Supernovae Seen Through Gravitational Telescopes
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Clusters of Galaxies…
Budapest University, MTA-Eötvös François Mernier …and the surprisesoftheir spectacularhotatmospheres Clusters ofgalaxies… K complex ) ⇤ Fe ) α [email protected] - Wallon Super - Wallon [email protected] Fe XXVI (Ly (/ Fe XXIV) L complex ) ) (incl. Ne) α α ) Fe ) ) α ) α α ) ) ) ) α ⇥ ) ) ) α α α α α α Si XIV (Ly Mg XII (Ly Ni XXVII / XXVIII Fe XXV (He S XVI (Ly O VIII (Ly Si XIII (He S XV (He Ca XIX (He Ca XX (Ly Fe XXV (He Cr XXIII (He Ar XVII (He Ar XVIII (Ly Mn XXIV (He Ca XIX / XX Yo u are h ere ! 1 km = 103 m Yo u are h ere ! (somewhere behind…) 107 m Yo u are h ere ! (and this is the Moon) 109 m ≃3.3 light seconds Yo u are h ere ! 1012 m ≃55.5 light minutes 1013 m 1014 m Yo u are h ere ! ≃4 light days 1013 m Yo u are h ere ! 1014 m 1017 m ≃10.6 light years 1021 m Yo u are h ere ! ≃106 000 light years 1 million ly Yo u are h ere ! The Local Group Andromeda (M31) 1 million ly Yo u are h ere ! The Local Group Triangulum (M33) 1 million ly Yo u are h ere ! The Local Group 10 millions ly The Virgo Supercluster Virgo cluster 10 millions ly The Virgo Supercluster M87 Virgo cluster 10 millions ly The Virgo Supercluster 2dFGRS Survey The large scale structure of the universe Abell 2199 (429 000 000 light years) Abell 2029 (1.1 billion light years) Abell 2029 (1.1 billion light years) Abell 1689 Abell 1689 (2.2 billion light years) Les amas de galaxies 53 Light emits at optical “colors”… …but also in infrared, radio, …and X-ray! Light emits at optical “colors”… …but also in infrared, radio, …and X-ray! Light emits at optical “colors”… -
Masamune Oguri
New directions in strong lensing Masamune Oguri RESCEU/Physics/Kavli IPMU University of Tokyo 2019/8/23 CosmoCruise@Sea Reference − arXiv:1907.06830 Strong gravitational lensing of explosive transients Masamune Oguri1,2,3 1Research Center for the Early Universe, University of Tokyo, Tokyo 113-0033, Japan 2Department of Physics, University of Tokyo, Tokyo 113-0033, Japan 3Kavli Institute for the Physics and Mathematics of the Universe (Kavli IPMU, WPI), University of Tokyo, Chiba 277-8582, Japan E-mail: [email protected] Abstract. Recent rapid progress in time domain surveys makes it possible to detect various types of explosive transients in the Universe in large numbers, some of which will be gravitationally lensed into multiple images. Although alargenumberofstronglylenseddistantgalaxiesandquasarshavealready been discovered, strong lensing of explosive transients opens up new applications, including improved measurements of cosmological parameters, powerful probes of small scale structure of the Universe, and new observational tests of dark matter scenarios, thanks to their rapidly evolving light curves as well as their compact sizes. In particular, the compactness of these transient events indicates that the wave optics e↵ect plays an important role in some cases, which can lead to totally new applications of these lensing events. Recently we have witnessed first discoveries of strongly lensed supernovae, and strong lensing events of other types of explosive transients such as gamma-ray bursts, fast radio bursts, and gravitational waves from compact binary mergers are expected to be observed soon. In this review article, we summarize the current state of research on strong gravitational lensing of explosive transients and discuss future prospects. -
Source-Plane Reconstruction of the Giant Gravitational Arc in A2667: a Candidate Wolf–Rayet Galaxy At
SOURCE-PLANE RECONSTRUCTION OF THE GIANT GRAVITATIONAL ARC IN A2667: A CANDIDATE WOLF–RAYET GALAXY AT z ∼ 1 Shuo Cao, Giovanni Covone, Eric Jullo, Johan Richard, Luca Izzo, Zong-Hong Zhu To cite this version: Shuo Cao, Giovanni Covone, Eric Jullo, Johan Richard, Luca Izzo, et al.. SOURCE-PLANE RE- CONSTRUCTION OF THE GIANT GRAVITATIONAL ARC IN A2667: A CANDIDATE WOLF– RAYET GALAXY AT z ∼ 1. Astronomical Journal, American Astronomical Society, 2015, 149, pp.8. 10.1088/0004-6256/149/1/3. hal-01109685 HAL Id: hal-01109685 https://hal.archives-ouvertes.fr/hal-01109685 Submitted on 26 Jan 2015 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. The Astronomical Journal, 149:3 (8pp), 2015 January doi:10.1088/0004-6256/149/1/3 C 2015. The American Astronomical Society. All rights reserved. SOURCE-PLANE RECONSTRUCTION OF THE GIANT GRAVITATIONAL ARC IN A2667: A CANDIDATE WOLF–RAYET GALAXY AT z ∼ 1 Shuo Cao1,2, Giovanni Covone2,3, Eric Jullo4, Johan Richard5, Luca Izzo6,7, and Zong-Hong Zhu1 1 Department of Astronomy, Beijing Normal University, 100875 Beijing, China; [email protected] 2 Dipartimento di Scienze Fisiche, Universita` di Napoli “Federico II,” Via Cinthia, I-80126 Napoli, Italy 3 INFN Sez. -
Lessons from the First Multiply Imaged Supernova: a Revised Light-Traces
Draft version August 26, 2020 Typeset using LATEX twocolumn style in AASTeX63 Lessons from the first multiply imaged supernova: A revised Light-Traces-Mass strong lensing model for the galaxy cluster MACS J1149.5+2223 Adi Zitrin1 1Physics Department, Ben-Gurion University of the Negev, P.O. Box 653, Be'er-Sheva 84105, Israel (Received; Revised; Accepted) Submitted to ApJ ABSTRACT Our light-traces-mass (LTM) strong-lensing model for MACS J1149.5+2223 has played several key roles over the last decade: it aided the identification of multiple images in this cluster and the study of MACS1149-JD1 at redshift z ' 9, it was used to estimate the properties of the first multiply imaged supernova, Refsdal, in its discovery paper, and of the first caustic crossing event by a cluster, Lensed Star 1. Supernova Refsdal supplied an invaluable opportunity to conduct a blind test of the ability of common lens-modeling techniques to accurately describe the properties of SN Refsdal's images and predict the reappearance of one of its counter images that was due about a year post-discovery of the original Einstein cross. Thanks to this practice, in which our submitted model yielded some outlying results, we located a numerical artifact in the time delay (TD) calculation part of the code, which was now fixed. This artifact did not influence the reproduction of multiple images (i.e., the deflection fields { which are those constrained directly from the observations) or the derived mass model, and so it remained unnoticed prior to supernova Refsdal, emphasizing the importance of blind tests in astronomy. -
Arxiv:0807.2573V1 [Astro-Ph] 16 Jul 2008 Oy 1-03 Japan
Draft version November 1, 2018 A Preprint typeset using LTEX style emulateapj v. 08/13/06 STRANGE FILAMENTARY STRUCTURES (“FIREBALLS”) AROUND A MERGER GALAXY IN THE COMA CLUSTER OF GALAXIES1 Michitoshi Yoshida2, Masafumi Yagi3, Yutaka Komiyama3,4, Hisanori Furusawa4, Nobunari Kashikawa3, Yusei Koyama5, Hitomi Yamanoi3,6, Takashi Hattori4 and Sadanori Okamura5,7 Draft version November 1, 2018 ABSTRACT We found an unusual complex of narrow blue filaments, bright blue knots, and Hα-emitting filaments and clouds, which morphologically resembled a complex of “fireballs,” extending up to 80 kpc south from an E+A galaxy RB199 in the Coma cluster. The galaxy has a highly disturbed morphology indicative of a galaxy–galaxy merger remnant. The narrow blue filaments extend in straight shapes toward the south from the galaxy, and several bright blue knots are located at the southern ends of the filaments. The RC band absolute magnitudes, half light radii and estimated masses of the 6−7 bright knots are ∼ −12 −−13 mag, ∼ 200 − 300 pc and ∼ 10 M⊙, respectively. Long, narrow Hα-emitting filaments are connected at the south edge of the knots. The average color of the fireballs is B − RC ≈ 0.5, which is bluer than RB199 (B − R = 0.99), suggesting that most of the stars in the fireballs were formed within several times 108 yr. The narrow blue filaments exhibit almost no Hα emission. Strong Hα and UV emission appear in the bright knots. These characteristics indicate that star formation recently ceased in the blue filaments and now continues in the bright knots. The gas stripped by some mechanism from the disk of RB199 may be traveling in the intergalactic space, forming stars left along its trajectory. -
Metadata of the Chapter That Will Be Visualized Online
Metadata of the chapter that will be visualized online Chapter Title Binary Systems and Their Nuclear Explosions Copyright Year 2018 Copyright Holder The Author(s) Author Family Name Isern Particle Given Name Jordi Suffix Organization Institute of Space Sciences (ICE, CSIC) Address Barcelona, Spain Organization Institut d’Estudis Espacials de Catalunya (IEEC) Address Barcelona, Spain Email [email protected] Corresponding Author Family Name Hernanz Particle Given Name Margarita Suffix Organization Institute of Space Sciences (ICE, CSIC) Address Barcelona, Spain Organization Institut d’Estudis Espacials de Catalunya (IEEC) Address Barcelona, Spain Email [email protected] Author Family Name José Particle Given Name Jordi Suffix Organization Universitat Politècnica de Catalunya (UPC) Address Barcelona, Spain Organization Institut d’Estudis Espacials de Catalunya (IEEC) Address Barcelona, Spain Email [email protected] Abstract The nuclear energy supply of a typical star like the Sun would be ∼ 1052 erg if all the hydrogen could be incinerated into iron peak elements. Chapter 5 1 Binary Systems and Their Nuclear 2 Explosions 3 Jordi Isern, Margarita Hernanz, and Jordi José 4 5.1 Accretion onto Compact Objects and Thermonuclear 5 Runaways 6 The nuclear energy supply of a typical star like the Sun would be ∼1052 erg if all 7 the hydrogen could be incinerated into iron peak elements. Since the gravitational 8 binding energy is ∼1049 erg, it is evident that the nuclear energy content is more 9 than enough to blow up the Sun. However, stars are stable thanks to the fact that their 10 matter obeys the equation of state of a classical ideal gas that acts as a thermostat: if 11 some energy is released as a consequence of a thermal fluctuation, the gas expands, 12 the temperature drops and the instability is quenched. -
Nobel Lecture: Accelerating Expansion of the Universe Through Observations of Distant Supernovae*
REVIEWS OF MODERN PHYSICS, VOLUME 84, JULY–SEPTEMBER 2012 Nobel Lecture: Accelerating expansion of the Universe through observations of distant supernovae* Brian P. Schmidt (published 13 August 2012) DOI: 10.1103/RevModPhys.84.1151 This is not just a narrative of my own scientific journey, but constant, and suggested that Hubble’s data and Slipher’s also my view of the journey made by cosmology over the data supported this conclusion (Lemaˆitre, 1927). His work, course of the 20th century that has lead to the discovery of the published in a Belgium journal, was not initially widely read, accelerating Universe. It is complete from the perspective of but it did not escape the attention of Einstein who saw the the activities and history that affected me, but I have not tried work at a conference in 1927, and commented to Lemaˆitre, to make it an unbiased account of activities that occurred ‘‘Your calculations are correct, but your grasp of physics is around the world. abominable.’’ (Gaither and Cavazos-Gaither, 2008). 20th Century Cosmological Models: In 1907 Einstein had In 1928, Robertson, at Caltech (just down the road from what he called the ‘‘wonderful thought’’ that inertial accel- Edwin Hubble’s office at the Carnegie Observatories), pre- eration and gravitational acceleration were equivalent. It took dicted the Hubble law, and claimed to see it when he com- Einstein more than 8 years to bring this thought to its fruition, pared Slipher’s redshift versus Hubble’s galaxy brightness his theory of general Relativity (Norton and Norton, 1984)in measurements, but this observation was not substantiated November, 1915. -
Arxiv:1801.05235V1 [Astro-Ph.CO] 16 Jan 2018
YITP-18-04 KUNS-2714 RUP-18-2 Primordial Black Holes - Perspectives in Gravitational Wave Astronomy - Misao Sasakia, Teruaki Suyamab, Takahiro Tanakac;a, and Shuichiro Yokoyamad;e a Center for Gravitational Physics, Yukawa Institute for Theoretical Physics, Kyoto University, Kyoto 606-8502, Japan b Research Center for the Early Universe (RESCEU), Graduate School of Science, The University of Tokyo, Tokyo 113-0033, Japan c Department of Physics, Kyoto University, Kyoto 606-8502, Japan d Department of Physics, Rikkyo University, Tokyo 171-8501, Japan e Kavli IPMU (WPI), UTIAS, The University of Tokyo, Kashiwa, Chiba 277-8583, Japan Abstract This is a review article on the primordial black holes (PBHs), with particular focus on 15 the massive ones (& 10 g) which have not evaporated by the present epoch by the Hawking radiation. By the detections of gravitational waves by LIGO, we have gained a completely novel tool to observationally search for PBHs complementary to the electromagnetic waves. Based on the perspective that gravitational-wave astronomy will make a significant progress in the next decades, a purpose of this article is to give a comprehensive review covering a wide range of topics on PBHs. After discussing PBH formation as well as several inflation models leading to PBH production, we summarize various existing and future observational constraints. We then present topics on formation of PBH binaries, gravitational waves from PBH binaries, various observational tests of PBHs by using gravitational waves. arXiv:1801.05235v1 [astro-ph.CO] 16 Jan 2018 1 Contents 1 Introduction 4 2 Formation of PBHs 6 2.1 Basis of primordial black holes formation in the early Universe . -
HOLISMOKES--I. Highly Optimised Lensing Investigations of Supernovae, Microlensing Objects, and Kinematics of Ellipticals and Spirals
Astronomy & Astrophysics manuscript no. holismokesI ©ESO 2020 November 13, 2020 HOLISMOKES - I. Highly Optimised Lensing Investigations of Supernovae, Microlensing Objects, and Kinematics of Ellipticals and Spirals S. H. Suyu1; 2; 3, S. Huber1; 2, R. Cañameras1, M. Kromer4, S. Schuldt1; 2, S. Taubenberger1, A. Yıldırım1, V. Bonvin5, J. H. H. Chan5, F. Courbin5, U. Nöbauer1; 6, S. A. Sim7, and D. Sluse8 1 Max-Planck-Institut für Astrophysik, Karl-Schwarzschild-Str. 1, 85748 Garching, Germany e-mail: [email protected] 2 Physik-Department, Technische Universität München, James-Franck-Straße 1, 85748 Garching, Germany 3 Academia Sinica Institute of Astronomy and Astrophysics (ASIAA), 11F of ASMAB, No.1, Section 4, Roosevelt Road, Taipei 10617, Taiwan 4 Heidelberger Institut für Theoretische Studien, Schloss-Wolfsbrunnenweg 35, 69118 Heidelberg, Germany 5 Institute of Physics, Laboratory of Astrophysics, Ecole Polytechnique Fédérale de Lausanne (EPFL), Observatoire de Sauverny, 1290 Versoix, Switzerland 6 MunichRe IT 1.6.4.1, Königinstraße 107, 80802, Munich, Germany 7 Astrophysics Research Centre, School of Mathematics and Physics, Queen’s University Belfast, Belfast BT7 1NN, UK 8 STAR Institute, Quartier Agora - Allée du six Août, 19c B-4000 Liège, Belgium Received February –, 2020; accepted – ABSTRACT We present the HOLISMOKES programme on strong gravitational lensing of supernovae as a probe of supernova (SN) physics and cosmology. We investigate the effects of microlensing on early-phase SN Ia spectra using four different SN explosion models, and find that within 10 rest-frame days after SN explosion, distortions of SN Ia spectra due to microlensing are typically negligible (<1% distortion within the 1σ spread, and .10% distortion within the 2σ spread). -
Type Ia Supernovaeof Are a the Outc Carbon–Oxygen White Dwarf in a Binary System
Type Ia Supernova: Observations and Theory PoS(NIC XI)066 Jordi Isern∗ Institute for Space Sciences (CSIC-IEEC) E-mail: [email protected] Eduardo Bravo Department of Nuclear Physics (UPC)/IEEC E-mail: [email protected] Alina Hirschmann Institute for Space Sciences (CSIC-IEEC) E-mail: [email protected] There is a wide consensus that Type Ia supernovae are the outcome of the thermonuclear explosion of a carbon–oxygen white dwarf in a binary system. Nevertheless, the nature of this system, the process of ignition itself and the development of the explosion continue to be a mystery despite the important improvements that both, theory and observations, have experienced during the last years. Furthermore, the discovery of new events that are challenging the classical scenario forces the exploration of new issues or, at least, to reconsider scenarios that were rejected at a given moment. 11th Symposium on Nuclei in the Cosmos 19-23 July 2010 Heidelberg, Germany. ∗Speaker. c Copyright owned by the author(s) under the terms of the Creative Commons Attribution-NonCommercial-ShareAlike Licence. http://pos.sissa.it/ Type Ia Supernova: Observations and Theory Jordi Isern 1. Introduction Supernovae are characterized by a sudden rise of their luminosity, by a steep decline after maximum light that lasts several weeks, followed by an exponential decline that can last several years. The total electromagnetic output, obtained from the light curve, is ∼ 1049 erg, while the 10 luminosity at maximum can be as high as ∼ 10 L⊙. The kinetic energy of supernovae can be estimated from the expansion velocity of the ejecta, vexp ∼ 5,000 − 10,000 km/s, and turns out to be ∼ 1051 erg. -
Download a PDF of the Abstracts Booklet
TALKS SN2016 ABSTRACTS BOOKLET 2 1.- SESSION: Cultural NAME: Cristian Moreno Pakarati AFFILIATION: Ahirenga Research TITTLE: A new proposal for a division of Easter Island's history ABSTRACT: This paper presents an original interpretation of the long-term history of the island, dividing it in three main periods. By this, it pretends to contribute a new vision on a topic long abandoned by the growingly specialized archaeology that focuses more and more on the smallest of details. The scheme is as follows: a first period, as an era of open ocean navigation and relatively frequent contact with other Polynesian people; a second period, as an era of extreme isolation where the Rapanui culture developed many of its unique traits within the Polynesian and World context; and a third period, of contacts with "the West", starting in 1722 with the Dutch expedition of Roggeveen. By this, it pretends to simplify the timeline of events on the island and contextualize better the statue-carving era and the Bird-cult of Easter Island. 2.- SESSION: 01 NAME: Edmundo Edwards AFFILIATION: Pacific Islands Research Institute TITTLE: Archeoastronomy of Eastern Polynesia and Easter Island ABSTRACT: Some 3,500 years ago in a span of about 500 years, the Lapita, the ancestors of the Polynesians, used their knowledge of the stars to settle an area 4,300 km wide in what is considered one of the speediest human expansions of the pre-historic world. Their descendants, the Polynesians, eventually settled hundreds of islands crossing millions of square kilometres of water without navigational instruments, guided by nothing more than complex astronomical observations and an understanding of natural signs. -
Astrotalk: Behind the News Headlines of May 2016
AstroTalk: Behind the news headlines of May 2016 Richard de Grijs (何锐思) (Kavli Institute for Astronomy and Astrophysics, Peking University) Supernovae and gravitational lenses: A true match made in heaven! During the last week of May 2016, I organized an international conference at the International Space Science Institute in Beijing. The meeting’s main aim was to update our understanding of the different, cutting-edge techniques we now use routinely to determine accurate distances to a wide variety of objects across the Universe. At the end of the week, I looked back with great satisfaction at a series of very high-quality presentations by some 45 scientists from around the world and numerous in-depth discussions, all conducted in a constructive, friendly atmosphere. Indeed, I consider this workshop to have been one of the most successful and pleasant meetings I have ever been responsible for, while also having rekindled old friendships and making many new friends, too. A large subset of the presentations offered exciting new results, leaving me with the impression that we are truly on the verge of a new era of precision distance determination in astronomy. However, one presentation in particular left me truly awe-struck. My colleague and friend Sherry Suyu, affiliated with both the Academia Sinica Institute for Astronomy and Astrophysics (Taiwan) and the Max-Planck Institute for Astrophysics (Germany), told us about her team’s work on using so-called ‘gravitational lenses’—massive foreground objects that bend light, but more about how this works below—as distance tracers. Her team had serendipitously discovered a supernova—an exploding massive star at the end of its life—that had been gravitationally lensed into multiple images.