Péter Veres – Curriculum Vitae
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Pos(MULTIF2017)001
Multifrequency Astrophysics (A pillar of an interdisciplinary approach for the knowledge of the physics of our Universe) ∗† Franco Giovannelli PoS(MULTIF2017)001 INAF - Istituto di Astrofisica e Planetologia Spaziali, Via del Fosso del Cavaliere, 100, 00133 Roma, Italy E-mail: [email protected] Lola Sabau-Graziati INTA- Dpt. Cargas Utiles y Ciencias del Espacio, C/ra de Ajalvir, Km 4 - E28850 Torrejón de Ardoz, Madrid, Spain E-mail: [email protected] We will discuss the importance of the "Multifrequency Astrophysics" as a pillar of an interdis- ciplinary approach for the knowledge of the physics of our Universe. Indeed, as largely demon- strated in the last decades, only with the multifrequency observations of cosmic sources it is possible to get near the whole behaviour of a source and then to approach the physics governing the phenomena that originate such a behaviour. In spite of this, a multidisciplinary approach in the study of each kind of phenomenon occurring in each kind of cosmic source is even more pow- erful than a simple "astrophysical approach". A clear example of a multidisciplinary approach is that of "The Bridge between the Big Bang and Biology". This bridge can be described by using the competences of astrophysicists, planetary physicists, atmospheric physicists, geophysicists, volcanologists, biophysicists, biochemists, and astrobiophysicists. The unification of such com- petences can provide the intellectual framework that will better enable an understanding of the physics governing the formation and structure of cosmic objects, apparently uncorrelated with one another, that on the contrary constitute the steps necessary for life (e.g. Giovannelli, 2001). -
Science Olympiad Astronomy C Division Event University of Chicago Invitational
Science Olympiad Astronomy C Division Event University of Chicago Invitational University of Chicago Chicago, IL January 11, 2020 Team Number: Team Name: Instructions: 1) Please turn in all materials at the end of the event. 2) Do not forget to put your team name and team number at the top of all answer pages. 3) Write all answers on the lines on the answer pages. Any marks elsewhere will not be scored. 4) Do not worry about significant figures. Use 3 or more in your answers, regardless of how many are in the question. 5) Please do not access the internet during the event. If you do so, your team will be disqualified. 6) Feel free to take apart the test and staple it back together at the end! 7) Good luck! And may the stars be with you! 1 Section A: Use the Image/Illustration Set to answer the following questions. Each sub-question in this section is worth one point. 1. Image 1 shows the Bullet Cluster. (a) What part of the electromagnetic spectrum was this image taken in? (b) What do the blue regions correspond to? (c) How was the matter in the blue regions detected? (d) Which other image shows this cluster? 2. Image 2 shows part of M87. (a) What part of M87 does this image show? (b) What part of the electromagnetic spectrum was this image taken in? (c) Which image shows a zoomed-in radio observation of this region? (d) What type of astronomical object is shown in the image from part (c)? 3. -
Astronomical Distances
The Act of Measurement I: Astronomical Distances B. F. Riley The act of measurement causes astronomical distances to adopt discrete values. When measured, the distance to the object corresponds through an inverse 5/2 power law – the Quantum/Classical connection – to a sub-Planckian mass scale on a level or sub-level of one or both of two geometric sequences, of common ratio 1/π and 1/e, that descend from the Planck mass and may derive from the geometry of a higher-dimensional spacetime. The distances themselves lie on the levels and sub-levels of two sequences, of common ratio π and e, that ascend from the Planck length. Analyses have been performed of stellar distances, the semi-major axes of the planets and planetary satellites of the Solar System and the distances measured to quasars, galaxies and gamma-ray bursts. 1 Introduction Using Planck units the Quantum/Classical connection, characterised by the equation (1) maps astronomical distances R – in previous papers only the radii of astronomical bodies [1, 2] – onto sub-Planckian mass scales m on the mass levels and sub-levels1 of two geometric sequences that descend from the Planck mass: Sequence 1 of common ratio 1/π and Sequence 3 of common ratio 1/e.2 The sequences may derive from the geometry of a higher-dimensional spacetime [3]. First, we show that several distances associated with the Alpha Centauri system correspond through (1) to the mass scales of principal levels3 in Sequences 1 and 3. We then show that the mass scales corresponding through (1) to the distances from both Alpha Centauri and the Sun to the other stars lie on the levels and sub-levels of Sequences 1 and 3. -
LIST of PUBLICATIONS Aryabhatta Research Institute of Observational Sciences ARIES (An Autonomous Scientific Research Institute
LIST OF PUBLICATIONS Aryabhatta Research Institute of Observational Sciences ARIES (An Autonomous Scientific Research Institute of Department of Science and Technology, Govt. of India) Manora Peak, Naini Tal - 263 129, India (1955−2020) ABBREVIATIONS AA: Astronomy and Astrophysics AASS: Astronomy and Astrophysics Supplement Series ACTA: Acta Astronomica AJ: Astronomical Journal ANG: Annals de Geophysique Ap. J.: Astrophysical Journal ASP: Astronomical Society of Pacific ASR: Advances in Space Research ASS: Astrophysics and Space Science AE: Atmospheric Environment ASL: Atmospheric Science Letters BA: Baltic Astronomy BAC: Bulletin Astronomical Institute of Czechoslovakia BASI: Bulletin of the Astronomical Society of India BIVS: Bulletin of the Indian Vacuum Society BNIS: Bulletin of National Institute of Sciences CJAA: Chinese Journal of Astronomy and Astrophysics CS: Current Science EPS: Earth Planets Space GRL : Geophysical Research Letters IAU: International Astronomical Union IBVS: Information Bulletin on Variable Stars IJHS: Indian Journal of History of Science IJPAP: Indian Journal of Pure and Applied Physics IJRSP: Indian Journal of Radio and Space Physics INSA: Indian National Science Academy JAA: Journal of Astrophysics and Astronomy JAMC: Journal of Applied Meterology and Climatology JATP: Journal of Atmospheric and Terrestrial Physics JBAA: Journal of British Astronomical Association JCAP: Journal of Cosmology and Astroparticle Physics JESS : Jr. of Earth System Science JGR : Journal of Geophysical Research JIGR: Journal of Indian -
Gravitational Waves and Gamma-Rays from a Binary Neutron Star Merger: Gw170817 and Grb 170817A
Draft version October 15, 2017 Typeset using LATEX twocolumn style in AASTeX61 GRAVITATIONAL WAVES AND GAMMA-RAYS FROM A BINARY NEUTRON STAR MERGER: GW170817 AND GRB 170817A B. P. Abbott,1 R. Abbott,1 T. D. Abbott,2 F. Acernese,3, 4 K. Ackley,5, 6 C. Adams,7 T. Adams,8 P. Addesso,9 R. X. Adhikari,1 V. B. Adya,10 C. Affeldt,10 M. Afrough,11 B. Agarwal,12 M. Agathos,13 K. Agatsuma,14 N. Aggarwal,15 O. D. Aguiar,16 L. Aiello,17, 18 A. Ain,19 P. Ajith,20 B. Allen,10, 21, 22 G. Allen,12 A. Allocca,23, 24 M. A. Aloy,25 P. A. Altin,26 A. Amato,27 A. Ananyeva,1 S. B. Anderson,1 W. G. Anderson,21 S. V. Angelova,28 S. Antier,29 S. Appert,1 K. Arai,1 M. C. Araya,1 J. S. Areeda,30 N. Arnaud,29, 31 K. G. Arun,32 S. Ascenzi,33, 34 G. Ashton,10 M. Ast,35 S. M. Aston,7 P. Astone,36 D. V. Atallah,37 P. Aufmuth,22 C. Aulbert,10 K. AultONeal,38 C. Austin,2 A. Avila-Alvarez,30 S. Babak,39 P. Bacon,40 M. K. M. Bader,14 S. Bae,41 P. T. Baker,42 F. Baldaccini,43, 44 G. Ballardin,31 S. W. Ballmer,45 S. Banagiri,46 J. C. Barayoga,1 S. E. Barclay,47 B. C. Barish,1 D. Barker,48 K. Barkett,49 F. Barone,3, 4 B. Barr,47 L. Barsotti,15 M. Barsuglia,40 D. Barta,50 J. -
The Study of Astronomical Transients in the Infrared
The Study of Astronomical Transients in the Infrared by Robert Strausbaugh A Dissertation Presented in Partial Fulfillment of the Requirements for the Degree Doctor of Philosophy Approved May 2019 by the Graduate Supervisory Committee: Nathaniel Butler, Chair Rolf Jansen Phillip Mauskopf Rogier Windhorst ARIZONA STATE UNIVERSITY August 2019 ©2019 Robert Strausbaugh All Rights Reserved ABSTRACT Several key, open questions in astrophysics can be tackled by searching for and mining large datasets for transient phenomena. The evolution of massive stars and compact objects can be studied over cosmic time by identifying supernovae (SNe) and gamma-ray bursts (GRBs) in other galaxies and determining their redshifts. Modeling GRBs and their afterglows to probe the jets of GRBs can shed light on the emission mechanism, rate, and energetics of these events. In Chapter 1, I discuss the current state of astronomical transient study, including sources of interest, instrumentation, and data reduction techniques, with a focus on work in the infrared. In Chapter 2, I present original work published in the Proceedings of the Astronomical Society of the Pacific, testing InGaAs infrared detectors for astronomical use (Strausbaugh, Jackson, and Butler 2018); highlights of this work include observing the exoplanet transit of HD189773B, and detecting the nearby supernova SN2016adj with an InGaAs detector mounted on a small telescope at ASU. In Chapter 3, I discuss my work on GRB jets published in the Astrophysical Journal Letters, highlighting the interesting case of GRB 160625B (Strausbaugh et al. 2019), where I interpret a late-time bump in the GRB afterglow lightcurve as evidence for a bright-edged jet. -
Arxiv:1802.07727V1 [Astro-Ph.HE] 21 Feb 2018 Tion Systems to Standard Candles in Cosmology (E.G., Wijers Et Al
Astronomy & Astrophysics manuscript no. XSGRB_sample_arxiv c ESO 2018 2018-02-23 The X-shooter GRB afterglow legacy sample (XS-GRB)? J. Selsing1;??, D. Malesani1; 2; 3,y, P. Goldoni4,y, J. P. U. Fynbo1; 2,y, T. Krühler5,y, L. A. Antonelli6,y, M. Arabsalmani7; 8, J. Bolmer5; 9,y, Z. Cano10,y, L. Christensen1, S. Covino11,y, P. D’Avanzo11,y, V. D’Elia12,y, A. De Cia13, A. de Ugarte Postigo1; 10,y, H. Flores14,y, M. Friis15; 16, A. Gomboc17, J. Greiner5, P. Groot18, F. Hammer14, O.E. Hartoog19,y, K. E. Heintz1; 2; 20,y, J. Hjorth1,y, P. Jakobsson20,y, J. Japelj19,y, D. A. Kann10,y, L. Kaper19, C. Ledoux9, G. Leloudas1, A.J. Levan21,y, E. Maiorano22, A. Melandri11,y, B. Milvang-Jensen1; 2, E. Palazzi22, J. T. Palmerio23,y, D. A. Perley24,y, E. Pian22, S. Piranomonte6,y, G. Pugliese19,y, R. Sánchez-Ramírez25,y, S. Savaglio26, P. Schady5, S. Schulze27,y, J. Sollerman28, M. Sparre29,y, G. Tagliaferri11, N. R. Tanvir30,y, C. C. Thöne10, S.D. Vergani14,y, P. Vreeswijk18; 26,y, D. Watson1; 2,y, K. Wiersema21; 30,y, R. Wijers19, D. Xu31,y, and T. Zafar32 (Affiliations can be found after the references) Received/ accepted ABSTRACT In this work we present spectra of all γ-ray burst (GRB) afterglows that have been promptly observed with the X-shooter spectrograph until 31=03=2017. In total, we obtained spectroscopic observations of 103 individual GRBs observed within 48 hours of the GRB trigger. Redshifts have been measured for 97 per cent of these, covering a redshift range from 0.059 to 7.84. -
Measuring the Hubble Constant with a Sample of Kilonovae
Measuring the Hubble Constant with a sample of kilonovae Michael W. Coughlin1;2,∗ Sarah Antier3, Tim Dietrich4;5, Ryan J. Foley6, Jack Heinzel7;8, Mattia Bulla9, Nelson Christensen7;8, David A. Coulter6, Lina Issa9;10, and Nandita Khetan11 1School of Physics and Astronomy, University of Minnesota, Minneapolis, Minnesota 55455, USA 2Division of Physics, Math, and Astronomy, California Institute of Technology, Pasadena, CA 91125, USA 3APC, UMR 7164, 10 rue Alice Domon et Leonie´ Duquet, 75205 Paris, France 4Institut fur¨ Physik und Astronomie, Universitat¨ Potsdam, Haus 28, Karl-Liebknecht-Str. 24/25, 14476, Potsdam, Germany 5Nikhef, Science Park 105, 1098 XG Amsterdam, The Netherlands 6Department of Astronomy and Astrophysics, University of California, Santa Cruz, CA 95064, USA 7Artemis, Universite´ Coteˆ d’Azur, Observatoire Coteˆ d’Azur, CNRS, CS 34229, F-06304 Nice Cedex 4, France 8Physics and Astronomy, Carleton College, Northfield, MN 55057, USA 9Nordita, KTH Royal Institute of Technology and Stockholm University, Roslagstullsbacken 23, arXiv:2008.07420v1 [astro-ph.HE] 17 Aug 2020 SE-106 91 Stockholm, Sweden 10Universite´ Paris-Saclay, ENS Paris-Saclay, Departement´ de Phyisque, 91190, Gif-sur-Yvette, France. ∗ Corresponding Author: [email protected]. 1 11Gran Sasso Science Institute (GSSI), I-67100 L’Aquila, Italy 1 Abstract Kilonovae produced by the coalescence of compact binaries with at least one neutron star are promising standard sirens for an independent measurement of the Hubble constant (H0). Through their detection via follow-up of gravitational-wave (GW), short gamma-ray bursts (sGRBs) or optical surveys, a large sample of kilonovae (even without GW data) can be used for H0 contraints. -
The Afterglow and Early-Type Host Galaxy of the Short GRB 150101B at Z = 0.1343
The Afterglow and Early-type Host Galaxy of the Short GRB 150101B at Z = 0.1343 The Harvard community has made this article openly available. Please share how this access benefits you. Your story matters Citation Fong, W., R. Margutti, R. Chornock, E. Berger, B. J. Shappee, A. J. Levan, N. R. Tanvir, et al. 2016. “The Afterglow and Early-type Host Galaxy of the Short GRB 150101B at Z = 0.1343.” The Astrophysical Journal 833, no. 2: 151. doi:10.3847/1538-4357/833/2/151. Published Version doi:10.3847/1538-4357/833/2/151 Citable link http://nrs.harvard.edu/urn-3:HUL.InstRepos:30510303 Terms of Use This article was downloaded from Harvard University’s DASH repository, and is made available under the terms and conditions applicable to Open Access Policy Articles, as set forth at http:// nrs.harvard.edu/urn-3:HUL.InstRepos:dash.current.terms-of- use#OAP DRAFT VERSION SEPTEMBER 1, 2016 Preprint typeset using LATEX style emulateapj v. 01/23/15 THE AFTERGLOW AND EARLY-TYPE HOST GALAXY OF THE SHORT GRB 150101B AT Z = 0:1343 ; ; ; W. FONG1 2 , R. MARGUTTI3 4 , R. CHORNOCK5 , E. BERGER6 , B. J. SHAPPEE7 8 , A. J. LEVAN9 , N. R. TANVIR10 , N. SMITH2 , ; P. A. MILNE2 , T. LASKAR11 12 , D. B. FOX13 , R. LUNNAN14 , P. K. BLANCHARD6 , J. HJORTH15 , K. WIERSEMA10 , A. J. VAN DER HORST16 , D. ZARITSKY2 Draft version September 1, 2016 ABSTRACT We present the discovery of the X-ray and optical afterglows of the short-duration GRB 150101B, pinpointing the event to an early-type host galaxy at z = 0:1343±0:0030. -
HET Publication Report HET Board Meeting 3/4 December 2020 Zoom Land
HET Publication Report HET Board Meeting 3/4 December 2020 Zoom Land 1 Executive Summary • There are now 420 peer-reviewed HET publications – Fifteen papers published in 2019 – As of 27 November, nineteen published papers in 2020 • HET papers have 29363 citations – Average of 70, median of 39 citations per paper – H-number of 90 – 81 papers have ≥ 100 citations; 175 have ≥ 50 cites • Wide angle surveys account for 26% of papers and 35% of citations. • Synoptic (e.g., planet searches) and Target of Opportunity (e.g., supernovae and γ-ray bursts) programs have produced 47% of the papers and 47% of the citations, respectively. • Listing of the HET papers (with ADS links) is given at http://personal.psu.edu/dps7/hetpapers.html 2 HET Program Classification Code TypeofProgram Examples 1 ToO Supernovae,Gamma-rayBursts 2 Synoptic Exoplanets,EclipsingBinaries 3 OneorTwoObjects HaloofNGC821 4 Narrow-angle HDF,VirgoCluster 5 Wide-angle BlazarSurvey 6 HETTechnical HETQueue 7 HETDEXTheory DarkEnergywithBAO 8 Other HETOptics Programs also broken down into “Dark Time”, “Light Time”, and “Other”. 3 Peer-reviewed Publications • There are now 420 journal papers that either use HET data or (nine cases) use the HET as the motivation for the paper (e.g., technical papers, theoretical studies). • Except for 2005, approximately 22 HET papers were published each year since 2002 through the shutdown. A record 44 papers were published in 2012. • In 2020 a total of fifteen HET papers appeared; nineteen have been published to date in 2020. • Each HET partner has published at least 14 papers using HET data. • Nineteen papers have been published from NOAO time. -
Fermi GBM Observations of GRB 150101B: a Second Nearby Event with a Short Hard Spike and a Soft Tail
The Astrophysical Journal Letters, 863:L34 (9pp), 2018 August 20 https://doi.org/10.3847/2041-8213/aad813 © 2018. The American Astronomical Society. Fermi GBM Observations of GRB 150101B: A Second Nearby Event with a Short Hard Spike and a Soft Tail E. Burns1, P. Veres2 , V. Connaughton3, J. Racusin4 , M. S. Briggs2,4, N. Christensen5,6, A. Goldstein3 , R. Hamburg2,4, D. Kocevski7, J. McEnery4, E. Bissaldi8,9 , T. Dal Canton1, W. H. Cleveland3, M. H. Gibby10, C. M. Hui7, A. von Kienlin11, B. Mailyan2, W. S. Paciesas3 , O. J. Roberts3, K. Siellez12, M. Stanbro4, and C. A. Wilson-Hodge7 1 NASA Goddard Space Flight Center, Greenbelt, MD 20771, USA; [email protected] 2 Center for Space Plasma and Aeronomic Research, University of Alabama in Huntsville, Huntsville, AL 35899, USA 3 Science and Technology Institute, Universities Space Research Association, Huntsville, AL 35805, USA 4 Space Science Department, University of Alabama in Huntsville, Huntsville, AL 35899, USA 5 Physics and Astronomy, Carleton College, MN 55057, USA 6 Artemis, Université Côte d’Azur, Observatoire Côte d’Azur, CNRS, CS 34229, F-06304 Nice Cedex 4, France 7 Astrophysics Branch, ST12, NASA/Marshall Space Flight Center, Huntsville, AL 35812, USA 8 Istituto Nazionale di Fisica Nucleare, Sezione di Bari, I-70126 Bari, Italy 9 Dipartimento Interateneo di Fisica, Politecnico di Bari, Via E. Orabona 4, I-70125, Bari, Italy 10 Jacobs Technology, Inc., Huntsville, AL 35805, USA 11 Max-Planck-Institut für extraterrestrische Physik, Giessenbachstrasse 1, D-85748 Garching, Germany 12 Center for Relativistic Astrophysics and School of Physics, Georgia Institute of Technology, Atlanta, GA 30332, USA Received 2018 July 13; revised 2018 August 3; accepted 2018 August 4; published 2018 August 17 Abstract In light of the joint multimessenger detection of a binary neutron star merger as the gamma-ray burst GRB 170817A and in gravitational waves as GW170817, we reanalyze the Fermi Gamma-ray Burst Monitor data of one of the closest short gamma-ray bursts (SGRBs): GRB 150101B. -
SPACETIME SINGULARITIES: the STORY of BLACK HOLES
1 SPACETIME SINGULARITIES: The STORY of BLACK HOLES We have already seen that the Big Bang is a kind of 'singularity' in the structure of spacetime. To the question "what was before the Big Bang?", one can reply, at least in the context of GR, that the question actually has no meaning - that time has no meaning 'before' the Big Bang. The point is that the universe can be ¯nite in extent in both time and space, and yet have no boundary in either. We saw what a curved space which is ¯nite in size but has no boundary means for a 2-d surface - a balloon is an example. Notice that if we made a balloon that curved smoothly except at one point (we could, for example, pinch it at this point) we could say that the balloon surface curvature was singular (ie., in¯nite) at this point. The idea of a 4-d spacetime with no boundary in spacetime, but with a ¯nite spacetime 4-dimensional volume, is a simple generalization of this. And just as it makes no sense, inside a 2-d balloon, to ask where the boundary is, we can have spacetime geometries which have no boundary in space or time, or where spacetime 'terminates' at a singularity. All of this is easy to say, but the attitude of most early workers in GR was to ignore the possible existence of singularities, and/or hope that they would just go away. The reaction of Einstein to the discovery of singular solutions to his equations was quite striking.