In Silico Identification of Novel Biomarkers and Development Of
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Extensive Experience. Superior Quality
EXTENSIVE EXPERIENCE. SUPERIOR QUALITY. INNOVATIVE SOLUTIONS. R&D AND MANUFACTURING SUPPORT FOR THE BIOTECHNOLOGY AND BIOPHARMA INDUSTRY LET NEB’S SCIENTIFIC EXPERTISE HELP DRIVE YOUR INNOVATIONS FORWARD In recent years, there has been a dramatic rise in the number of biologics and companion diagnostics developed and commercialized, and these important areas of biotechnology are more reliant than ever on cutting edge molecular biology tools and techniques. For instance, companion diagnostics, based on DNA amplification, can foster a better match of effective therapies with patients; personalized medicines, utilizing next-generation sequencing, can also help tailor treatments for specific patients; and a wide range of biologics is now being developed as a result of advancements in recombinant technologies. 2 COLLABORATION We’re here to champion your efforts. We have extensive scientific expertise and can devote the necessary attention to developing solutions for your specific needs – along with the manufacturing capacity to scale up quickly. Whether you’re looking for a custom version of an existing product, to find a new way around a development roadblock, or to license one of our technologies, our team is ready to work with you. PRODUCT PORTFOLIO We can provide an entire suite of enzymes THE NEB DIFFERENCE that have the potential to accelerate your discovery efforts. Our expertise in At NEB, we have decades of experience enzymology has enabled us to develop unique enzymes that enable faster, more robust in practicing molecular biology, which has workflows. Further, enzymes can be provided both in small aliquots and in bulk, in different led to the introduction of a broad product formats (liquid, lyophilized and glycerol-free), portfolio that has the potential to touch as well as packaged into complete kits. -
“ ” Enabling Real-Time Business Growth with SAP S/4HANA® In
Enabling real-time business growth with SAP S/4HANA® in the cloud Case Study: New England Biolabs An SAP HANA® and S/4 Migration Case Study Scientists today are constantly under pressure to quickly already difficult task, consistent, double-digit growth was understand the genetic makeup of new bacteria strains, rapidly powering the business forward, but exposed gaps in help diagnose new diseases and create life-saving the IT infrastructure. treatments for use worldwide. Their implementation of the SAP ECC 6.0 platform was As a global leader in the discovery, development and lacking key functionality in the areas of production planning, commercialization of recombinant and native enzymes for eProcurement and product costing. The need for a stable, genomic research, New England Biolabs (NEB) is an and more importantly scalable platform to support the innovator of technologies from basic molecular biology rapidly evolving business became critical. As NEB began to through to sample preparation for next-generation evaluate their options, they were faced with the realities of sequencing and high throughput genomics for the life having a small IT team who didn’t have the necessary SAP sciences industry. Headquartered in the US with seven technical experience to implement a “cloud first” strategy global subsidiaries, they are at the forefront of medical and and support a large scale ERP effort. technological developments. The Competitive Edge Assessing the Current Landscape NEB began the process of looking for the right provider to A key offering of New England Biolabs business is the augment their team and initiatives. “We put out a bid to NEBnow Freezer Program, which consists of teams working see which hosting provider best aligned with our needs, and closely with institutions to customize inventory best suited Symmetry’s full suite of services stood out above the rest,” to research programs. -
Pathophysiology and Gastrointestinal Impacts of Parasitic Helminths in Human Being
Research and Reviews on Healthcare: Open Access Journal DOI: 10.32474/RRHOAJ.2020.06.000226 ISSN: 2637-6679 Research Article Pathophysiology and Gastrointestinal Impacts of Parasitic Helminths in Human Being Firew Admasu Hailu1*, Geremew Tafesse1 and Tsion Admasu Hailu2 1Dilla University, College of Natural and Computational Sciences, Department of Biology, Dilla, Ethiopia 2Addis Ababa Medical and Business College, Addis Ababa, Ethiopia *Corresponding author: Firew Admasu Hailu, Dilla University, College of Natural and Computational Sciences, Department of Biology, Dilla, Ethiopia Received: November 05, 2020 Published: November 20, 2020 Abstract Introduction: This study mainly focus on the major pathologic manifestations of human gastrointestinal impacts of parasitic worms. Background: Helminthes and protozoan are human parasites that can infect gastrointestinal tract of humans beings and reside in intestinal wall. Protozoans are one celled microscopic, able to multiply in humans, contributes to their survival, permits serious infections, use one of the four main modes of transmission (direct, fecal-oral, vector-borne, and predator-prey) and also helminthes are necked multicellular organisms, referred as intestinal worms even though not all helminthes reside in intestines. However, in their adult form, helminthes cannot multiply in humans and able to survive in mammalian host for many years due to their ability to manipulate immune response. Objectives: The objectives of this study is to assess the main pathophysiology and gastrointestinal impacts of parasitic worms in human being. Methods: Both primary and secondary data were collected using direct observation, books and articles, and also analyzed quantitativelyResults and and conclusion: qualitatively Parasites following are standard organisms scientific living temporarily methods. in or on other organisms called host like human and other animals. -
Review of the Genus Mansonella Faust, 1929 Sensu Lato (Nematoda: Onchocercidae), with Descriptions of a New Subgenus and a New Subspecies
Zootaxa 3918 (2): 151–193 ISSN 1175-5326 (print edition) www.mapress.com/zootaxa/ Article ZOOTAXA Copyright © 2015 Magnolia Press ISSN 1175-5334 (online edition) http://dx.doi.org/10.11646/zootaxa.3918.2.1 http://zoobank.org/urn:lsid:zoobank.org:pub:DE65407C-A09E-43E2-8734-F5F5BED82C88 Review of the genus Mansonella Faust, 1929 sensu lato (Nematoda: Onchocercidae), with descriptions of a new subgenus and a new subspecies ODILE BAIN1†, YASEN MUTAFCHIEV2, KERSTIN JUNKER3,8, RICARDO GUERRERO4, CORALIE MARTIN5, EMILIE LEFOULON5 & SHIGEHIKO UNI6,7 1Muséum National d'Histoire Naturelle, Parasitologie comparée, UMR 7205 CNRS, CP52, 61 rue Buffon, 75231 Paris Cedex 05, France 2Institute of Biodiversity and Ecosystem Research, Bulgarian Academy of Sciences, 2 Gagarin Street, 1113 Sofia, Bulgaria E-mail: [email protected] 3ARC-Onderstepoort Veterinary Institute, Private Bag X05, Onderstepoort, 0110, South Africa 4Instituto de Zoología Tropical, Faculdad de Ciencias, Universidad Central de Venezuela, PO Box 47058, 1041A, Caracas, Venezuela. E-mail: [email protected] 5Muséum National d'Histoire Naturelle, Parasitologie comparée, UMR 7245 MCAM, CP52, 61 rue Buffon, 75231 Paris Cedex 05, France E-mail: [email protected], [email protected] 6Institute of Biological Sciences, Faculty of Science, University of Malaya, 50603 Kuala Lumpur, Malaysia E-mail: [email protected] 7Department of Parasitology, Graduate School of Medicine, Osaka City University, Abeno-ku, Osaka 545-8585, Japan 8Corresponding author. E-mail: [email protected] †In memory of our colleague Dr Odile Bain, who initiated this study and laid the ground work with her vast knowledge of the filarial worms and detailed morphological studies of the species presented in this paper Table of contents Abstract . -
Zoonotic Abbreviata Caucasica in Wild Chimpanzees (Pan Troglodytes Verus) from Senegal
pathogens Article Zoonotic Abbreviata caucasica in Wild Chimpanzees (Pan troglodytes verus) from Senegal Younes Laidoudi 1,2 , Hacène Medkour 1,2 , Maria Stefania Latrofa 3, Bernard Davoust 1,2, Georges Diatta 2,4,5, Cheikh Sokhna 2,4,5, Amanda Barciela 6 , R. Adriana Hernandez-Aguilar 6,7 , Didier Raoult 1,2, Domenico Otranto 3 and Oleg Mediannikov 1,2,* 1 IRD, AP-HM, Microbes, Evolution, Phylogeny and Infection (MEPHI), IHU Méditerranée Infection, Aix Marseille Univ, 19-21, Bd Jean Moulin, 13005 Marseille, France; [email protected] (Y.L.); [email protected] (H.M.); [email protected] (B.D.); [email protected] (D.R.) 2 IHU Méditerranée Infection, 19-21, Bd Jean Moulin, 13005 Marseille, France; [email protected] (G.D.); [email protected] (C.S.) 3 Department of Veterinary Medicine, University of Bari, 70010 Valenzano, Italy; [email protected] (M.S.L.); [email protected] (D.O.) 4 IRD, SSA, APHM, VITROME, IHU Méditerranée Infection, Aix-Marseille University, 19-21, Bd Jean Moulin, 13005 Marseille, France 5 VITROME, IRD 257, Campus International UCAD-IRD, Hann, Dakar, Senegal 6 Jane Goodall Institute Spain and Senegal, Dindefelo Biological Station, Dindefelo, Kedougou, Senegal; [email protected] (A.B.); [email protected] (R.A.H.-A.) 7 Department of Social Psychology and Quantitative Psychology, Faculty of Psychology, University of Barcelona, Passeig de la Vall d’Hebron 171, 08035 Barcelona, Spain * Correspondence: [email protected]; Tel.: +33-041-373-2401 Received: 19 April 2020; Accepted: 23 June 2020; Published: 27 June 2020 Abstract: Abbreviata caucasica (syn. -
SNF Mobility Model: ICD-10 HCC Crosswalk, V. 3.0.1
The mapping below corresponds to NQF #2634 and NQF #2636. HCC # ICD-10 Code ICD-10 Code Category This is a filter ceThis is a filter cellThis is a filter cell 3 A0101 Typhoid meningitis 3 A0221 Salmonella meningitis 3 A066 Amebic brain abscess 3 A170 Tuberculous meningitis 3 A171 Meningeal tuberculoma 3 A1781 Tuberculoma of brain and spinal cord 3 A1782 Tuberculous meningoencephalitis 3 A1783 Tuberculous neuritis 3 A1789 Other tuberculosis of nervous system 3 A179 Tuberculosis of nervous system, unspecified 3 A203 Plague meningitis 3 A2781 Aseptic meningitis in leptospirosis 3 A3211 Listerial meningitis 3 A3212 Listerial meningoencephalitis 3 A34 Obstetrical tetanus 3 A35 Other tetanus 3 A390 Meningococcal meningitis 3 A3981 Meningococcal encephalitis 3 A4281 Actinomycotic meningitis 3 A4282 Actinomycotic encephalitis 3 A5040 Late congenital neurosyphilis, unspecified 3 A5041 Late congenital syphilitic meningitis 3 A5042 Late congenital syphilitic encephalitis 3 A5043 Late congenital syphilitic polyneuropathy 3 A5044 Late congenital syphilitic optic nerve atrophy 3 A5045 Juvenile general paresis 3 A5049 Other late congenital neurosyphilis 3 A5141 Secondary syphilitic meningitis 3 A5210 Symptomatic neurosyphilis, unspecified 3 A5211 Tabes dorsalis 3 A5212 Other cerebrospinal syphilis 3 A5213 Late syphilitic meningitis 3 A5214 Late syphilitic encephalitis 3 A5215 Late syphilitic neuropathy 3 A5216 Charcot's arthropathy (tabetic) 3 A5217 General paresis 3 A5219 Other symptomatic neurosyphilis 3 A522 Asymptomatic neurosyphilis 3 A523 Neurosyphilis, -
Molecular Detection of Dirofilaria Spp. and Host Blood-Meal Identification
Khanzadeh et al. Parasites Vectors (2020) 13:548 https://doi.org/10.1186/s13071-020-04432-4 Parasites & Vectors RESEARCH Open Access Molecular detection of Diroflaria spp. and host blood-meal identifcation in the Simulium turgaicum complex (Diptera: Simuliidae) in the Aras River Basin, northwestern Iran Fariba Khanzadeh1, Samad Khaghaninia1, Naseh Maleki‑Ravasan2,3*, Mona Koosha4 and Mohammad Ali Oshaghi4* Abstract Background: Blackfies (Diptera: Simuliidae) are known as efective vectors of human and animal pathogens, world‑ wide. We have already indicated that some individuals in the Simulium turgaicum complex are annoying pests of humans and livestock in the Aras River Basin, Iran. However, there is no evidence of host preference and their possible vectorial role in the region. This study was conducted to capture the S. turgaicum (s.l.), to identify their host blood‑ meals, and to examine their potential involvement in the circulation of zoonotic microflariae in the study areas. Methods: Adult blackfies of the S. turgaicum complex were bimonthly trapped with insect net in four ecotopes (humans/animals outdoors, irrigation canals, lands along the river, as well as rice and alfalfa farms) of ten villages (Gholibaiglou, Gungormaz, Hamrahlou, Hasanlou, Khetay, Khomarlou, Larijan, Mohammad Salehlou, Parvizkhanlou and Qarloujeh) of the Aras River Basin. A highly sensitive and specifc nested PCR assay was used for detection of flarial nematodes in S. turgaicum (s.l.), using nuclear 18S rDNA‑ITS1 markers. The sources of blood meals of engorged specimens were determined using multiplex and conventional cytb PCR assays. Results: A total of 2754 females of S. turgaicum (s.l.) were collected. -
Comparative Genomics of the Major Parasitic Worms
Comparative genomics of the major parasitic worms International Helminth Genomes Consortium Supplementary Information Introduction ............................................................................................................................... 4 Contributions from Consortium members ..................................................................................... 5 Methods .................................................................................................................................... 6 1 Sample collection and preparation ................................................................................................................. 6 2.1 Data production, Wellcome Trust Sanger Institute (WTSI) ........................................................................ 12 DNA template preparation and sequencing................................................................................................. 12 Genome assembly ........................................................................................................................................ 13 Assembly QC ................................................................................................................................................. 14 Gene prediction ............................................................................................................................................ 15 Contamination screening ............................................................................................................................ -
Ceratopogonidae (Diptera: Nematocera) of the Piedmont of the Yungas Forests of Tucuma´N: Ecology and Distribution
View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by Crossref Ceratopogonidae (Diptera: Nematocera) of the piedmont of the Yungas forests of Tucuma´n: ecology and distribution Jose´ Manuel Direni Mancini1,2, Cecilia Adriana Veggiani-Aybar1, Ana Denise Fuenzalida1,3, Mercedes Sara Lizarralde de Grosso1 and Marı´a Gabriela Quintana1,2,3 1 Facultad de Ciencias Naturales e Instituto Miguel Lillo, Universidad Nacional de Tucuma´n, Instituto Superior de Entomologı´a “Dr. Abraham Willink”, San Miguel de Tucuma´n, Tucuma´n, Argentina 2 Consejo Nacional de Investigaciones Cientı´ficas y Te´cnicas, San Miguel de Tucuma´n, Tucuma´n, Argentina 3 Instituto Nacional de Medicina Tropical, Puerto Iguazu´ , Misiones, Argentina ABSTRACT Within the Ceratopogonidae family, many genera transmit numerous diseases to humans and animals, while others are important pollinators of tropical crops. In the Yungas ecoregion of Argentina, previous systematic and ecological research on Ceratopogonidae focused on Culicoides, since they are the main transmitters of mansonelliasis in northwestern Argentina; however, few studies included the genera Forcipomyia, Dasyhelea, Atrichopogon, Alluaudomyia, Echinohelea, and Bezzia. Therefore, the objective of this study was to determine the presence and abundance of Ceratopogonidae in this region, their association with meteorological variables, and their variation in areas disturbed by human activity. Monthly collection of specimens was performed from July 2008 to July 2009 using CDC miniature light traps deployed for two consecutive days. A total of 360 specimens were collected, being the most abundant Dasyhelea genus (48.06%) followed by Forcipomyia (26.94%) and Atrichopogon (13.61%). Bivariate analyses showed significant differences in the abundance of the genera at different sampling sites and climatic Submitted 15 July 2016 Accepted 4 October 2016 conditions, with the summer season and El Corralito site showing the greatest Published 17 November 2016 abundance of specimens. -
Helminth Parasites of the Common Grackle Quiscalus Quiscula Versicolor Vieillot in Indiana
This dissertation has been 62—3609 microfilmed exactly as received WELKER, George William, 1923- HELMINTH PARASITES OF THE COMMON GRACKLE QUISCALUS QUISCULA VERSICOLOR VIEILLOT IN INDIANA. The Ohio State University, Ph.D., 1962 Zoology University Microfilms, Inc., Ann Arbor, Michigan HELMINTH PARASITES OP THE COMMON GRACKLE QUISCALU5 QUISCULA VERSICOLOR VIEILLOT IN INDIANA DISSERTATION Presented in Partial Fulfillment of the Requirements for the Degree Doctor of Philosophy in the Graduate School of The Ohio State University By George William Welker, B. S., M. A. u _ u u u The Ohio State University 1962 Approved by: 1'XJijdJi ~7 Adviser urtameenhtt of Zoology and Entomology Dedicated as a tribute of appreciation and admiration to ELLEN ANN, my wife, for her help and for the sacrifices which she made during the four years covered by this study. ii ACKNOWLEDGMENTS The author wishes to express his sincere appreciation for all the help and cooperation which he has received from many people during the course of this study: Dr. Joseph Jones, Jr. of St. Augustine's College, Raleigh, North Carolina; Dr. Donal Myer, Southern Illinois university; Dr. E. J. Robinson, Jr., Kenyon College, Gambier, Ohio; Dr. Martin J. Ulmer, Iowa State University, Ames, Iowa; and Dr. A. Carter Broad and Dr. Carl Reese of the reading committee who helped in checking the paper for errors. Special acknowledgment goes to two persons whose help and influence are most deeply appreciated. To Professor Robert H. Cooper, Head of the Department of Science at Ball State Teachers College, whose sincere and continuous interest, encouragement and help made possible the completion of the work; and to Professor Joseph N. -
Filarial Worms
Filarial worms Blood & tissues Nematodes 1 Blood & tissues filarial worms • Wuchereria bancrofti • Brugia malayi & timori • Loa loa • Onchocerca volvulus • Mansonella spp • Dirofilaria immitis 2 General life cycle of filariae From Manson’s Tropical Diseases, 22 nd edition 3 Wuchereria bancrofti Life cycle 4 Lymphatic filariasis Clinical manifestations 1. Acute adenolymphangitis (ADLA) 2. Hydrocoele 3. Lymphoedema 4. Elephantiasis 5. Chyluria 6. Tropical pulmonary eosinophilia (TPE) 5 Figure 84.10 Sequence of development of the two types of acute filarial syndromes, acute dermatolymphangioadenitis (ADLA) and acute filarial lymphangitis (AFL), and their possible relationship to chronic filarial disease. From Manson’s tropical Diseases, 22 nd edition 6 Bancroftian filariasis Pathology 7 Lymphatic filariasis Parasitological Diagnosis • Usually diagnosis of microfilariae from blood but often negative (amicrofilaraemia does not exclude the disease!) • No relationship between microfilarial density and severity of the disease • Obtain a specimen at peak (9pm-3am for W.b) • Counting chamber technique: 100 ml blood + 0.9 ml of 3% acetic acid microscope. Species identification is difficult! 8 Lymphatic filariasis Parasitological Diagnosis • Staining (Giemsa, haematoxylin) . Observe differences in size, shape, nuclei location, etc. • Membrane filtration technique on venous blood (Nucleopore) and staining of filters (sensitive but costly) • Knott concentration technique with saponin (highly sensitive) may be used 9 The microfilaria of Wuchereria bancrofti are sheathed and measure 240-300 µm in stained blood smears and 275-320 µm in 2% formalin. They have a gently curved body, and a tail that becomes thinner to a point. The nuclear column (the cells that constitute the body of the microfilaria) is loosely packed; the cells can be visualized individually and do not extend to the tip of the tail. -
Zoonotic Nematodes of Wild Carnivores
Zurich Open Repository and Archive University of Zurich Main Library Strickhofstrasse 39 CH-8057 Zurich www.zora.uzh.ch Year: 2019 Zoonotic nematodes of wild carnivores Otranto, Domenico ; Deplazes, Peter Abstract: For a long time, wildlife carnivores have been disregarded for their potential in transmitting zoonotic nematodes. However, human activities and politics (e.g., fragmentation of the environment, land use, recycling in urban settings) have consistently favoured the encroachment of urban areas upon wild environments, ultimately causing alteration of many ecosystems with changes in the composition of the wild fauna and destruction of boundaries between domestic and wild environments. Therefore, the exchange of parasites from wild to domestic carnivores and vice versa have enhanced the public health relevance of wild carnivores and their potential impact in the epidemiology of many zoonotic parasitic diseases. The risk of transmission of zoonotic nematodes from wild carnivores to humans via food, water and soil (e.g., genera Ancylostoma, Baylisascaris, Capillaria, Uncinaria, Strongyloides, Toxocara, Trichinella) or arthropod vectors (e.g., genera Dirofilaria spp., Onchocerca spp., Thelazia spp.) and the emergence, re-emergence or the decreasing trend of selected infections is herein discussed. In addition, the reasons for limited scientific information about some parasites of zoonotic concern have been examined. A correct compromise between conservation of wild carnivores and risk of introduction and spreading of parasites of public health concern is discussed in order to adequately manage the risk of zoonotic nematodes of wild carnivores in line with the ’One Health’ approach. DOI: https://doi.org/10.1016/j.ijppaw.2018.12.011 Posted at the Zurich Open Repository and Archive, University of Zurich ZORA URL: https://doi.org/10.5167/uzh-175913 Journal Article Published Version The following work is licensed under a Creative Commons: Attribution-NonCommercial-NoDerivatives 4.0 International (CC BY-NC-ND 4.0) License.