Harengula Jaguana Poey, 1865
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Sardinella Maderensis) in the South of Atlantic Moroccan Coast
Egyptian Journal of Aquatic Biology & Fisheries Zoology Department, Faculty of Science, Ain Shams University, Cairo, Egypt. ISSN 1110 – 6131 Vol. 24(7): 73 – 91 (2020) www.ejabf.journals.ekb.eg Diet composition of round sardinella (Sardinella aurita) and flat sardinella (Sardinella maderensis) in the south of Atlantic Moroccan coast Ayoub Baali 1*, Khalil Chahdi Ouazzani 2, Feirouz Touhami 2, Ahmed El-Achi 1,3 and Khadija Amenzoui 1 1Department of fisheries, Institut National de Recherche Halieutique, Morocco. 2Department of biology; Biodiversity, Ecology and Genome Laboratory, Faculty of Science, Mohammed V University, Ibn Battouta Avenue, B.P. 1014, Rabat, Morocco. 3Laboratoire d’Equipe d’Analyse Environnementale, Faculty of Science, Chouaib Doukkali University, El Jadida, Morocco. *Corresponding Author: [email protected] ARTICLE INFO ABSTRACT Article History: The feeding of round sardinella (Sardinella aurita Valenciennes, 1847) Received: July 24, 2020 and flat sardinella (Sardinella maderensis Lowe, 1938) was investigated in Accepted: Sept. 27, 2020 the south of the Moroccan Atlantic coast from February 2015 to January Online: Oct. 7, 2020 2016. Several indices were estimated to figure out the diet composition of _______________ Sardinella spp. Thusly; the vacuity index was low for both species, which indicates a high availability of food in the study area. The crustaceans were Keywords: the main prey headed by the copepods which were the most abundant prey Sardinella aurita, item throughout the year whereas the detritus was mainly present in winter Sardinella maderensis, and spring. The variation of the index of relative importance (IRI) Diet, depending on the size of Sardinella spp. has shown that the small Feeding ecology, individuals have a different dietary preference than large individuals. -
Zooplankton and Ichthyoplankton Distribution on the Southern Brazilian Shelf: an Overview
sm70n2189-2006 25/5/06 15:15 Página 189 SCIENTIA MARINA 70 (2) June 2006, 189-202, Barcelona (Spain) ISSN: 0214-8358 Zooplankton and ichthyoplankton distribution on the southern Brazilian shelf: an overview RUBENS M. LOPES1, MARIO KATSURAGAWA1, JUNE F. DIAS1, MONICA A. MONTÚ2(†), JOSÉ H. MUELBERT2, CHARLES GORRI2 and FREDERICO P. BRANDINI3 1 Oceanographic Institute, Dept. of Biological Oceanography, University of São Paulo, São Paulo, 05508-900, Brazil. E-mail: [email protected] 2 Federal University of Rio Grande, Rio Grande, 96201-900, Brazil. 3 Center for Marine Studies, Federal University of Paraná, Pontal do Paraná, 83255-000, Brazil. (†) Deceased SUMMARY: The southern Brazilian coast is the major fishery ground for the Brazilian sardine (Sardinella brasiliensis), a species responsible for up to 40% of marine fish catches in the region. Fish spawning and recruitment are locally influenced by seasonal advection of nutrient-rich waters from both inshore and offshore sources. Plankton communities are otherwise controlled by regenerative processes related to the oligotrophic nature of the Tropical Water from the Brazil Current. As recorded in other continental margins, zooplankton species diversity increases towards outer shelf and open ocean waters. Peaks of zooplankton biomass and ichthyoplankton abundance are frequent on the inner shelf, either at upwelling sites or off large estuarine systems. However, meandering features of the Brazil Current provide an additional mechanism of upward motion of the cold and nutrient-rich South Atlantic Central Water, increasing phyto- and zooplankton biomass and produc- tion on mid- and outer shelves. Cold neritic waters originating off Argentina, and subtropical waters from the Subtropical Convergence exert a strong seasonal influence on zooplankton and ichthyoplankton distribution towards more southern areas. -
Forage Fish Management Plan
Oregon Forage Fish Management Plan November 19, 2016 Oregon Department of Fish and Wildlife Marine Resources Program 2040 SE Marine Science Drive Newport, OR 97365 (541) 867-4741 http://www.dfw.state.or.us/MRP/ Oregon Department of Fish & Wildlife 1 Table of Contents Executive Summary ....................................................................................................................................... 4 Introduction .................................................................................................................................................. 6 Purpose and Need ..................................................................................................................................... 6 Federal action to protect Forage Fish (2016)............................................................................................ 7 The Oregon Marine Fisheries Management Plan Framework .................................................................. 7 Relationship to Other State Policies ......................................................................................................... 7 Public Process Developing this Plan .......................................................................................................... 8 How this Document is Organized .............................................................................................................. 8 A. Resource Analysis .................................................................................................................................... -
Redalyc.Long-Term (2002-2011) Changes on Cetengraulis Edentulus (Clupeiformes: Engraulidae) Fisheries in Guanabara Bay, Brazil
Revista de Biología Tropical ISSN: 0034-7744 [email protected] Universidad de Costa Rica Costa Rica Sampaio Franco, Ana Clara; Shimada Brotto, Daniel; Man Wai Zee, David; Neves dos Santos, Luciano Long-term (2002-2011) changes on Cetengraulis edentulus (Clupeiformes: Engraulidae) fisheries in Guanabara Bay, Brazil Revista de Biología Tropical, vol. 62, núm. 3, septiembre, 2014, pp. 1019-1029 Universidad de Costa Rica San Pedro de Montes de Oca, Costa Rica Available in: http://www.redalyc.org/articulo.oa?id=44932441018 How to cite Complete issue Scientific Information System More information about this article Network of Scientific Journals from Latin America, the Caribbean, Spain and Portugal Journal's homepage in redalyc.org Non-profit academic project, developed under the open access initiative Long-term (2002-2011) changes on Cetengraulis edentulus (Clupeiformes: Engraulidae) fisheries in Guanabara Bay, Brazil Ana Clara Sampaio Franco1, Daniel Shimada Brotto2, David Man Wai Zee3 & Luciano Neves dos Santos1* 1. UNIRIO - Universidade Federal do Estado do Rio de Janeiro, Programa de Pós-graduação em Biodiversidade Neotropical. Avenida Pasteur, 458 sala 314A, 22290-240, Rio de Janeiro, Brasil; [email protected], [email protected] 2. UVA – Universidade Veiga de Almeida, Departamento de Ciências da Saúde. Rua Ibituruna, 108, 20271-901, Rio de Janeiro, Brasil; [email protected] 3. UERJ – Universidade do Estado do Rio de Janeiro, Departamento de Oceanografia Física. Rua São Francisco Xavier 524, sala 4025-E, 20020-100, Rio de Janeiro, Brasil; [email protected] * Correspondence Received 22-XI-2014. Corrected 30-IV-2014. Accepted 28-V-2014. Abstract: C. edentulus accounts for the major fishery resource in Guanabara Bay, but there are only few studies about its captures.This study analyzed the long term changes on C. -
Short Communication
Biota Neotropica 16(3): e20160192, 2016 www.scielo.br/bn ISSN 1676-0611 (online edition) short communication Length-weight relationships of the ichthyofauna from a coastal subtropical system: a tool for biomass estimates and ecosystem modelling André Martins Vaz-dos-Santos1,2 & Bárbara Gris1 1Universidade Federal do Paraná, Departamento de Biodiversidade, Laboratório de Esclerocronologia. Rua Pioneiro, 2153, Jardim Dallas, CEP 85950-000, Palotina, PR, Brazil 2Corresponding author: André Martins Vaz-dos-Santos, e-mail: [email protected] VAZ-DOS-SANTOS, A.M, GRIS, B. Length-weight relationships of the ichthyofauna from a coastal subtropical system: a tool for biomass estimates and ecosystem modelling. Biota Neotropica. 16(3): e20160192. http://dx.doi. org/10.1590/1676-0611-BN-2016-0192 Abstract: Aiming to analyse the growth pattern, to allow biomass estimates and consequently to subsidize the ecosystem modelling, the length-weight relationships (LWR) of 39 fish species from the Araçá Bay, a subtropical coastal area chosen as model for a holistic study comprising environmental, social and economic aspects have been estimated. The objective of this study was to provide LWR for the fishes from the area itself, accurately based on the life stages of fish populations present there. Particularly forAlbula vulpes, Trachinotus carolinus, T. falcatus, Archosargus rhomboidalis and Kyphosus sectatrix these are the first records of LWR in Brazil. Keywords: Araçá Bay, relative growth, Huxley model, Brazil. VAZ-DOS-SANTOS, A.M, GRIS, B. Relações comprimento-peso -
Updated Checklist of Marine Fishes (Chordata: Craniata) from Portugal and the Proposed Extension of the Portuguese Continental Shelf
European Journal of Taxonomy 73: 1-73 ISSN 2118-9773 http://dx.doi.org/10.5852/ejt.2014.73 www.europeanjournaloftaxonomy.eu 2014 · Carneiro M. et al. This work is licensed under a Creative Commons Attribution 3.0 License. Monograph urn:lsid:zoobank.org:pub:9A5F217D-8E7B-448A-9CAB-2CCC9CC6F857 Updated checklist of marine fishes (Chordata: Craniata) from Portugal and the proposed extension of the Portuguese continental shelf Miguel CARNEIRO1,5, Rogélia MARTINS2,6, Monica LANDI*,3,7 & Filipe O. COSTA4,8 1,2 DIV-RP (Modelling and Management Fishery Resources Division), Instituto Português do Mar e da Atmosfera, Av. Brasilia 1449-006 Lisboa, Portugal. E-mail: [email protected], [email protected] 3,4 CBMA (Centre of Molecular and Environmental Biology), Department of Biology, University of Minho, Campus de Gualtar, 4710-057 Braga, Portugal. E-mail: [email protected], [email protected] * corresponding author: [email protected] 5 urn:lsid:zoobank.org:author:90A98A50-327E-4648-9DCE-75709C7A2472 6 urn:lsid:zoobank.org:author:1EB6DE00-9E91-407C-B7C4-34F31F29FD88 7 urn:lsid:zoobank.org:author:6D3AC760-77F2-4CFA-B5C7-665CB07F4CEB 8 urn:lsid:zoobank.org:author:48E53CF3-71C8-403C-BECD-10B20B3C15B4 Abstract. The study of the Portuguese marine ichthyofauna has a long historical tradition, rooted back in the 18th Century. Here we present an annotated checklist of the marine fishes from Portuguese waters, including the area encompassed by the proposed extension of the Portuguese continental shelf and the Economic Exclusive Zone (EEZ). The list is based on historical literature records and taxon occurrence data obtained from natural history collections, together with new revisions and occurrences. -
Mid-Atlantic Forage Species ID Guide
Mid-Atlantic Forage Species Identification Guide Forage Species Identification Guide Basic Morphology Dorsal fin Lateral line Caudal fin This guide provides descriptions and These species are subject to the codes for the forage species that vessels combined 1,700-pound trip limit: Opercle and dealers are required to report under Operculum • Anchovies the Mid-Atlantic Council’s Unmanaged Forage Omnibus Amendment. Find out • Argentines/Smelt Herring more about the amendment at: • Greeneyes Pectoral fin www.mafmc.org/forage. • Halfbeaks Pelvic fin Anal fin Caudal peduncle All federally permitted vessels fishing • Lanternfishes in the Mid-Atlantic Forage Species Dorsal Right (lateral) side Management Unit and dealers are • Round Herring required to report catch and landings of • Scaled Sardine the forage species listed to the right. All species listed in this guide are subject • Atlantic Thread Herring Anterior Posterior to the 1,700-pound trip limit unless • Spanish Sardine stated otherwise. • Pearlsides/Deepsea Hatchetfish • Sand Lances Left (lateral) side Ventral • Silversides • Cusk-eels Using the Guide • Atlantic Saury • Use the images and descriptions to identify species. • Unclassified Mollusks (Unmanaged Squids, Pteropods) • Report catch and sale of these species using the VTR code (red bubble) for • Other Crustaceans/Shellfish logbooks, or the common name (dark (Copepods, Krill, Amphipods) blue bubble) for dealer reports. 2 These species are subject to the combined 1,700-pound trip limit: • Anchovies • Argentines/Smelt Herring • -
(Sardinella Aurita) Allyn G. Johnson and Rosalie N. V
NOAA Technical Memorandum NMFS-SEFC-l87 Species profile of Spanish sardine (Sardinella aurita) MAR26 Allyn G. Johnson and Rosalie N. Vaught August 1986 u.S. Department of Commerce National Oceanic and Atmospheric Administration National Marine Fisheries Service Southeast Fisheries Center Panama City Laboratory 3500 De1wood Beach Road Panama City, Florida 32407-7499 NOAA Technical Memorandum NMFS-SEFC-197 Technical Memorandums are used for documentation and timely communication of preliminary results, interim reports, or special-purpose information, and have not received complete formal review, editorial control, or detailed editing. P'TMOS Species profile of Spanish sardine 0 (Sardinella,aurita '9"MENT Allyn G. Johnson and Rosalie N. Vaught August 1986 U. S. DEPARTMENT OF CDMMERCE Malcolm Baldrige, Secretary NATIONAL OCEANIC AND ATMOSPHERIC ADMINISTRATION Anthony J. Calio, Administrator NATIONAL MARINE FISHERIES SERVICE William G. Gordon, Assistant Administrator for Fisheries I. Introduction This report is a summary of available information on the biology, fishery, and marketing of Spanish sardines (Sardinella aurita . Emphasis is on the Gulf of Mexico with reference to other areas when particular information may have application to the Gulf of Mexico resource. The purposes of this report are: 1. To provide a summary of the current knowledge of this species and the resource. 2. To point out the limitations of our current knowledge. II. Taxonomy and Identification The Spanish sardine (Sardinella aurit-a Valenciennes 1847) is also called round sardinella (English), allache (French) and sardinela atla'ntica (Spanish). Other names of less common usage are sardina de Espafta, false sardine, sardina, and bang. Previously used scientific synonyms of this species are: Sardinella anChoyia,. -
Little Fish, Big Impact: Managing a Crucial Link in Ocean Food Webs
little fish BIG IMPACT Managing a crucial link in ocean food webs A report from the Lenfest Forage Fish Task Force The Lenfest Ocean Program invests in scientific research on the environmental, economic, and social impacts of fishing, fisheries management, and aquaculture. Supported research projects result in peer-reviewed publications in leading scientific journals. The Program works with the scientists to ensure that research results are delivered effectively to decision makers and the public, who can take action based on the findings. The program was established in 2004 by the Lenfest Foundation and is managed by the Pew Charitable Trusts (www.lenfestocean.org, Twitter handle: @LenfestOcean). The Institute for Ocean Conservation Science (IOCS) is part of the Stony Brook University School of Marine and Atmospheric Sciences. It is dedicated to advancing ocean conservation through science. IOCS conducts world-class scientific research that increases knowledge about critical threats to oceans and their inhabitants, provides the foundation for smarter ocean policy, and establishes new frameworks for improved ocean conservation. Suggested citation: Pikitch, E., Boersma, P.D., Boyd, I.L., Conover, D.O., Cury, P., Essington, T., Heppell, S.S., Houde, E.D., Mangel, M., Pauly, D., Plagányi, É., Sainsbury, K., and Steneck, R.S. 2012. Little Fish, Big Impact: Managing a Crucial Link in Ocean Food Webs. Lenfest Ocean Program. Washington, DC. 108 pp. Cover photo illustration: shoal of forage fish (center), surrounded by (clockwise from top), humpback whale, Cape gannet, Steller sea lions, Atlantic puffins, sardines and black-legged kittiwake. Credits Cover (center) and title page: © Jason Pickering/SeaPics.com Banner, pages ii–1: © Brandon Cole Design: Janin/Cliff Design Inc. -
Contents of Volume 42 (2012)
CONTENTS OF VOLUME 42 (2012) Issue 1 Tripp-Valdez A., Arreguín-Sánchez F., Zetina-Rejón M.J. The food of Selene peruviana (Actinopterygii: Perciformes: Carangidae) in the southern Gulf of California .................. 1 Zarrad R., Alemany F., Jarboui O., Garcia A., Akrout F. Comparative characterization of the spawning environments of European anchovy, Engraulis encrasicolus , and round sardinella, Sardinella aurita (Actinopterygii: Clupeiformes) in the eastern coast of Tunisia ............................... 9 Ordines F., Valls M., Gouraguine A. Biology, feeding, and habitat preferences of Cadenat’s rockfish, Scorpaena loppei (Actinopterygii: Scorpaeniformes: Scorpaenidae), in the Balearic Islands (western Mediterranean) ..................................... 21 Socha M., Sokołowska-Mikołajczyk M., Szczerbik P., Chyb J., Mikołajczyk T., Epler P. The effect of polychlorinated biphenyls mixture (Aroclor 1254) on the embryonic development and hatching of Prussian carp, Carassius gibelio , and common carp, Cyprinus carpio (Actinopterygii: Cypriniformes: Cyprinidae) ............................................................................................................................................................... 31 Khan A., Ghosh K. Characterization and identification of gut-associated phytase-producing bacteria in some fresh water fish cultured in ponds ...................................................................................................................................................................................... -
Brazilian Sardinella Brazil, Southwest Atlantic Purse Seines
Brazilian sardinella Sardinella brasiliensis © Brazil, Southwest Atlantic Purse seines June 14, 2018 Seafood Watch Consulting Researcher Disclaimer Seafood Watch® strives to have all Seafood Reports reviewed for accuracy and completeness by external scientists with expertise in ecology, fisheries science and aquaculture. Scientific review, however, does not constitute an endorsement of the Seafood Watch program or its recommendations on the part of the reviewing scientists. Seafood Watch is solely responsible for the conclusions reached in this report. Seafood Watch Standard used in this assessment: Standard for Fisheries vF3 Table of Contents About. Seafood. .Watch . 3. Guiding. .Principles . 4. Summary. 5. Final. Seafood. .Recommendations . 6. Introduction. 7. Assessment. 10. Criterion. 1:. .Impacts . on. the. Species. Under. Assessment. .10 . Criterion. 2:. .Impacts . on. Other. Species. .12 . Criterion. 3:. .Management . Effectiveness. .20 . Criterion. 4:. .Impacts . on. the. Habitat. .and . Ecosystem. .23 . Acknowledgements. 26. References. 27. Appendix. A:. Extra. .By . Catch. .Species . 31. 2 About Seafood Watch Monterey Bay Aquarium’s Seafood Watch program evaluates the ecological sustainability of wild-caught and farmed seafood commonly found in the United States marketplace. Seafood Watch defines sustainable seafood as originating from sources, whether wild-caught or farmed, which can maintain or increase production in the long-term without jeopardizing the structure or function of affected ecosystems. Seafood Watch makes its science-based recommendations available to the public in the form of regional pocket guides that can be downloaded from www.seafoodwatch.org. The program’s goals are to raise awareness of important ocean conservation issues and empower seafood consumers and businesses to make choices for healthy oceans. -
Feeding-Ecology-Sardinella-Aurita.Pdf
INTERNATIONAL JOURNAL OF ENVIRONMENTAL SCIENCE AND ENGINEERING (IJESE) Vol. 2: 83-92 http://www.pvamu.edu/texged Prairie View A&M University, Texas, USA Feeding ecology of the round sardinella, Sardinella aurita (Family: Clupeidae) in the Egyptian Mediterranean waters Fedekar F. Madkour Marine Science Department, Faculty of Science, Port Said University, Egypt. ARTICLE INFO ABSTRACT Article History The objective of the present study was to analyze the diet Received: Sept. 28, 2011 composition of the round sardinella, Sardinella aurita in the Accepted: Dec. 5, 2011 Egyptian Mediterranean off Port Said coast. Gut contents from 100 Available online: 2012 stomachs/season were examined. The gut fullness index was ________________ estimated and the percentage of empty stomachs was expressed as Key words: the vacuity index (VI). Diet composition was described using Sardinella aurita frequency of occurrence (%F) and numerical methods (%N). The Feeding habits diet of S. aurita consisted predominantly of zooplankton (50.1%) Diet composition followed by phytoplankton (34%) and relatively small quantities of Mediterranean Sea detritus (15.9%). The major prey items were copepodes supplemented by diatoms followed by Protozoa and Chlorophyceae. The type and abundance of ingested prey were related to the plankton composition in the environment in order to determine prey-type selectivity. Diet composition of stomach proved that Sardinella aurita has a flexible adaptive strategy appeared obviously from adjusting its diet feeding habits to its specific requirements. 1. INTRODUCTION The study of the food and feeding habits of fish species remains a subject of continuous research, because it constitutes the basis for development of a successful fisheries management on fish capture and culture (Oronsaye and Nakpodia, 2005).