Cellular Function and Pathological Role of ATP13A2 and Related P-Type Transport Atpases in Parkinson's Disease and Other Neurological Disorders
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Identification of Candidate Substrates of the Leucine Rich Repeat Kinase 2 by Mass Spectrometry
Identification of candidate substrates of the leucine rich repeat kinase 2 by mass spectrometry- based phosphoproteomics William Carl Edelman A dissertation submitted in partial fulfillment of the requirements for the degree of Doctor of Philosophy University of Washington 2016 Reading Committee: Judit Villén, Chair Leo Pallanck Deborah Nickerson Program Authorized to Offer Degree: Department of Genome Sciences 2 © Copyright 2016 William Carl Edelman 3 University of Washington Abstract Identification of candidate substrates of the leucine rich repeat kinase 2 by mass spectrometry-based phosphoproteomics William Carl Edelman Chair of the Supervisory Committee: Assistant Professor, Judit Villén Department of Genome Sciences Mutations in the kinase domain of the leucine rich repeat kinase (LRRK2) have been implicated in heritable forms of Parkinson’s disease (PD). Specifically, a glycine to serine mutation (G2019S) has demonstrated hyperactive autophosphorylation, neuronal toxicity, and locomotor deficits in the fruit fly Drosophila melanogaster— all of which are related to its pathogenicity in PD. My dissertation focuses on identifying novel substrates of LRRK2 through analysis of proteome-wide changes in protein abundance as well as identifying changes in phosphorylation of proteins in vitro and in the in vivo fruit fly model. Using mass spectrometry, I provide quantitative information on thousands of proteins and phosphorylation sites. In vitro kinase assays on peptides derived from fly heads or a neuroblastoma cell line provide evidence for direct substrates of LRRK2, while the in vivo experiment in flies expressing LRRK2 identifies both direct and indirect phosphorylation substrates of the kinase. Herein, I present evidence for novel, LRRK2-mediated phosphorylation sites in the Drosophila melanogaster and the neuroblastoma models of PD. -
Essential Trace Elements in Human Health: a Physician's View
Margarita G. Skalnaya, Anatoly V. Skalny ESSENTIAL TRACE ELEMENTS IN HUMAN HEALTH: A PHYSICIAN'S VIEW Reviewers: Philippe Collery, M.D., Ph.D. Ivan V. Radysh, M.D., Ph.D., D.Sc. Tomsk Publishing House of Tomsk State University 2018 2 Essential trace elements in human health UDK 612:577.1 LBC 52.57 S66 Skalnaya Margarita G., Skalny Anatoly V. S66 Essential trace elements in human health: a physician's view. – Tomsk : Publishing House of Tomsk State University, 2018. – 224 p. ISBN 978-5-94621-683-8 Disturbances in trace element homeostasis may result in the development of pathologic states and diseases. The most characteristic patterns of a modern human being are deficiency of essential and excess of toxic trace elements. Such a deficiency frequently occurs due to insufficient trace element content in diets or increased requirements of an organism. All these changes of trace element homeostasis form an individual trace element portrait of a person. Consequently, impaired balance of every trace element should be analyzed in the view of other patterns of trace element portrait. Only personalized approach to diagnosis can meet these requirements and result in successful treatment. Effective management and timely diagnosis of trace element deficiency and toxicity may occur only in the case of adequate assessment of trace element status of every individual based on recent data on trace element metabolism. Therefore, the most recent basic data on participation of essential trace elements in physiological processes, metabolism, routes and volumes of entering to the body, relation to various diseases, medical applications with a special focus on iron (Fe), copper (Cu), manganese (Mn), zinc (Zn), selenium (Se), iodine (I), cobalt (Co), chromium, and molybdenum (Mo) are reviewed. -
New Tests 2 Test Updates 4 CPT Code Updates 11 Deleted Tests 11 Diagnostics Update Volume XXI, No
Volume XXI, No. 6 JUNE 2021 MONTHLY TEST UPDATES Diagnostics Update New Tests 2 Test Updates 4 CPT Code Updates 11 Deleted Tests 11 Diagnostics Update Volume XXI, No. 6 | JUNE 2021 New Tests Use Anti-DFS70 antibodies may help identify individuals who do not have an Anti-Carbamylated Protein (CarP) Antibody 520311 ANA-associated Autoimmune Rheumatic Disease (AARD) especially in the absence of significant clinical findings.1 Anti-DFS70 Ab, especially when positive CPT 83516 in isolation (i.e. in the absence of AARD-associated autoantibodies), may Synonyms Anti-CarP antigen antibody; RA marker prevent unnecessary referrals and examinations of ANA-positive individuals.2 Special Instructions This test has not been approved for NY state clients. Limitations This test should be used with clinical findings and other Specimen Serum autoimmune testing; it cannot be used alone to rule out autoimmune disease. Volume 1 mL This test was developed and its performance characteristics determined Minimum Volume 0.5 mL by Labcorp. It has not been cleared or approved by the Food and Drug Container Red-top tube; serum from red-top tube; serum from a gel tube; or Administration. serum gel tube Methodology Enzyme-linked immunosorbent assay (ELISA) Collection Separate serum from cells within one hour of collection. Transfer to a Additional Information Anti-DFS70 antibodies target the dense fine speckled plastic transport tube before shipping. protein of 70 kDa which is identical to Lens Epithelium-Derived Growth Factor Storage Instructions Refrigerate or freeze. or transcription co-activator p75 (LEDGFp75). They are detectable in 2% to 22% Stability of healthy individuals and in less than 1% of patients with AARD are of unknown Temperature Period clinical significance. -
New Letterhead
bioRxiv preprint doi: https://doi.org/10.1101/2021.04.22.440839; this version posted April 22, 2021. The copyright holder for this preprint (which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. Evolutionary rate covariation identifies SLC30A9 (ZnT9) as a mitochondrial zinc transporter. Amanda Kowalczyk1,2, Omotola Gbadamosi3, Kathryn Kolor3, Jahree Sosa3, Claudette St Croix4, Gregory Gibson4, Maria Chikina2, Elias Aizenman5, Nathan Clark6,* and Kirill Kiselyov3,* 1: Joint Carnegie Mellon University-University of Pittsburgh PhD Program in Computational Biology, Pittsburgh, USA, 15213 2: Department of Computational and Systems Biology, University of Pittsburgh, USA, 15213 3: Department of Biological Science, University of Pittsburgh, USA, 15260 4: Center for Biologic Imaging, University of Pittsburgh, USA, 15260 5: Department of Neurobiology and Pittsburgh Institute for Neurodegenerative Diseases, University of Pittsburgh School of Medicine, Pittsburgh, PA 15260. 6: Department of Human Genetics, University of Utah, USA, 84112 * Address correspondence to: Nathan Clark Department of Human Genetics University of Utah 15 S 2030 E / Salt Lake City, UT 84112 Phone: +1 (801) 587-0990 Email: [email protected] or Kirill Kiselyov Department of Biological Sciences, University of Pittsburgh, 4249 Fifth Ave, Pittsburgh, PA, USA Phone: +1 (412) 624-4317 Email: [email protected] bioRxiv preprint doi: https://doi.org/10.1101/2021.04.22.440839; this version posted April 22, 2021. The copyright holder for this preprint (which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. Abstract. Recent advances in genome sequencing have led to the identification of new ion and metabolite transporters, many of which have not been characterized. -
Genome-Wide Investigation of Cellular Functions for Trna Nucleus
Genome-wide Investigation of Cellular Functions for tRNA Nucleus- Cytoplasm Trafficking in the Yeast Saccharomyces cerevisiae DISSERTATION Presented in Partial Fulfillment of the Requirements for the Degree Doctor of Philosophy in the Graduate School of The Ohio State University By Hui-Yi Chu Graduate Program in Molecular, Cellular and Developmental Biology The Ohio State University 2012 Dissertation Committee: Anita K. Hopper, Advisor Stephen Osmani Kurt Fredrick Jane Jackman Copyright by Hui-Yi Chu 2012 Abstract In eukaryotic cells tRNAs are transcribed in the nucleus and exported to the cytoplasm for their essential role in protein synthesis. This export event was thought to be unidirectional. Surprisingly, several lines of evidence showed that mature cytoplasmic tRNAs shuttle between nucleus and cytoplasm and their distribution is nutrient-dependent. This newly discovered tRNA retrograde process is conserved from yeast to vertebrates. Although how exactly the tRNA nuclear-cytoplasmic trafficking is regulated is still under investigation, previous studies identified several transporters involved in tRNA subcellular dynamics. At least three members of the β-importin family function in tRNA nuclear-cytoplasmic intracellular movement: (1) Los1 functions in both the tRNA primary export and re-export processes; (2) Mtr10, directly or indirectly, is responsible for the constitutive retrograde import of cytoplasmic tRNA to the nucleus; (3) Msn5 functions solely in the re-export process. In this thesis I focus on the physiological role(s) of the tRNA nuclear retrograde pathway. One possibility is that nuclear accumulation of cytoplasmic tRNA serves to modulate translation of particular transcripts. To test this hypothesis, I compared expression profiles from non-translating mRNAs and polyribosome-bound translating mRNAs collected from msn5Δ and mtr10Δ mutants and wild-type cells, in fed or acute amino acid starvation conditions. -
Inheritest 500 PLUS
Inheritest® 500 PLUS 525 genes Specimen ID: 00000000010 Container ID: H0651 Control ID: Acct #: LCA-BN Phone: SAMPLE REPORT, F-630049 Patient Details Specimen Details Physician Details DOB: 01/01/1991 Date Collected: 08/05/2019 12:00 (Local) Ordering: Age (yyy/mm/dd): 028/07/04 Date Received: 08/06/2019 Referring: Gender: Female Date Entered: 08/06/2019 ID: Patient ID: 00000000010 Date Reported: 08/21/2019 15:29 (Local) NPI: Ethnicity: Unknown Specimen Type: Blood Lab ID: MNEGA Indication: Carrier screening Genetic Counselor: None SUMMARY: POSITIVE POSITIVE RESULTS DISORDER (GENE) RESULTS INTERPRETATION Spinal muscular atrophy AT RISK AT RISK to be a silent carrier (2+0). For ethnic-specific risk (SMN1) 2 copies of SMN1; positive for revisions see Methods/Limitations. Genetic counseling is NMID: NM_000344 c.*3+80T>G SNP recommended. Risk: AT INCREASED RISK FOR AFFECTED PREGNANCY. See Additional Clinical Information. NEGATIVE RESULTS DISORDER (GENE) RESULTS INTERPRETATION Cystic fibrosis NEGATIVE This result reduces, but does not eliminate the risk to be a (CFTR) carrier. NMID: NM_000492 Risk: NOT at an increased risk for an affected pregnancy. Fragile X syndrome NEGATIVE: Not a carrier of a fragile X expansion. (FMR1) 29 and 36 repeats NMID: NM_002024 Risk: NOT at an increased risk for an affected pregnancy. ALL OTHER DISORDERS NEGATIVE This result reduces, but does not eliminate the risk to be a carrier. Risk: The individual is NOT at an increased risk for having a pregnancy that is affected with one of the disorders covered by this test. For partner's gene-specific risks, visit www.integratedgenetics.com. -
ATP13A2 Associated with a Complicated Form of Hereditary Spastic Paraplegia
ARTICLE OPEN ACCESS Identification of a novel mutation in ATP13A2 associated with a complicated form of hereditary spastic paraplegia Yasuko Odake, MD, Kishin Koh, MD, PhD, Yoshihisa Takiyama, MD, PhD, Hiroyuki Ishiura, MD, PhD, Correspondence Shoji Tsuji, MD, PhD, Masahito Yamada, MD, PhD, and Mitsuhiro Yoshita, MD, PhD Dr. Odake [email protected] Neurol Genet 2020;6:e514. doi:10.1212/NXG.0000000000000514 Abstract Objective To establish molecular diagnosis for a family with a complicated form of autosomal recessive hereditary spastic paraplegia with intellectual disability, cognitive decline, psychosis, peripheral neuropathy, upward gaze palsy, and thin corpus callosum (TCC). Methods Physical examinations, laboratory tests, structural neuroimaging studies, and exome sequence analysis were carried out. Results The 3 patients exhibited intellectual disability and progressive intellectual decline accompanied by psychiatric symptoms. Gait difficulty with spasticity and pyramidal weakness appeared at the ages of 20s–30s. Brain MRI revealed TCC with atrophic changes in the frontotemporal lobes, caudate nuclei, and cerebellum. Exome sequence analysis revealed a novel homozygous c.2654C>A (p. Ala885Asp) variant in the ATP13A2, a gene responsible for a complicated form of hereditary spastic paraplegia (SPG78), Kufor-Rakeb syndrome, and neuronal ceroid lipofuscinosis. The predominant clinical presentations of the patients include progressive intellectual disability and gait difficulty with spasticity and pyramidal weakness, consistent with the diagnosis of SPG78. Of note, prominent psychiatric symptoms and extrapyramidal signs including rigidity, dystonia, and involuntary movements preceded the spastic paraparesis. Conclusions Our study further broadens the clinical spectrum associated with ATP13A2 mutations. From the Department of Clinical Research (Y.O., M. -
Diagnostic Test: MALATTIE CEREBELLARI
Diagnostic test: MALATTIE CEREBELLARI CEREBELLAR DISEASES Panel / Illumina Custom panel, Nextera Enrichment Technology / Coding exons and flanking regions of genes List of gene(s) and disease(s) tested: ABCB7, ABHD12, ACO2, COQ8A, AFG3L2, ANO10, APTX, ATCAY, ATG5, ATM, ATP1A3, ATP2B3, ATP8A2, C9orf72, CACNA1A, CACNA1G, CACNB4, CASK, CCDC88C, CLCN2, CLN5, CWF19L1, CYP27A1, DNMT1, EEF2, ELOVL4, ELOVL5, FAT2, FGF12, FGF14, FLVCR1, FXN, GDAP2, GOSR2, GRID2, GRM1, ITPR1, KCNA1, KCNC3, KCND3, KCNJ10, KIF1C, LAMA1, MARS2, MME, MTPAP, NKX6-2, OPHN1, PDYN, PEX7, PHYH, PLD3, PMPCA, PNKP, PNPLA6, POLG, POLR3A, POLR3B, PRKCG, PTF1A, PUM1, RNF216, RUBCN, SACS, SCN2A, SCYL1, SETX, SIL1, SLC1A3, SLC25A46, SLC9A1, SLC9A6, SNX14, SPG7, SPTBN2, SQSTM1, STUB1, SYNE1, SYT14, TDP1, TDP2, TGM6, TMEM240, TPP1, TRPC3, TSFM, TTBK2, TTPA, TUBB4A, TWNK, TXN2, UBA5, VAMP1, VLDLR, VPS13D, VWA3B, WDR73, WFS1, WWOX, XRCC1, ADAR, ALDH18A1, ALDH3A2, AMPD2, AP4B1, AP4E1, AP4M1, AP4S1, AP5Z1, ARL6IP1, ATAD3A, ATL1, ATP13A2, ATP2B4, B4GALNT1, BICD2, BSCL2, C12orf65, C19orf12, CAPN1, CPT1C, CYP2U1, CYP7B1, DDHD1, DDHD2, DNM2, DSTYK, ENTPD1, ERLIN1, ERLIN2, FA2H, FARS2, GAD1, GBA2, GJC2, HSPD1, IBA57, KIF1A, KIF5A, KLC2, KLC4, L1CAM, MAG, MARS, NIPA1, NT5C2, PGAP1, PLP1, REEP1, REEP2, RTN2, SLC16A2, SLC33A1, SPART, SPAST, SPG11, SPG21, TECPR2, TFG, UCHL1, USP8, VPS37A, WASHC5, WDR48, ZFYVE26, ZFYVE27 Atassia cerebellare autosomica dominante Atassia cerebellare autosomica recessive Atassia cerebellare legata all'X Atassia cerebellare - areflessia - piede cavo - atrofia ottica -
Supplemental Table 1A. Differential Gene Expression Profile of Adehcd40l and Adehnull Treated Cells Vs Untreated Cells
Supplemental Table 1a. Differential Gene Expression Profile of AdEHCD40L and AdEHNull treated cells vs Untreated Cells Fold change Regulation Fold change Regulation ([AdEHCD40L] vs ([AdEHCD40L] ([AdEHNull] vs ([AdEHNull] vs Probe Set ID [Untreated]) vs [Untreated]) [Untreated]) [Untreated]) Gene Symbol Gene Title RefSeq Transcript ID NM_001039468 /// NM_001039469 /// NM_004954 /// 203942_s_at 2.02 down 1.00 down MARK2 MAP/microtubule affinity-regulating kinase 2 NM_017490 217985_s_at 2.09 down 1.00 down BAZ1A fibroblastbromodomain growth adjacent factor receptorto zinc finger 2 (bacteria-expressed domain, 1A kinase, keratinocyte NM_013448 /// NM_182648 growth factor receptor, craniofacial dysostosis 1, Crouzon syndrome, Pfeiffer 203638_s_at 2.10 down 1.01 down FGFR2 syndrome, Jackson-Weiss syndrome) NM_000141 /// NM_022970 1570445_a_at 2.07 down 1.01 down LOC643201 hypothetical protein LOC643201 XM_001716444 /// XM_001717933 /// XM_932161 231763_at 3.05 down 1.02 down POLR3A polymerase (RNA) III (DNA directed) polypeptide A, 155kDa NM_007055 1555368_x_at 2.08 down 1.04 down ZNF479 zinc finger protein 479 NM_033273 /// XM_001714591 /// XM_001719979 241627_x_at 2.15 down 1.05 down FLJ10357 hypothetical protein FLJ10357 NM_018071 223208_at 2.17 down 1.06 down KCTD10 potassium channel tetramerisation domain containing 10 NM_031954 219923_at 2.09 down 1.07 down TRIM45 tripartite motif-containing 45 NM_025188 242772_x_at 2.03 down 1.07 down Transcribed locus 233019_at 2.19 down 1.08 down CNOT7 CCR4-NOT transcription complex, subunit 7 NM_013354 -
1 SUPPLEMENTAL DATA Figure S1. Poly I:C Induces IFN-Β Expression
SUPPLEMENTAL DATA Figure S1. Poly I:C induces IFN-β expression and signaling. Fibroblasts were incubated in media with or without Poly I:C for 24 h. RNA was isolated and processed for microarray analysis. Genes showing >2-fold up- or down-regulation compared to control fibroblasts were analyzed using Ingenuity Pathway Analysis Software (Red color, up-regulation; Green color, down-regulation). The transcripts with known gene identifiers (HUGO gene symbols) were entered into the Ingenuity Pathways Knowledge Base IPA 4.0. Each gene identifier mapped in the Ingenuity Pathways Knowledge Base was termed as a focus gene, which was overlaid into a global molecular network established from the information in the Ingenuity Pathways Knowledge Base. Each network contained a maximum of 35 focus genes. 1 Figure S2. The overlap of genes regulated by Poly I:C and by IFN. Bioinformatics analysis was conducted to generate a list of 2003 genes showing >2 fold up or down- regulation in fibroblasts treated with Poly I:C for 24 h. The overlap of this gene set with the 117 skin gene IFN Core Signature comprised of datasets of skin cells stimulated by IFN (Wong et al, 2012) was generated using Microsoft Excel. 2 Symbol Description polyIC 24h IFN 24h CXCL10 chemokine (C-X-C motif) ligand 10 129 7.14 CCL5 chemokine (C-C motif) ligand 5 118 1.12 CCL5 chemokine (C-C motif) ligand 5 115 1.01 OASL 2'-5'-oligoadenylate synthetase-like 83.3 9.52 CCL8 chemokine (C-C motif) ligand 8 78.5 3.25 IDO1 indoleamine 2,3-dioxygenase 1 76.3 3.5 IFI27 interferon, alpha-inducible -
Perkinelmer Genomics to Request the Saliva Swab Collection Kit for Patients That Cannot Provide a Blood Sample As Whole Blood Is the Preferred Sample
Autism and Intellectual Disability TRIO Panel Test Code TR002 Test Summary This test analyzes 2429 genes that have been associated with Autism and Intellectual Disability and/or disorders associated with Autism and Intellectual Disability with the analysis being performed as a TRIO Turn-Around-Time (TAT)* 3 - 5 weeks Acceptable Sample Types Whole Blood (EDTA) (Preferred sample type) DNA, Isolated Dried Blood Spots Saliva Acceptable Billing Types Self (patient) Payment Institutional Billing Commercial Insurance Indications for Testing Comprehensive test for patients with intellectual disability or global developmental delays (Moeschler et al 2014 PMID: 25157020). Comprehensive test for individuals with multiple congenital anomalies (Miller et al. 2010 PMID 20466091). Patients with autism/autism spectrum disorders (ASDs). Suspected autosomal recessive condition due to close familial relations Previously negative karyotyping and/or chromosomal microarray results. Test Description This panel analyzes 2429 genes that have been associated with Autism and ID and/or disorders associated with Autism and ID. Both sequencing and deletion/duplication (CNV) analysis will be performed on the coding regions of all genes included (unless otherwise marked). All analysis is performed utilizing Next Generation Sequencing (NGS) technology. CNV analysis is designed to detect the majority of deletions and duplications of three exons or greater in size. Smaller CNV events may also be detected and reported, but additional follow-up testing is recommended if a smaller CNV is suspected. All variants are classified according to ACMG guidelines. Condition Description Autism Spectrum Disorder (ASD) refers to a group of developmental disabilities that are typically associated with challenges of varying severity in the areas of social interaction, communication, and repetitive/restricted behaviors. -
Oxidized Phospholipids Regulate Amino Acid Metabolism Through MTHFD2 to Facilitate Nucleotide Release in Endothelial Cells
ARTICLE DOI: 10.1038/s41467-018-04602-0 OPEN Oxidized phospholipids regulate amino acid metabolism through MTHFD2 to facilitate nucleotide release in endothelial cells Juliane Hitzel1,2, Eunjee Lee3,4, Yi Zhang 3,5,Sofia Iris Bibli2,6, Xiaogang Li7, Sven Zukunft 2,6, Beatrice Pflüger1,2, Jiong Hu2,6, Christoph Schürmann1,2, Andrea Estefania Vasconez1,2, James A. Oo1,2, Adelheid Kratzer8,9, Sandeep Kumar 10, Flávia Rezende1,2, Ivana Josipovic1,2, Dominique Thomas11, Hector Giral8,9, Yannick Schreiber12, Gerd Geisslinger11,12, Christian Fork1,2, Xia Yang13, Fragiska Sigala14, Casey E. Romanoski15, Jens Kroll7, Hanjoong Jo 10, Ulf Landmesser8,9,16, Aldons J. Lusis17, 1234567890():,; Dmitry Namgaladze18, Ingrid Fleming2,6, Matthias S. Leisegang1,2, Jun Zhu 3,4 & Ralf P. Brandes1,2 Oxidized phospholipids (oxPAPC) induce endothelial dysfunction and atherosclerosis. Here we show that oxPAPC induce a gene network regulating serine-glycine metabolism with the mitochondrial methylenetetrahydrofolate dehydrogenase/cyclohydrolase (MTHFD2) as a cau- sal regulator using integrative network modeling and Bayesian network analysis in human aortic endothelial cells. The cluster is activated in human plaque material and by atherogenic lipo- proteins isolated from plasma of patients with coronary artery disease (CAD). Single nucleotide polymorphisms (SNPs) within the MTHFD2-controlled cluster associate with CAD. The MTHFD2-controlled cluster redirects metabolism to glycine synthesis to replenish purine nucleotides. Since endothelial cells secrete purines in response to oxPAPC, the MTHFD2- controlled response maintains endothelial ATP. Accordingly, MTHFD2-dependent glycine synthesis is a prerequisite for angiogenesis. Thus, we propose that endothelial cells undergo MTHFD2-mediated reprogramming toward serine-glycine and mitochondrial one-carbon metabolism to compensate for the loss of ATP in response to oxPAPC during atherosclerosis.