Coleoptera: Staphylinidae: Pselaphinae

Total Page:16

File Type:pdf, Size:1020Kb

Coleoptera: Staphylinidae: Pselaphinae Louisiana State University LSU Digital Commons LSU Master's Theses Graduate School 2014 A Revision and Phylogenetic Analysis of the Genus Eutyphlus LeConte (Coleoptera: Staphylinidae: Pselaphinae) with a Comparison of Sampling Methodologies Brittany Elin Owens Louisiana State University and Agricultural and Mechanical College Follow this and additional works at: https://digitalcommons.lsu.edu/gradschool_theses Part of the Entomology Commons Recommended Citation Owens, Brittany Elin, "A Revision and Phylogenetic Analysis of the Genus Eutyphlus LeConte (Coleoptera: Staphylinidae: Pselaphinae) with a Comparison of Sampling Methodologies" (2014). LSU Master's Theses. 2503. https://digitalcommons.lsu.edu/gradschool_theses/2503 This Thesis is brought to you for free and open access by the Graduate School at LSU Digital Commons. It has been accepted for inclusion in LSU Master's Theses by an authorized graduate school editor of LSU Digital Commons. For more information, please contact [email protected]. A REVISION AND PHYLOGENETIC ANALYSIS OF THE GENUS EUTYPHLUS LECONTE (COLEOPTERA: STAPHYLINIDAE: PSELAPHINAE) WITH A COMPARISON OF SAMPLING METHODOLOGIES A Thesis Submitted to the Graduate Faculty of the Louisiana State University and Agricultural and Mechanical College in partial fulfillment of the requirements for the degree of Master of Science in The Department of Entomology by Brittany E. Owens B.S., Tulane University, 2012 December 2014 ACKNOWLEDGEMENTS The author acknowledges Dr. Christopher Carlton, Dr. James Ottea, and Dr. Michael Stout and the LSU Staff and Faculty. The author personally thanks all of the staff of the Louisiana State Arthropod Museum, with special thanks to Victoria Bayless, Dr. Michael Ferro, Dr. Jong-Seok Park, Dr. Alexey Tishechkin, Forest Huval, and Brian Reilly. ii TABLE OF CONTENTS ACKNOWLEDGEMENTS……………………………………………………………………………………….ii LIST OF TABLES…………………………………………………………………………………………………...v LIST OF FIGURES………………………………………………………………………………………………...vi ABSTRACT………………………………………………………………………………………………………...xiii CHAPTER 1. INTRODUCTION………………………………………………………………...…………...1 CHAPTER 2. “BERLESE VS. WINKLER”: COMPARISON OF TWO FOREST LITTER COLEOPTERA COLLECTION PROTOCOLS……..…………………………...….....5 2.1 Introduction………………………………………………………………………………...….…5 2.1.1 Forest litter: habitat challenges and sampling methods…..……....5 2.1.2 Historical review: Berleses and Winklers………………….……………7 2.1.3 Current challenges…………………………………………………………..…..10 2.2 Materials and methods………………………………….………………………………….14 2.3 Results…………………………………..…………………………………………………………20 2.3.1 Cumulative specimens…………………….…………………………………..20 2.3.1.1 Specimens per time interval…………………..……………….20 2.3.1.2 Temporal addition of specimens……………….……………25 2.3.2 Cumulative species………………..…………………….………………………28 2.3.2.1 Species per time interval………………………………………..28 2.3.2.2 Temporal addition of species……………………………….…33 2.3.2.3 New species per time interval………………………………...37 2.3.4 Curculionidae……………………………………………………………………...41 2.3.4.1 Temporal addition of specimens…………………................41 2.3.4.2 Temporal addition of species……………………………….…45 2.3.5 Staphylinidae……………………………………………………………………...50 2.3.5.1 Temporal addition of specimens………………………….…50 2.3.5.2 Temporal addition of species…………………………….……55 2.3.6 Rare species………………………………………………………………………..59 2.3.6.1 Specimens per time interval……………………….…………..59 2.3.6.2 New species per time interval………………………………...64 2.4 Discussion…………………………………………………………………….……………….…68 CHAPTER 3. REVISION OF EUTYPHLUS LECONTE (STAPHYLNIDAE: PSELAPHINAE) WITH A DESCRIPTION OF A NEW SPECIES……………83 3.1 Introduction…………………………………………………………………………………..…83 3.2 Materials and methods……..………………………………………………………...…….84 3.3 Genus diagnosis…………………………………………………………..……………….…..88 3.4 Species redescriptions and description of a single new species of Eutyphlus.………………………………………………………………..........…………………94 iii 3.4.1 Eutyphlus dybasi Park…………………………………………….……………94 3.4.2 Eutyphlus prominens Casey…………………………………………….….101 3.4.3 Eutyphlus schmitti Raffray………………………………….…………..….107 3.4.4 Eutyphlus similis LeConte………………………………….…………….…112 3.4.5 Eutyphlus n. sp. Owens & Carlton …………………….….…………..…130 3.4.6 Eutyphlus thoracicus Park……………………….…………………………133 3.5 Key to species………………………………………………….…………………….……….140 3.6 Checklist of species (Mod. after Chandler 1997)…………………..….……….142 CHAPTER 4. PHYLOGENETIC ANALYSIS OF THE SUBTRIBE PANAPHANTINA JEANNEL TESTING THE MONOPHYLY OF THE GENUS EUTYPHLUS LECONTE …………………………………………………………………………………...144 4.1 Introduction…………………………………………………………………………………...144 4.2 Materials and methods………………………………………………….………….…….144 4.3 Results…………………………………………...………………………….…………….….....150 4.4 Discussion…………………………………………………………….……………………..…153 CHAPTER 5. LITERATURE CITED…………………………………………………………………….156 APPENDIX. CHECKLIST OF TAXA IN PHYLOGENETIC ANALYSIS…………………….164 VITA………………………………………………………………………………………………………………..168 iv LIST OF TABLES 1. Collection sites, dates, and sample sizes…………………………………………………...17 2. List of taxa represented in six Berlese/Winkler funnel extraction trials……..73 3. Measurements of head and pronotum lengths and widths of E. similis and E. prominens females…………………………………………………………………………………116 4. List of characters and character states used in the data matrix……………..…145 5. Character matrix of the taxa and morphological characters…………………..…148 v LIST OF FIGURES 1. Berlese funnel………………………………………………………………………………………...16 2. Diagram of Berlese funnel……………………………………………………………..………...16 3. Winkler funnel……………………………………………..………………………………………….16 4. Diagram of Winkler funnel………………….…………………………………………………...16 5. Southern United States showing location of litter sample field sites…………..17 6. Number of Coleoptera specimens obtained from Alabama litter sample per time interval by Winkler and Berlese funnels……………………………………………21 7. Number of Coleoptera specimens obtained from Arizona litter sample per time interval by Winkler and Berlese funnels…………………………………………...22 8. Number of Coleoptera specimens obtained from Arkansas litter sample per time interval by Winkler and Berlese funnels…………………………………………...22 9. Number of Coleoptera specimens obtained from Louisiana litter sample per time interval by Winkler and Berlese funnels…………………………………………...23 10. Number of Coleoptera specimens obtained from New Mexico litter sample per time interval by Winkler and Berlese funnels……………………………………...23 11. Number of Coleoptera specimens obtained from North Carolina litter sample per time interval by Winkler and Berlese funnels……………………………………...24 12. Number of Coleoptera specimens obtained from the Alabama litter sample, cumulatively, at each time interval by Winkler and Berlese funnels…………...25 13. Number of Coleoptera specimens obtained from the Arizona litter sample, cumulatively, at each time interval by Winkler and Berlese funnels………...…26 14. Number of Coleoptera specimens obtained from the Arkansas litter sample, cumulatively, at each time interval by Winkler and Berlese funnels………...…26 15. Number of Coleoptera specimens obtained from the Louisiana litter sample, cumulatively, at each time interval by Winkler and Berlese funnels…………...27 16. Number of Coleoptera specimens obtained from the New Mexico litter sample, cumulatively, at each time interval by Winkler and Berlese funnels…………………………………………………………………………………………………....27 vi 17. Number of Coleoptera specimens obtained from the North Carolina litter sample, cumulatively, at each time interval by Winkler and Berlese funnels………….............................................................................................................................28 18. Number of Coleoptera species obtained from the Alabama litter sample per time interval by Winkler and Berlese funnels…………………………………………...30 19. Number of Coleoptera species obtained from the Arizona litter sample per time interval by Winkler and Berlese funnels……………………………………………30 20. Number of Coleoptera species obtained from the Arkansas litter sample per time interval by Winkler and Berlese funnels……………………………………………31 21. Number of Coleoptera species obtained from the Louisiana litter sample per time interval by Winkler and Berlese funnels……………………………………………31 22. Number of Coleoptera species obtained from the New Mexico litter sample per time interval by Winkler and Berlese funnels…………………………………...…32 23. Number of Coleoptera species obtained from the North Carolina litter sample per time interval by Winkler and Berlese funnels…………………………………...…32 24. Number of Coleoptera species obtained from the Alabama litter sample, cumulatively, at each time interval by Winkler and Berlese funnels………......34 25. Number of Coleoptera species obtained from the Arizona litter sample, cumulatively, at each time interval by Winkler and Berlese funnels…………...34 26. Number of Coleoptera species obtained from the Arkansas litter sample, cumulatively, at each time interval by Winkler and Berlese funnels…………...35 27. Number of Coleoptera species obtained from the Louisiana litter sample, cumulatively, at each time interval by Winkler and Berlese funnels…………...35 28. Number of Coleoptera species obtained from the New Mexico litter sample, cumulatively, at each time interval by Winkler and Berlese funnels…………...36 29. Number of Coleoptera species obtained from the North Carolina litter sample, cumulatively, at each time interval by Winkler and Berlese funnels……………………………………………………………………………………………………36 30. Number of new species obtained from the Alabama sample at each time interval by Winkler and Berlese funnels………………………………………………...…38 31. Number of new species
Recommended publications
  • Succession of Coleoptera on Freshly Killed
    Louisiana State University LSU Digital Commons LSU Master's Theses Graduate School 2008 Succession of Coleoptera on freshly killed loblolly pine (Pinus taeda L.) and southern red oak (Quercus falcata Michaux) in Louisiana Stephanie Gil Louisiana State University and Agricultural and Mechanical College, [email protected] Follow this and additional works at: https://digitalcommons.lsu.edu/gradschool_theses Part of the Entomology Commons Recommended Citation Gil, Stephanie, "Succession of Coleoptera on freshly killed loblolly pine (Pinus taeda L.) and southern red oak (Quercus falcata Michaux) in Louisiana" (2008). LSU Master's Theses. 1067. https://digitalcommons.lsu.edu/gradschool_theses/1067 This Thesis is brought to you for free and open access by the Graduate School at LSU Digital Commons. It has been accepted for inclusion in LSU Master's Theses by an authorized graduate school editor of LSU Digital Commons. For more information, please contact [email protected]. SUCCESSIO OF COLEOPTERA O FRESHLY KILLED LOBLOLLY PIE (PIUS TAEDA L.) AD SOUTHER RED OAK ( QUERCUS FALCATA MICHAUX) I LOUISIAA A Thesis Submitted to the Graduate Faculty of the Louisiana State University and Agricultural and Mechanical College in partial fulfillment of the requirements for the degree of Master of Science in The Department of Entomology by Stephanie Gil B. S. University of New Orleans, 2002 B. A. University of New Orleans, 2002 May 2008 DEDICATIO This thesis is dedicated to my parents who have sacrificed all to give me and my siblings a proper education. I am indebted to my entire family for the moral support and prayers throughout my years of education. My mother and Aunt Gloria will have several extra free hours a week now that I am graduating.
    [Show full text]
  • Insecta: Coleoptera: Leiodidae: Cholevinae), with a Description of Sciaphyes Shestakovi Sp.N
    ZOBODAT - www.zobodat.at Zoologisch-Botanische Datenbank/Zoological-Botanical Database Digitale Literatur/Digital Literature Zeitschrift/Journal: Arthropod Systematics and Phylogeny Jahr/Year: 2011 Band/Volume: 69 Autor(en)/Author(s): Fresneda Javier, Grebennikov Vasily V., Ribera Ignacio Artikel/Article: The phylogenetic and geographic limits of Leptodirini (Insecta: Coleoptera: Leiodidae: Cholevinae), with a description of Sciaphyes shestakovi sp.n. from the Russian Far East 99-123 Arthropod Systematics & Phylogeny 99 69 (2) 99 –123 © Museum für Tierkunde Dresden, eISSN 1864-8312, 21.07.2011 The phylogenetic and geographic limits of Leptodirini (Insecta: Coleoptera: Leiodidae: Cholevinae), with a description of Sciaphyes shestakovi sp. n. from the Russian Far East JAVIER FRESNEDA 1, 2, VASILY V. GREBENNIKOV 3 & IGNACIO RIBERA 4, * 1 Ca de Massa, 25526 Llesp, Lleida, Spain 2 Museu de Ciències Naturals (Zoologia), Passeig Picasso s/n, 08003 Barcelona, Spain [[email protected]] 3 Ottawa Plant Laboratory, Canadian Food Inspection Agency, 960 Carling Avenue, Ottawa, Ontario, K1A 0C6, Canada [[email protected]] 4 Institut de Biologia Evolutiva (CSIC-UPF), Passeig Marítim de la Barceloneta, 37 – 49, 08003 Barcelona, Spain [[email protected]] * Corresponding author Received 26.iv.2011, accepted 27.v.2011. Published online at www.arthropod-systematics.de on 21.vii.2011. > Abstract The tribe Leptodirini of the beetle family Leiodidae is one of the most diverse radiations of cave animals, with a distribution centred north of the Mediterranean basin from the Iberian Peninsula to Iran. Six genera outside this core area, most notably Platycholeus Horn, 1880 in the western United States and others in East Asia, have been assumed to be related to Lepto- dirini.
    [Show full text]
  • Local and Regional Influences on Arthropod Community
    LOCAL AND REGIONAL INFLUENCES ON ARTHROPOD COMMUNITY STRUCTURE AND SPECIES COMPOSITION ON METROSIDEROS POLYMORPHA IN THE HAWAIIAN ISLANDS A DISSERTATION SUBMITTED TO THE GRADUATE DIVISION OF THE UNIVERSITY OF HAWAI'I IN PARTIAL FULFILLMENT OF THE REQUIREMENTS FOR THE DEGREE OF DOCTOR OF PHILOSOPHY IN ZOOLOGY (ECOLOGY, EVOLUTION AND CONSERVATION BIOLOGy) AUGUST 2004 By Daniel S. Gruner Dissertation Committee: Andrew D. Taylor, Chairperson John J. Ewel David Foote Leonard H. Freed Robert A. Kinzie Daniel Blaine © Copyright 2004 by Daniel Stephen Gruner All Rights Reserved. 111 DEDICATION This dissertation is dedicated to all the Hawaiian arthropods who gave their lives for the advancement ofscience and conservation. IV ACKNOWLEDGEMENTS Fellowship support was provided through the Science to Achieve Results program of the U.S. Environmental Protection Agency, and training grants from the John D. and Catherine T. MacArthur Foundation and the National Science Foundation (DGE-9355055 & DUE-9979656) to the Ecology, Evolution and Conservation Biology (EECB) Program of the University of Hawai'i at Manoa. I was also supported by research assistantships through the U.S. Department of Agriculture (A.D. Taylor) and the Water Resources Research Center (RA. Kay). I am grateful for scholarships from the Watson T. Yoshimoto Foundation and the ARCS Foundation, and research grants from the EECB Program, Sigma Xi, the Hawai'i Audubon Society, the David and Lucille Packard Foundation (through the Secretariat for Conservation Biology), and the NSF Doctoral Dissertation Improvement Grant program (DEB-0073055). The Environmental Leadership Program provided important training, funds, and community, and I am fortunate to be involved with this network.
    [Show full text]
  • Coleoptera) (Excluding Anthribidae
    A FAUNAL SURVEY AND ZOOGEOGRAPHIC ANALYSIS OF THE CURCULIONOIDEA (COLEOPTERA) (EXCLUDING ANTHRIBIDAE, PLATPODINAE. AND SCOLYTINAE) OF THE LOWER RIO GRANDE VALLEY OF TEXAS A Thesis TAMI ANNE CARLOW Submitted to the Office of Graduate Studies of Texas A&M University in partial fulfillment of the requirements for the degree of MASTER OF SCIENCE August 1997 Major Subject; Entomology A FAUNAL SURVEY AND ZOOGEOGRAPHIC ANALYSIS OF THE CURCVLIONOIDEA (COLEOPTERA) (EXCLUDING ANTHRIBIDAE, PLATYPODINAE. AND SCOLYTINAE) OF THE LOWER RIO GRANDE VALLEY OF TEXAS A Thesis by TAMI ANNE CARLOW Submitted to Texas AgcM University in partial fulltllment of the requirements for the degree of MASTER OF SCIENCE Approved as to style and content by: Horace R. Burke (Chair of Committee) James B. Woolley ay, Frisbie (Member) (Head of Department) Gilbert L. Schroeter (Member) August 1997 Major Subject: Entomology A Faunal Survey and Zoogeographic Analysis of the Curculionoidea (Coleoptera) (Excluding Anthribidae, Platypodinae, and Scolytinae) of the Lower Rio Grande Valley of Texas. (August 1997) Tami Anne Carlow. B.S. , Cornell University Chair of Advisory Committee: Dr. Horace R. Burke An annotated list of the Curculionoidea (Coleoptem) (excluding Anthribidae, Platypodinae, and Scolytinae) is presented for the Lower Rio Grande Valley (LRGV) of Texas. The list includes species that occur in Cameron, Hidalgo, Starr, and Wigacy counties. Each of the 23S species in 97 genera is tteated according to its geographical range. Lower Rio Grande distribution, seasonal activity, plant associations, and biology. The taxonomic atTangement follows O' Brien &, Wibmer (I og2). A table of the species occuning in patxicular areas of the Lower Rio Grande Valley, such as the Boca Chica Beach area, the Sabal Palm Grove Sanctuary, Bentsen-Rio Grande State Park, and the Falcon Dam area is included.
    [Show full text]
  • Coleoptera: Cucujoidea) Matthew Immelg Louisiana State University and Agricultural and Mechanical College, [email protected]
    Louisiana State University LSU Digital Commons LSU Doctoral Dissertations Graduate School 2011 Revision and Reclassification of the Genera of Phalacridae (Coleoptera: Cucujoidea) Matthew immelG Louisiana State University and Agricultural and Mechanical College, [email protected] Follow this and additional works at: https://digitalcommons.lsu.edu/gradschool_dissertations Part of the Entomology Commons Recommended Citation Gimmel, Matthew, "Revision and Reclassification of the Genera of Phalacridae (Coleoptera: Cucujoidea)" (2011). LSU Doctoral Dissertations. 2857. https://digitalcommons.lsu.edu/gradschool_dissertations/2857 This Dissertation is brought to you for free and open access by the Graduate School at LSU Digital Commons. It has been accepted for inclusion in LSU Doctoral Dissertations by an authorized graduate school editor of LSU Digital Commons. For more information, please [email protected]. REVISION AND RECLASSIFICATION OF THE GENERA OF PHALACRIDAE (COLEOPTERA: CUCUJOIDEA) A Dissertation Submitted to the Graduate Faculty of the Louisiana State University and Agricultural and Mechanical College in partial fulfillment of the requirements for the degree of Doctor of Philosophy in The Department of Entomology by Matthew Gimmel B.S., Oklahoma State University, 2005 August 2011 ACKNOWLEDGMENTS I would like to thank the following individuals for accommodating and assisting me at their respective institutions: Roger Booth and Max Barclay (BMNH), Azadeh Taghavian (MNHN), Phil Perkins (MCZ), Warren Steiner (USNM), Joe McHugh (UGCA), Ed Riley (TAMU), Mike Thomas and Paul Skelley (FSCA), Mike Ivie (MTEC/MAIC/WIBF), Richard Brown and Terry Schiefer (MEM), Andy Cline (CDFA), Fran Keller and Steve Heydon (UCDC), Cheryl Barr (EMEC), Norm Penny and Jere Schweikert (CAS), Mike Caterino (SBMN), Michael Wall (SDMC), Don Arnold (OSEC), Zack Falin (SEMC), Arwin Provonsha (PURC), Cate Lemann and Adam Slipinski (ANIC), and Harold Labrique (MHNL).
    [Show full text]
  • Systematic Catalogue of the Cryptophagidae of the Madeira Archipelago and Selvagens Islands 1 (Coleoptera: Cucujoidea) TP PT
    Mitt. internat. entomol. Ver. Frankfurt a.M. ISSN 1019-2808 Band 33 . Heft 1/2 Seiten 31 - 43 2. Juni 2008 Systematic Catalogue of the Cryptophagidae of the Madeira Archipelago and Selvagens Islands 1 (Coleoptera: Cucujoidea) TP PT Jens ESSER Introduction Since T. V. WOLLASTON 1847 visited for first time the Madeiran archipelago he and other entomologists collected a lot of beetles from there. WOLLASTON published a few longer and shorter papers (WOL- LASTON 1854, 1857, 1864, 1871a, 1871b) about the beetles and described a lot of beetles including a few Cryptophagidae. Later, some other authors collected and published about Cryptophagidae from the Madeiran archipelago. One further species was described by BRUCE (1940), which is no longer a valid species. So, all three endemic species from the archipelago were described by WOLLASTON. For further information about the Atlantics see ASSING & SCHÜLKE (2006). The Cryptophagidae on the Madeiras and Selvagens Today we know 17 species of Cryptophagidae recorded from the Madeiran archipelago and no species from the Selvagens Islands. Three of these species are endemic (18 %), known only from Madeira proper. There is no endemic species known from the other islands. The other 14 species are widespread in Europe or in the Mediterrian Region, the most are widespread in the Palaearctic Region, one species is cosmopolitan. There is no doubt that the most or all of the not-endemic species reached 1 TP PT This contribution is dedicated to Dieter ERBER (1933–2004), who inspirated me to this work. 31 the Madeira archipelago together with human settlement. Only Crypto- phagus laticollis P.
    [Show full text]
  • Coleoptera: Introduction and Key to Families
    Royal Entomological Society HANDBOOKS FOR THE IDENTIFICATION OF BRITISH INSECTS To purchase current handbooks and to download out-of-print parts visit: http://www.royensoc.co.uk/publications/index.htm This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 2.0 UK: England & Wales License. Copyright © Royal Entomological Society 2012 ROYAL ENTOMOLOGICAL SOCIETY OF LONDON Vol. IV. Part 1. HANDBOOKS FOR THE IDENTIFICATION OF BRITISH INSECTS COLEOPTERA INTRODUCTION AND KEYS TO FAMILIES By R. A. CROWSON LONDON Published by the Society and Sold at its Rooms 41, Queen's Gate, S.W. 7 31st December, 1956 Price-res. c~ . HANDBOOKS FOR THE IDENTIFICATION OF BRITISH INSECTS The aim of this series of publications is to provide illustrated keys to the whole of the British Insects (in so far as this is possible), in ten volumes, as follows : I. Part 1. General Introduction. Part 9. Ephemeroptera. , 2. Thysanura. 10. Odonata. , 3. Protura. , 11. Thysanoptera. 4. Collembola. , 12. Neuroptera. , 5. Dermaptera and , 13. Mecoptera. Orthoptera. , 14. Trichoptera. , 6. Plecoptera. , 15. Strepsiptera. , 7. Psocoptera. , 16. Siphonaptera. , 8. Anoplura. 11. Hemiptera. Ill. Lepidoptera. IV. and V. Coleoptera. VI. Hymenoptera : Symphyta and Aculeata. VII. Hymenoptera: Ichneumonoidea. VIII. Hymenoptera : Cynipoidea, Chalcidoidea, and Serphoidea. IX. Diptera: Nematocera and Brachycera. X. Diptera: Cyclorrhapha. Volumes 11 to X will be divided into parts of convenient size, but it is not possible to specify in advance the taxonomic content of each part. Conciseness and cheapness are main objectives in this new series, and each part will be the work of a specialist, or of a group of specialists.
    [Show full text]
  • Movement of Plastic-Baled Garbage and Regulated (Domestic) Garbage from Hawaii to Landfills in Oregon, Idaho, and Washington
    Movement of Plastic-baled Garbage and Regulated (Domestic) Garbage from Hawaii to Landfills in Oregon, Idaho, and Washington. Final Biological Assessment, February 2008 Table of Contents I. Introduction and Background on Proposed Action 3 II. Listed Species and Program Assessments 28 Appendix A. Compliance Agreements 85 Appendix B. Marine Mammal Protection Act 150 Appendix C. Risk of Introduction of Pests to the Continental United States via Municipal Solid Waste from Hawaii. 159 Appendix D. Risk of Introduction of Pests to Washington State via Municipal Solid Waste from Hawaii 205 Appendix E. Risk of Introduction of Pests to Oregon via Municipal Solid Waste from Hawaii. 214 Appendix F. Risk of Introduction of Pests to Idaho via Municipal Solid Waste from Hawaii. 233 2 I. Introduction and Background on Proposed Action This biological assessment (BA) has been prepared by the United States Department of Agriculture (USDA), Animal and Plant Health Inspection Service (APHIS) to evaluate the potential effects on federally-listed threatened and endangered species and designated critical habitat from the movement of baled garbage and regulated (domestic) garbage (GRG) from the State of Hawaii for disposal at landfills in Oregon, Idaho, and Washington. Specifically, garbage is defined as urban (commercial and residential) solid waste from municipalities in Hawaii, excluding incinerator ash and collections of agricultural waste and yard waste. Regulated (domestic) garbage refers to articles generated in Hawaii that are restricted from movement to the continental United States under various quarantine regulations established to prevent the spread of plant pests (including insects, disease, and weeds) into areas where the pests are not prevalent.
    [Show full text]
  • Temporal Lags and Overlap in the Diversification of Weevils and Flowering Plants
    Temporal lags and overlap in the diversification of weevils and flowering plants Duane D. McKennaa,1, Andrea S. Sequeirab, Adriana E. Marvaldic, and Brian D. Farrella aDepartment of Organismic and Evolutionary Biology, Harvard University, Cambridge, MA 02138; bDepartment of Biological Sciences, Wellesley College, Wellesley, MA 02481; and cInstituto Argentino de Investigaciones de Zonas Aridas, Consejo Nacional de Investigaciones Científicas y Te´cnicas, C.C. 507, 5500 Mendoza, Argentina Edited by May R. Berenbaum, University of Illinois at Urbana-Champaign, Urbana, IL, and approved March 3, 2009 (received for review October 22, 2008) The extraordinary diversity of herbivorous beetles is usually at- tributed to coevolution with angiosperms. However, the degree and nature of contemporaneity in beetle and angiosperm diversi- fication remain unclear. Here we present a large-scale molecular phylogeny for weevils (herbivorous beetles in the superfamily Curculionoidea), one of the most diverse lineages of insects, based on Ϸ8 kilobases of DNA sequence data from a worldwide sample including all families and subfamilies. Estimated divergence times derived from the combined molecular and fossil data indicate diversification into most families occurred on gymnosperms in the Jurassic, beginning Ϸ166 Ma. Subsequent colonization of early crown-group angiosperms occurred during the Early Cretaceous, but this alone evidently did not lead to an immediate and ma- jor diversification event in weevils. Comparative trends in weevil diversification and angiosperm dominance reveal that massive EVOLUTION diversification began in the mid-Cretaceous (ca. 112.0 to 93.5 Ma), when angiosperms first rose to widespread floristic dominance. These and other evidence suggest a deep and complex history of coevolution between weevils and angiosperms, including codiver- sification, resource tracking, and sequential evolution.
    [Show full text]
  • Tall Timbers Bibliography
    Tall Timbers Bibliography Article Citations by Tall Timbers Authors Include the Following Areas of Interest Fire Research Quail Research Conservation Wildlife Management Outreach Geospatial Techniques & Tools Forest Management This Bibliography includes almost 1,400 articles published by Tall Timbers Staff and Associates, since 1958. It is a searchable PDF file. In Adobe Acrobat, it can be searched by author, date or subject matter. From the Edit menu, chose Find (Ctrl+F ) or Advanced Search (Shift+Ctrl+F). Bibliography 1. Engstrom, R.T. and G. Mikusinski. 1998. Ecological neighborhoods in red-cockaded woodpecker populations. The Auk. Vol. 115(2):473-478. 2. Abele, L.G. and D.B. Means. 1977. Sesarma jarvisi and Sesarma cookei: montane, terrestrial grapsid crabs in Jamaica (Decapoda). Crustaceana. Vol. 32(1):91-93. 3. Larson, B.C., W.K. Moser, and V.K. Mishra. 1998. Some relationships between silvicultural treatments and symmetry of stem growth in a red pine stand. Northern Journal of Applied Forestry. Vol. 15(2):90-93. 4. Altieri, M.A. 1981. Effect of time of disturbance on the dynamics of weed communities in north Florida. Geobios. Vol. 8(4):145-151. 5. Altieri, M.A. and J.D. Doll. 1978. The potential of allelopathy as a tool for weed management in crop fields. Pans. Vol. 24(4):495-502. 6. Loughry, W.J. and C.M. McDonough. 1998. Spatial patterns in a population of nine-banded armadillos (Dasy pus novemcinctus). The American Midland Naturalist. Vol. 140(1):161-169. 7. McNair, D.B. and J.A. Gore. 1998. Occurrences of flamingos in northwest Florida, including a recent record of the greater flamingo (Phoenicopterus ruber).
    [Show full text]
  • Weevils) of the George Washington Memorial Parkway, Virginia
    September 2020 The Maryland Entomologist Volume 7, Number 4 The Maryland Entomologist 7(4):43–62 The Curculionoidea (Weevils) of the George Washington Memorial Parkway, Virginia Brent W. Steury1*, Robert S. Anderson2, and Arthur V. Evans3 1U.S. National Park Service, 700 George Washington Memorial Parkway, Turkey Run Park Headquarters, McLean, Virginia 22101; [email protected] *Corresponding author 2The Beaty Centre for Species Discovery, Research and Collection Division, Canadian Museum of Nature, PO Box 3443, Station D, Ottawa, ON. K1P 6P4, CANADA;[email protected] 3Department of Recent Invertebrates, Virginia Museum of Natural History, 21 Starling Avenue, Martinsville, Virginia 24112; [email protected] ABSTRACT: One-hundred thirty-five taxa (130 identified to species), in at least 97 genera, of weevils (superfamily Curculionoidea) were documented during a 21-year field survey (1998–2018) of the George Washington Memorial Parkway national park site that spans parts of Fairfax and Arlington Counties in Virginia. Twenty-three species documented from the parkway are first records for the state. Of the nine capture methods used during the survey, Malaise traps were the most successful. Periods of adult activity, based on dates of capture, are given for each species. Relative abundance is noted for each species based on the number of captures. Sixteen species adventive to North America are documented from the parkway, including three species documented for the first time in the state. Range extensions are documented for two species. Images of five species new to Virginia are provided. Keywords: beetles, biodiversity, Malaise traps, national parks, new state records, Potomac Gorge. INTRODUCTION This study provides a preliminary list of the weevils of the superfamily Curculionoidea within the George Washington Memorial Parkway (GWMP) national park site in northern Virginia.
    [Show full text]
  • Your Name Here
    RELATIONSHIPS BETWEEN DEAD WOOD AND ARTHROPODS IN THE SOUTHEASTERN UNITED STATES by MICHAEL DARRAGH ULYSHEN (Under the Direction of James L. Hanula) ABSTRACT The importance of dead wood to maintaining forest diversity is now widely recognized. However, the habitat associations and sensitivities of many species associated with dead wood remain unknown, making it difficult to develop conservation plans for managed forests. The purpose of this research, conducted on the upper coastal plain of South Carolina, was to better understand the relationships between dead wood and arthropods in the southeastern United States. In a comparison of forest types, more beetle species emerged from logs collected in upland pine-dominated stands than in bottomland hardwood forests. This difference was most pronounced for Quercus nigra L., a species of tree uncommon in upland forests. In a comparison of wood postures, more beetle species emerged from logs than from snags, but a number of species appear to be dependent on snags including several canopy specialists. In a study of saproxylic beetle succession, species richness peaked within the first year of death and declined steadily thereafter. However, a number of species appear to be dependent on highly decayed logs, underscoring the importance of protecting wood at all stages of decay. In a study comparing litter-dwelling arthropod abundance at different distances from dead wood, arthropods were more abundant near dead wood than away from it. In another study, ground- dwelling arthropods and saproxylic beetles were little affected by large-scale manipulations of dead wood in upland pine-dominated forests, possibly due to the suitability of the forests surrounding the plots.
    [Show full text]