Split-Turboid Enables Contact-Dependent Proximity Labeling in Cells
Split-TurboID enables contact-dependent proximity labeling in cells Kelvin F. Choa, Tess C. Branonb,c,d,e, Sanjana Rajeevb, Tanya Svinkinaf, Namrata D. Udeshif, Themis Thoudamg, Chulhwan Kwakh,i, Hyun-Woo Rheeh,j, In-Kyu Leeg,k,l, Steven A. Carrf, and Alice Y. Tingb,c,d,m,1 aCancer Biology Program, Stanford University, Stanford, CA 94305; bDepartment of Genetics, Stanford University, Stanford, CA 94305; cDepartment of Biology, Stanford University, Stanford, CA 94305; dDepartment of Chemistry, Stanford University, Stanford, CA 94305; eDepartment of Chemistry, Massachusetts Institute of Technology, Cambridge, MA 02139; fBroad Institute of MIT and Harvard, Cambridge, MA 02142; gResearch Institute of Aging and Metabolism, Kyungpook National University, 37224 Daegu, South Korea; hDepartment of Chemistry, Seoul National University, 08826 Seoul, South Korea; iDepartment of Chemistry, Ulsan National Institute of Science and Technology, 44919 Ulsan, South Korea; jSchool of Biological Sciences, Seoul National University, 08826 Seoul, South Korea; kDepartment of Internal Medicine, School of Medicine, Kyungpook National University, Kyungpook National University Hospital, 41944 Daegu, South Korea; lLeading-edge Research Center for Drug Discovery and Development for Diabetes and Metabolic Disease, Kyungpook National University, 41944 Daegu, South Korea; and mChan Zuckerberg Biohub, San Francisco, CA 94158 Edited by Tony Hunter, The Salk Institute for Biological Studies, La Jolla, CA, and approved April 7, 2020 (received for review November 7, 2019) Proximity labeling catalyzed by promiscuous enzymes, such as Split forms of APEX (18) and BioID (19–21) have previously TurboID, have enabled the proteomic analysis of subcellular regions been reported. However, split-APEX (developed by us) has not difficult or impossible to access by conventional fractionation-based ap- been used for proteomics, and the requirement for exogenous proaches.
[Show full text]