Adaptive Control of Amplitude Distortion Effects

Total Page:16

File Type:pdf, Size:1020Kb

Adaptive Control of Amplitude Distortion Effects Adaptive Control of Amplitude Distortion Effects Brecht De Man1, Joshua D. Reiss1 1Centre for Digital Music, Queen Mary University of London, London E1 4NS, U.K. Correspondence should be addressed to Brecht De Man ([email protected]) ABSTRACT An adaptive amplitude distortion effect for audio production is introduced. We consider a versatile model of multiband waveshaping with a limited set of intuitive parameters. We propose a method for adaptive scaling of the characteristic amplitude distortion transfer function. A number of methods to automate other distortion parameters are explored, such as automatic balance between clean and distorted signals for single band and multiband distortion, make-up gain and adaptive anti-aliasing. Automation formulas are generalised for several other common transfer functions. A formal perceptual evaluation of the automation algorithms is conducted, validating the approach and identifying shortcomings and particularities. Finally, we discuss implementational aspects and possible future directions. 1. INTRODUCTION of sources and/or as an alternative for equalisation [3]. Being an important characteristic of many analog au- Carefully applied distortion can even enhance the per- dio devices such as microphones, amplifiers, mixing ceived quality and presence of audio signals [11]. A consoles, effect processors, and analog tape, distortion soft clipping curve or similar can also be applied to de- has always been an important effect in music produc- crease the dynamic range, and make the perceived loud- tion. Though a nuisance for most electronics designers, ness greater for the same peak level [11]. a warm, subtle distortion is often one of the most sought- As the amount of distortion usually increases with in- after features in audio gear, and no less since the advent creasing input signal level [2, 12], a static distortion de- of digital audio production [1]. vice needs careful setting of the gain and/or threshold In this text, distortion refers to applying any type of non- controls to apply the right amount of distortion. This linear transfer function on a waveform (referred to as am- also means that static settings inevitably introduce vary- plitude distortion or waveshaping, as opposed to phase ing amounts of distortion for different input signal levels. or time-domain distortion [2–5]). In the digital domain, This may be desirable in some cases (after all, this is the this can be any non-linear function defined, for simplic- expected behaviour of the intrinsic saturation induced by ity, from [−1;1] (input) to [−1;1] (output). As such, it analog devices such as amplifiers) but can be detrimen- is a very simple, ‘low-cost’ audio effect as it can be im- tal in situations where a constant degree of distortion is plemented through calculation of a simple mathematical desired, leaving soft parts virtually unprocessed and/or function or a lookup table [2]. louder parts heavily damaged. It also requires time and effort of an audio engineer to tailor the characteristic In general, sound engineers, guitarists and other musi- threshold of the distortion transfer function to the level cians tend to feel digital distortion sounds inferior to the of the input source. ‘original’ analog gear [6]. Much work has been done on the emulation of analog, non-linear devices [4,6–10]. In this paper, we describe a distortion effect that scales Distortion as a creative, sound shaping effect owes its the transfer function in real-time proportional with a popularity to rock guitarists, but used gently, distortion moving average of the signal’s level. As such, it is a effects can alter timbre and dynamics in sophisticated member of the Adaptive Digital Audio Effects (A-DAFx) and subtle ways for all kinds of sources [11]. Beyond in the sense meant by [13]. its creative, sound-shaping use, harmonic distortion can Adaptive effects are especially important in the context be of practical importance by increasing the audibility of automatic mixing systems [14]. In these systems, lit- AES 53RD INTERNATIONAL CONFERENCE, London, UK, 2014 January 27–29 1 DE MAN AND REISS Adaptive Control of Amplitude Distortion Effects tle or no user interaction is desired, meaning that all pa- tortion with only little intermodulation between different rameters need to be set automatically by the system it- bands. self based on features extracted from the incoming au- Throughout this paper, we investigate the possibility of dio or other available knowledge. In this work, we add automating multiband amplitude distortion such that amplitude distortion to the growing set of automatic au- dio effects for music production such as automatic pan- ning [15–17], balancing [18,19], equalising [20,21], and • no human interaction is required to set an appropri- dynamic range compression [22]. However, the consid- ate threshold or other characteristic transfer func- ered effect derives part of its parameters from the audio tion parameter, maintaing an amount of distortion input in an autonomous way, whereas other parameters (non-linearity) independent of input level; (the amount and type of distortion) are still for the user • no excess or deficit of this distortion emerges at the to define, to be set as a constant characteristic to that sys- onset of a louder or softer audio fragment, with an tem, or to be based on other (semantic) data, extracted imperceptible transition; by the mixing system or provided by the end user. As such, it can be readily incorporated in autonomous sys- • aliasing artefacts are diminished down to an accept- tems where processing parameters are derived from song able standard while not using a higher upsampling or instrument data in conjunction with sets of semantic, ratio than necessary, based on knowledge of the user-definable rules [23]. highest significant frequency of the input; As the effect needs to act autonomously (i.e. without hu- • the level does not change with regard to the original man interaction) in many situations, it is undesirable to signal level. control the amount of distortion by an input gain control, which increases the effective level and changes the rel- Specifically, we demonstrate the first two aspects through ative level of the different bands in the multiband case. perceptual evaluation. Rather, we control the parameters of the device’s trans- fer function, manipulating for instance its clipping point, In the following sections, we describe one particularly while compensating automatically for the loss in loud- versatile function based on but not limited to the tradi- ness or energy induced by clipping the signal’s peaks. tional hard and soft clipping functions, and propose sev- Another reason for scaling the characteristic transfer eral parameter automation methods. We then translate function rather than the input gain to control the amount these techniques to other meaningful amplitude distor- of distortion is that the latter introduces a level differ- tion curves. The approach towards automatic transfer ence in ‘before/after’ tests, making careful comparison function scaling is validated through a formal listening impossible. test, and results are discussed. Finally, we summarise our conclusions and outline future perspectives. We consider a multiband distortion device with different amounts and transfer curves per band to be able to match 2. DISTORTION MODEL typical analog devices that distort different frequencies A variety of transfer functions can be used for amplitude differently [24]. Many exciter implementations only dis- distortion (see Section 3.5 for translation of the princi- tort high frequencies, which also calls for a multiband ples presented here to other transfer functions), but in implementation [1]. Another motivation for the multi- this section we will describe a very flexible, ‘standard’ band approach is the ability to increase audibility of low curve. This will then allow us to propose and investi- frequencies that can not be heard adequately on some gate adaptation methods using this simple but powerful playback systems, by creating harmonics of these fre- transfer function parametrisation as an example. A block quencies in particular. Finally, for polyphonic instru- diagram outlining the complete system is shown in Fig- ments, ensembles or any broadband sound for that mat- ure 1. The automated effect is implemented as a VST ter, different notes, tones or other acoustic events can oc- plugin, with the interface as in Figure 2. cur at once or overlap, which sometimes leads to bru- tal intermodulation distortion [25]. Distorting different In the simplest case, the signal above the threshold value bands, where they do not interact, can reduce these ef- T (below −T) is clipped to T (−T). Similar to a dy- fects and for example allow for a large amount of dis- namic range compressor, a soft ‘knee’ transition between AES 53RD INTERNATIONAL CONFERENCE, London, UK, 2014 January 27–29 Page 2 of 10 DE MAN AND REISS Adaptive Control of Amplitude Distortion Effects the linear and compressed/clipped part is presented as IN an alternative to ‘hard clipping’, where the transition is abrupt [26]. As such, the signal only clips for (abso- lute) valuesp above this transition region (the ‘knee’, i.e. CROSSOVER {f1, f2} jxj > T · K). where x is the (clean) input signal, T the transfer function’s threshold, and K the knee width. Note that we use linear values (x between -1 and 1, T between UPSAMPLING {N } up 0 and 1, K > 1 for soft knee and K = 1 for hard knee, i.e. no transition region at all) following common prac- DISTORTION {parameters} tices [11, 27], rather than values in decibel as is custom- ary for dynamic range compressor formulas [26]. For M 1-M M 1-M M 1-M MIX {M} this reason, the knee, which in decibel is defined as the ∑ SUM region from TdB −KpdB=2 untilpTdB +KdB=2, is defined as the region from T= K to T · K in the linear domain.
Recommended publications
  • Lecture 3: Transfer Function and Dynamic Response Analysis
    Transfer function approach Dynamic response Summary Basics of Automation and Control I Lecture 3: Transfer function and dynamic response analysis Paweł Malczyk Division of Theory of Machines and Robots Institute of Aeronautics and Applied Mechanics Faculty of Power and Aeronautical Engineering Warsaw University of Technology October 17, 2019 © Paweł Malczyk. Basics of Automation and Control I Lecture 3: Transfer function and dynamic response analysis 1 / 31 Transfer function approach Dynamic response Summary Outline 1 Transfer function approach 2 Dynamic response 3 Summary © Paweł Malczyk. Basics of Automation and Control I Lecture 3: Transfer function and dynamic response analysis 2 / 31 Transfer function approach Dynamic response Summary Transfer function approach 1 Transfer function approach SISO system Definition Poles and zeros Transfer function for multivariable system Properties 2 Dynamic response 3 Summary © Paweł Malczyk. Basics of Automation and Control I Lecture 3: Transfer function and dynamic response analysis 3 / 31 Transfer function approach Dynamic response Summary SISO system Fig. 1: Block diagram of a single input single output (SISO) system Consider the continuous, linear time-invariant (LTI) system defined by linear constant coefficient ordinary differential equation (LCCODE): dny dn−1y + − + ··· + _ + = an n an 1 n−1 a1y a0y dt dt (1) dmu dm−1u = b + b − + ··· + b u_ + b u m dtm m 1 dtm−1 1 0 initial conditions y(0), y_(0),..., y(n−1)(0), and u(0),..., u(m−1)(0) given, u(t) – input signal, y(t) – output signal, ai – real constants for i = 1, ··· , n, and bj – real constants for j = 1, ··· , m. How do I find the LCCODE (1)? .
    [Show full text]
  • Control Theory
    Control theory S. Simrock DESY, Hamburg, Germany Abstract In engineering and mathematics, control theory deals with the behaviour of dynamical systems. The desired output of a system is called the reference. When one or more output variables of a system need to follow a certain ref- erence over time, a controller manipulates the inputs to a system to obtain the desired effect on the output of the system. Rapid advances in digital system technology have radically altered the control design options. It has become routinely practicable to design very complicated digital controllers and to carry out the extensive calculations required for their design. These advances in im- plementation and design capability can be obtained at low cost because of the widespread availability of inexpensive and powerful digital processing plat- forms and high-speed analog IO devices. 1 Introduction The emphasis of this tutorial on control theory is on the design of digital controls to achieve good dy- namic response and small errors while using signals that are sampled in time and quantized in amplitude. Both transform (classical control) and state-space (modern control) methods are described and applied to illustrative examples. The transform methods emphasized are the root-locus method of Evans and fre- quency response. The state-space methods developed are the technique of pole assignment augmented by an estimator (observer) and optimal quadratic-loss control. The optimal control problems use the steady-state constant gain solution. Other topics covered are system identification and non-linear control. System identification is a general term to describe mathematical tools and algorithms that build dynamical models from measured data.
    [Show full text]
  • Step Response of Series RLC Circuit ‐ Output Taken Across Capacitor
    ESE 271 / Spring 2013 / Lecture 23 Step response of series RLC circuit ‐ output taken across capacitor. What happens during transient period from initial steady state to final steady state? 1 ESE 271 / Spring 2013 / Lecture 23 Transfer function of series RLC ‐ output taken across capacitor. Poles: Case 1: ‐‐two differen t real poles Case 2: ‐ two identical real poles ‐ complex conjugate poles Case 3: 2 ESE 271 / Spring 2013 / Lecture 23 Case 1: two different real poles. Step response of series RLC ‐ output taken across capacitor. Overdamped case –the circuit demonstrates relatively slow transient response. 3 ESE 271 / Spring 2013 / Lecture 23 Case 1: two different real poles. Freqqyuency response of series RLC ‐ output taken across capacitor. Uncorrected Bode Gain Plot Overdamped case –the circuit demonstrates relatively limited bandwidth 4 ESE 271 / Spring 2013 / Lecture 23 Case 2: two identical real poles. Step response of series RLC ‐ output taken across capacitor. Critically damped case –the circuit demonstrates the shortest possible rise time without overshoot. 5 ESE 271 / Spring 2013 / Lecture 23 Case 2: two identical real poles. Freqqyuency response of series RLC ‐ output taken across capacitor. Critically damped case –the circuit demonstrates the widest bandwidth without apparent resonance. Uncorrected Bode Gain Plot 6 ESE 271 / Spring 2013 / Lecture 23 Case 3: two complex poles. Step response of series RLC ‐ output taken across capacitor. Underdamped case – the circuit oscillates. 7 ESE 271 / Spring 2013 / Lecture 23 Case 3: two complex poles. Freqqyuency response of series RLC ‐ output taken across capacitor. Corrected Bode GiGain Plot Underdamped case –the circuit can demonstrate apparent resonant behavior.
    [Show full text]
  • Frequency Response and Bode Plots
    1 Frequency Response and Bode Plots 1.1 Preliminaries The steady-state sinusoidal frequency-response of a circuit is described by the phasor transfer function Hj( ) . A Bode plot is a graph of the magnitude (in dB) or phase of the transfer function versus frequency. Of course we can easily program the transfer function into a computer to make such plots, and for very complicated transfer functions this may be our only recourse. But in many cases the key features of the plot can be quickly sketched by hand using some simple rules that identify the impact of the poles and zeroes in shaping the frequency response. The advantage of this approach is the insight it provides on how the circuit elements influence the frequency response. This is especially important in the design of frequency-selective circuits. We will first consider how to generate Bode plots for simple poles, and then discuss how to handle the general second-order response. Before doing this, however, it may be helpful to review some properties of transfer functions, the decibel scale, and properties of the log function. Poles, Zeroes, and Stability The s-domain transfer function is always a rational polynomial function of the form Ns() smm as12 a s m asa Hs() K K mm12 10 (1.1) nn12 n Ds() s bsnn12 b s bsb 10 As we have seen already, the polynomials in the numerator and denominator are factored to find the poles and zeroes; these are the values of s that make the numerator or denominator zero. If we write the zeroes as zz123,, zetc., and similarly write the poles as pp123,, p , then Hs( ) can be written in factored form as ()()()s zsz sz Hs() K 12 m (1.2) ()()()s psp12 sp n 1 © Bob York 2009 2 Frequency Response and Bode Plots The pole and zero locations can be real or complex.
    [Show full text]
  • Linear Time Invariant Systems
    UNIT III LINEAR TIME INVARIANT CONTINUOUS TIME SYSTEMS CT systems – Linear Time invariant Systems – Basic properties of continuous time systems – Linearity, Causality, Time invariance, Stability – Frequency response of LTI systems – Analysis and characterization of LTI systems using Laplace transform – Computation of impulse response and transfer function using Laplace transform – Differential equation – Impulse response – Convolution integral and Frequency response. System A system may be defined as a set of elements or functional blocks which are connected together and produces an output in response to an input signal. The response or output of the system depends upon transfer function of the system. Mathematically, the functional relationship between input and output may be written as y(t)=f[x(t)] Types of system Like signals, systems may also be of two types as under: 1. Continuous-time system 2. Discrete time system Continuous time System Continuous time system may be defined as those systems in which the associated signals are also continuous. This means that input and output of continuous – time system are both continuous time signals. For example: Audio, video amplifiers, power supplies etc., are continuous time systems. Discrete time systems Discrete time system may be defined as a system in which the associated signals are also discrete time signals. This means that in a discrete time system, the input and output are both discrete time signals. For example, microprocessors, semiconductor memories, shift registers etc., are discrete time signals. LTI system:- Systems are broadly classified as continuous time systems and discrete time systems. Continuous time systems deal with continuous time signals and discrete time systems deal with discrete time system.
    [Show full text]
  • Simplified, Physically-Informed Models of Distortion and Overdrive Guitar Effects Pedals
    Proc. of the 10th Int. Conference on Digital Audio Effects (DAFx-07), Bordeaux, France, September 10-15, 2007 SIMPLIFIED, PHYSICALLY-INFORMED MODELS OF DISTORTION AND OVERDRIVE GUITAR EFFECTS PEDALS David T. Yeh, Jonathan S. Abel and Julius O. Smith Center for Computer Research in Music and Acoustics (CCRMA) Stanford University, Stanford, CA [dtyeh|abel|jos]@ccrma.stanford.edu ABSTRACT retained, however, because intermodulation due to mixing of sub- sonic components with audio frequency components is noticeable This paper explores a computationally efficient, physically in- in the audio band. formed approach to design algorithms for emulating guitar distor- tion circuits. Two iconic effects pedals are studied: the “Distor- Stages are partitioned at points in the circuit where an active tion” pedal and the “Tube Screamer” or “Overdrive” pedal. The element with low source impedance drives a high impedance load. primary distortion mechanism in both pedals is a diode clipper This approximation is also made with less accuracy where passive with an embedded low-pass filter, and is shown to follow a non- components feed into loads with higher impedance. Neglecting linear ordinary differential equation whose solution is computa- the interaction between the stages introduces magnitude error by a tionally expensive for real-time use. In the proposed method, a scalar factor and neglects higher order terms in the transfer func- simplified model, comprising the cascade of a conditioning filter, tion that are usually small in the audio band. memoryless nonlinearity and equalization filter, is chosen for its The nonlinearity may be evaluated as a nonlinear ordinary dif- computationally efficient, numerically robust properties.
    [Show full text]
  • Control System Design Methods
    Christiansen-Sec.19.qxd 06:08:2004 6:43 PM Page 19.1 The Electronics Engineers' Handbook, 5th Edition McGraw-Hill, Section 19, pp. 19.1-19.30, 2005. SECTION 19 CONTROL SYSTEMS Control is used to modify the behavior of a system so it behaves in a specific desirable way over time. For example, we may want the speed of a car on the highway to remain as close as possible to 60 miles per hour in spite of possible hills or adverse wind; or we may want an aircraft to follow a desired altitude, heading, and velocity profile independent of wind gusts; or we may want the temperature and pressure in a reactor vessel in a chemical process plant to be maintained at desired levels. All these are being accomplished today by control methods and the above are examples of what automatic control systems are designed to do, without human intervention. Control is used whenever quantities such as speed, altitude, temperature, or voltage must be made to behave in some desirable way over time. This section provides an introduction to control system design methods. P.A., Z.G. In This Section: CHAPTER 19.1 CONTROL SYSTEM DESIGN 19.3 INTRODUCTION 19.3 Proportional-Integral-Derivative Control 19.3 The Role of Control Theory 19.4 MATHEMATICAL DESCRIPTIONS 19.4 Linear Differential Equations 19.4 State Variable Descriptions 19.5 Transfer Functions 19.7 Frequency Response 19.9 ANALYSIS OF DYNAMICAL BEHAVIOR 19.10 System Response, Modes and Stability 19.10 Response of First and Second Order Systems 19.11 Transient Response Performance Specifications for a Second Order
    [Show full text]
  • Mathematical Modeling of Control Systems
    OGATA-CH02-013-062hr 7/14/09 1:51 PM Page 13 2 Mathematical Modeling of Control Systems 2–1 INTRODUCTION In studying control systems the reader must be able to model dynamic systems in math- ematical terms and analyze their dynamic characteristics.A mathematical model of a dy- namic system is defined as a set of equations that represents the dynamics of the system accurately, or at least fairly well. Note that a mathematical model is not unique to a given system.A system may be represented in many different ways and, therefore, may have many mathematical models, depending on one’s perspective. The dynamics of many systems, whether they are mechanical, electrical, thermal, economic, biological, and so on, may be described in terms of differential equations. Such differential equations may be obtained by using physical laws governing a partic- ular system—for example, Newton’s laws for mechanical systems and Kirchhoff’s laws for electrical systems. We must always keep in mind that deriving reasonable mathe- matical models is the most important part of the entire analysis of control systems. Throughout this book we assume that the principle of causality applies to the systems considered.This means that the current output of the system (the output at time t=0) depends on the past input (the input for t<0) but does not depend on the future input (the input for t>0). Mathematical Models. Mathematical models may assume many different forms. Depending on the particular system and the particular circumstances, one mathemati- cal model may be better suited than other models.
    [Show full text]
  • 12: Resonance
    12: Resonance • QuadraticFactors + • Damping Factor and Q • Parallel RLC • Behaviour at Resonance • Away from resonance • Bandwidth and Q • Power and Energy at Resonance + • Low Pass Filter • Resonance Peak for LP filter • Summary 12: Resonance E1.1 Analysis of Circuits (2017-10213) Resonance: 12 – 1 / 11 Quadratic Factors + 12: Resonance 2 • QuadraticFactors + A quadratic factor in a transfer function is: F (jω) = a (jω) + b (jω) + c. • Damping Factor and Q • Parallel RLC • Behaviour at Resonance • Away from resonance • Bandwidth and Q • Power and Energy at Resonance + • Low Pass Filter • Resonance Peak for LP filter • Summary E1.1 Analysis of Circuits (2017-10213) Resonance: 12 – 2 / 11 Quadratic Factors + 12: Resonance 2 • QuadraticFactors + A quadratic factor in a transfer function is: F (jω) = a (jω) + b (jω) + c. • Damping Factor and Q • Parallel RLC 2 • Behaviour at Resonance Case 1: If b 4ac then we can factorize it: • Away from resonance ≥ • Bandwidth and Q F (jω) = a(jω p1)(jω p2) • Power and Energy at − − Resonance + • Low Pass Filter • Resonance Peak for LP filter • Summary E1.1 Analysis of Circuits (2017-10213) Resonance: 12 – 2 / 11 Quadratic Factors + 12: Resonance 2 • QuadraticFactors + A quadratic factor in a transfer function is: F (jω) = a (jω) + b (jω) + c. • Damping Factor and Q • Parallel RLC 2 • Behaviour at Resonance Case 1: If b 4ac then we can factorize it: • Away from resonance ≥ • Bandwidth and Q F (jω) = a(jω p1)(jω p2) • Power and Energy at − − Resonance + b √b2 4ac • Low Pass Filter where p = − ± − . • Resonance Peak for LP i 2a filter • Summary E1.1 Analysis of Circuits (2017-10213) Resonance: 12 – 2 / 11 Quadratic Factors ++ 12: Resonance 2 • QuadraticFactors + A quadratic factor in a transfer function is: F (jω) = a (jω) + b (jω) + c.
    [Show full text]
  • Discussion 3B
    EECS 16B Designing Information Devices and Systems II Spring 2018 J. Roychowdhury and M. Maharbiz Discussion 3B 1 Transfer Functions When we analyzed circuits in the phasor domain, we always told you what the input voltage, or the input sinusoid to the circuit was. However, sometimes we have many input sinusoids, and we want to look at how a circuit (or system) generically responds to a sinusoid input of frequency w. We want to see how an input sinusoid “transfers” into an output sinusoid. How do we do this? Let’s start with a simple RC circuit. R i(t) + + vin C vout − − Figure 1: First Order RC Low Pass Filter 1 In the phasor domain, the impedance of the capacitor is ZC = jwC and the impedance of the resistor is ZR = R. Because we treat impedances the same as resistances, this circuit looks like a voltage divider in the phasor domain. Remember we must also represent vin as a phasor V˜in; transfer functions are in the phasor domain only, not the time domain. 1 Z 1 V˜ = C V˜ = jwC V˜ = V˜ out Z + Z in 1 in jwRC + 1 in R C R + jwC We define the frequency response as V˜ 1 H(w) = out = V˜in jwRC + 1 Now, given an arbitrary input sinusoid, if we multiply it by the frequency response, we can get the output sinusoid. What this allows us to do is to model any arbitrary circuit as a 4-port (two input, two output) black box. The transfer function completely defines how our circuit works.
    [Show full text]
  • Resonance of Fractional Transfer Functions of the Second Kind Rachid Malti, Xavier Moreau, Firas Khemane
    Resonance of fractional transfer functions of the second kind Rachid Malti, Xavier Moreau, Firas Khemane To cite this version: Rachid Malti, Xavier Moreau, Firas Khemane. Resonance of fractional transfer functions of the second kind. The 3th IFAC Workshop on Fractional Differentiation and its Applications, FDA08, Nov 2008, Ankara, Turkey. pp.1-6. hal-00326418 HAL Id: hal-00326418 https://hal.archives-ouvertes.fr/hal-00326418 Submitted on 26 Jan 2009 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. Resonance of fractional transfer functions of the second kind Rachid MALTI, Xavier MOREAU, and Firas KHEMANE ∗ Bordeaux University – IMS, 351, cours de la Lib´eration, 33405 Talence Cedex, France. firstname.lastname @ims-bordeaux.fr { } Abstract: Canonical fractional transfer function of the second kind is studied in this paper. Stability and resonance conditions are determined in terms of pseudo-damping factor and commensurable order. Keywords: Resonance, fractional system, second order transfer function, canonical form. 1. INTRODUCTION F (s) + + 1 1 Σ K1 ν Σ K2 Commensurable fractional systems can be represented in s sν a transfer function form as: mB − − b sνj ν j T (s ) j=0 H (s)= = , (1) ν PmA R(s ) νi 1+ ais Fig.
    [Show full text]
  • The Z-Transform
    CHAPTER 33 The z-Transform Just as analog filters are designed using the Laplace transform, recursive digital filters are developed with a parallel technique called the z-transform. The overall strategy of these two transforms is the same: probe the impulse response with sinusoids and exponentials to find the system's poles and zeros. The Laplace transform deals with differential equations, the s-domain, and the s-plane. Correspondingly, the z-transform deals with difference equations, the z-domain, and the z-plane. However, the two techniques are not a mirror image of each other; the s-plane is arranged in a rectangular coordinate system, while the z-plane uses a polar format. Recursive digital filters are often designed by starting with one of the classic analog filters, such as the Butterworth, Chebyshev, or elliptic. A series of mathematical conversions are then used to obtain the desired digital filter. The z-transform provides the framework for this mathematics. The Chebyshev filter design program presented in Chapter 20 uses this approach, and is discussed in detail in this chapter. The Nature of the z-Domain To reinforce that the Laplace and z-transforms are parallel techniques, we will start with the Laplace transform and show how it can be changed into the z- transform. From the last chapter, the Laplace transform is defined by the relationship between the time domain and s-domain signals: 4 X(s) ' x(t) e &st dt m t '&4 where x(t) and X(s) are the time domain and s-domain representation of the signal, respectively.
    [Show full text]