientists and Graduate Students 2013
    Staff, Visiting Scientists and Graduate Students at the Pescara Center December 2013 Contents ICRANet Faculty Staff……………………………………………………………………. p. 12 Adjunct Professors of the Faculty .……………………………………………………… p. 39 Lecturers…………………………………………………………………………………… p. 83 Research Scientists ……………………………………………………………………….. p. 100 Visiting Scientists ………………………………………………………………………... p. 109 IRAP Ph. D. Students ……………………………………………………………………. p. 130 IRAP Ph. D. Erasmus Mundus Students………………………………………………. p. 161 Administrative and Secretarial Staff …………………………………………………… p. 184 ICRANet Faculty Staff Belinski Vladimir ICRANet Bianco Carlo Luciano University of Rome “Sapienza” and ICRANet Einasto Jaan Tartu Observatory, Estonia Izzo Luca University of Rome “Sapienza” Novello Mario Cesare Lattes-ICRANet Chair CBPF, Rio de Janeiro, Brasil Rueda Jorge A. University of Rome “Sapienza” and ICRANet Ruffini Remo University of Rome “Sapienza” and ICRANet Vereshchagin Gregory ICRANet Xue She-Sheng ICRANet 1 Adjunct Professors Of The Faculty Aharonian Felix Albert Benjamin Jegischewitsch Markarjan Chair Dublin Institute for Advanced Studies, Dublin, Ireland Max-Planck-Institut für Kernphysis, Heidelberg, Germany Amati Lorenzo Istituto di Astrofisica Spaziale e Fisica Cosmica, Italy Arnett David Subramanyan Chandrasektar- ICRANet Chair University of Arizona, Tucson, USA Chakrabarti Sandip P. Centre for Space Physics, India Chardonnet Pascal Université de la Savoie, France Chechetkin Valeri Mstislav Vsevolodich Keldysh-ICRANet Chair Keldysh institute for Applied Mathematics
    [Show full text]
  • The Benefit of Simultaneous Seven-Filter Imaging: 10 Years of Grond Observations
    Draft version December 4, 2018 Typeset using LATEX preprint2 style in AASTeX61 THE BENEFIT OF SIMULTANEOUS SEVEN-FILTER IMAGING: 10 YEARS OF GROND OBSERVATIONS J. Greiner1 1Max-Planck-Institut für extraterrestrische Physik, 85740 Garching, Germany ABSTRACT A variety of scientific results have been achieved over the last 10 years with the GROND simul- taneous 7-channel imager at the 2.2m telescope of the Max-Planck Society at ESO/La Silla. While designed primarily for rapid observations of gamma-ray burst afterglows, the combination of si- 0 0 0 0 multaneous imaging in the Sloan g r i z and near-infrared JHKs bands at a medium-sized (2.2 m) telescope and the very flexible scheduling possibility has resulted in an extensive use for many other astrophysical research topics, from exoplanets and accreting binaries to galaxies and quasars. Keywords: instrumentation: detectors, techniques: photometric arXiv:1812.00636v1 [astro-ph.HE] 3 Dec 2018 [email protected] 2 1. INTRODUCTION (5) mapping of galaxies to study their stel- An increasing number of scientific questions lar population; (6) multi-color light curves of require the measurement of spatially and spec- supernovae to, e.g., recognize dust formation trally resolved intensities of radiation from as- (Taubenberger et al. 2006); (7) differentiat- trophysical objects. Over the last decade, tran- ing achromatic microlensing events (Paczyn- sient and time-variable sources are increasingly ski 1986) from other variables with similar moving in the focus of present-day research light curves; (8) identifying objects with pe- (with its separate naming of “time-domain as- culiar SEDs, e.g.
    [Show full text]