Seminar 4 Conductivity and Conductometry. Electrolyte properties. Electricity flow through the electrolyte. Conductivity of electrolyte solutions (specific, molar) and its dependence on concentration. Determination of the limiting molar conductivity. Kohlrausch’s law. The use of electrolyte conductivity for physicochemical calculations (dissociation constant and degree, solubility product). Examples of conductometric titration (conductometry). Examples of graphs, tasks and their solutions. Tomasz Tuzimski Medical University of Lublin, Faculty of Pharmacy with Medical Analytics Division, Chair of Chemistry, Department of Physical Chemistry, 4A Chodźki Street, 20-093 Lublin, Poland E-mail:
[email protected] Electrolyte and Dissociation An electrolyte is a substance that, when molten or dissolved in a solvent, breaks down into free ions (dissociates) as a result of which it can conduct electricity. Their ability to conduct electricity suggests the presence of electrically charged particles that are able to move through the solution. The generally accepted reason is that when an ionic compound dissolved in water, the ions separate from each other and enter the solution as more or less independent particles that are surrounded by molecules of the solvent. The change is called the dissociation of the ionic compounds. Dissociation of an ionic compound as it disolves in water. Ions separate from the solid and become surrounded by the molecules of water. The ions are said to be hydrated. Equations for dissociation reactions show the ions Acid dissociation constant Ka An acid ionization constant = An acid dissociation constant Base dissociation constant Kb Base ionization constant = Base dissociation constant Remember: you can't use the dissociation constant formula for strong electrolytes! Dissociation degree α Studies on electrolytes have shown that, despite the same molar concentration of different electrolytes in solution, they differ in their ability to conduct electricity.