Technische Universität München

Total Page:16

File Type:pdf, Size:1020Kb

Technische Universität München TECHNISCHE UNIVERSITÄT MÜNCHEN Wissenschaftszentrum Weihenstephan für Ernährung, Landnutzung und Umwelt Lehrstuhl für Technische Mikrobiologie Formation and structure of exopolysaccharides of meat starter cultures Roman Maximilian Prechtl Vollständiger Abdruck der von der Fakultät Wissenschaftszentrum Weihenstephan für Ernährung, Landnutzung und Umwelt der Technischen Universität München zur Erlangung des akademischen Grades eines Doktors der Naturwissenschaften (Dr. rer. nat.) genehmigten Dissertation. Vorsitzender: Prof. Dr. Wolfgang Liebl Prüfende der Dissertation: 1. Prof. Dr. Rudi F. Vogel 2. Prof. Dr. Wilfried Schwab Die Dissertation wurde am 16.01.2019 bei der Technischen Universität München eingereicht und durch die Fakultät Wissenschaftszentrum Weihenstephan für Ernährung, Landnutzung und Umwelt am 05.04.2019 angenommen. DANKSAGUNG Die vorliegende Arbeit entstand im Rahmen eines Projekts (IGF-Nr.: 18357 N, Exopolysaccharid-bildende Starterkulturen), das durch Haushaltsmittel des BMWi über die AiF-Forschungsvereiningung „Forschungskreis der Ernährungsindustrie e.V.“ gefördert wurde. Mein besonderer Dank an dieser Stelle gilt meinem Doktorvater Herrn Prof. Rudi F. Vogel für das in mich gesetzte Vertrauen, sowie die uneingeschränkte Unterstützung und lehrreichen Diskussionen zu jedem Zeitpunkt der Promotion. Herzlichen Dank dafür, Rudi! Weiterhin möchte ich mich in besonderem Maße bei meinem Betreuer Dr. Frank Jakob bedanken, der mich zu jeder Zeit mit hilfreichen Anmerkungen, anregenden Diskussionen und seiner fachlichen Expertise unterstützt hat. Bei Frau Angela Seppeur möchte ich mich explizit für die Übernahme der Verwaltungsaufgaben im Rahmen meines Projektes, v.a. die finanziellen Angelegenheiten, bedanken. Herrn Dr. Daniel Wefers, Dr. Jürgen Behr und Frau Dr. Christina Ludwig danke ich für die schnelle, unkomplizierte und vor allem erfolgreiche Realisierung unserer wissenschaftlichen Kooperationen. Besonderer Dank gilt außerdem Di Xu und Evelin Wigmann, die stets für eine angenehme Stimmung im Ost-Büro gesorgt haben! Danke meine Mädels für viele unvergessliche Momente! Dieser Dank gilt natürlich auch meinen übrigen Kolleginnen und Kollegen im Labor, egal ob Student, Doktorand oder TA, welche den Laboralltag tagtäglich mit ihrer Anwesenheit und angenehmen Art bereichert haben. Ganz besonders bedanken möchte ich mich auch bei meinen Freunden Björn und Sabine, Gabriel und Evelin, Claudia, Melli, Raini und Dani für das regelmäßige Bereitstellen von Übernachtungsmöglichkeiten und viele schöne gemeinsame Stunden in Freising! Nicht zuletzt möchte ich mich aber vor allem bei meiner Familie bedanken, die einen wesentlichen Anteil daran trägt, dass ich heute hier stehe: Meinen Großeltern Franz und Marianne, die diesen Tag leider nicht mehr miterleben kann, sowie Rosi und Robert für die finanzielle Unterstützung während des Studiums. Und natürlich meinen Eltern Angela und Hubert, sowie meinen Geschwistern Hubert, Sabine, Maria und Simon für die liebevolle und aufopferungsvolle Erziehung, bzw. den kompromisslosen Zusammenhalt aller Geschwister! INDEX INDEX INDEX ..................................................................................................................................... i ABBREVIATIONS .................................................................................................................. v 1. Introduction ....................................................................................................................... 1 1.1. Exopolysaccharide formation by lactic acid bacteria................................................... 1 1.1.1. Synthesis of homopolysaccharides ..................................................................... 2 1.1.2. Synthesis of heteropolysaccharides .................................................................... 4 1.2. Exopolysaccharides in industrial products .................................................................. 7 1.3. Lactic acid bacteria as starter cultures in the food industry......................................... 8 1.3.1. LAB as meat starter cultures ............................................................................... 8 1.3.2. EPS-forming LAB starter cultures ....................................................................... 9 2. Motivation, Hypotheses and Approaches .........................................................................10 3. Materials and Methods .....................................................................................................12 3.1. General microbiological techniques ...........................................................................12 3.1.1. Strains and culture conditions ............................................................................12 3.1.2. Strain verification with MALDI-TOF MS ..............................................................13 3.1.3. Determination of viable cell counts .....................................................................14 3.1.4. Visual screening for EPS formation on mMRS and RSM agar ...........................14 3.1.5. Determination of characteristic growth parameters ............................................15 3.1.6. Screening for biogenic amine formation .............................................................15 3.1.7. Antimicrobial susceptibility testing (AST) ............................................................16 3.2. Production and purification of EPS ............................................................................17 3.2.1. Production and purification of HoPS ..................................................................17 3.2.2. Production and purification of HePS ..................................................................18 3.2.2.1. HePS production and purification from MBp medium...................................18 3.2.2.2. HePS production and purification from chemically defined medium (CDM) .18 3.2.3. Dextran synthesis with resuspended cells in buffer solution ...............................19 3.3. Analytical methods ....................................................................................................21 3.3.1. Acid hydrolysis of EPS .......................................................................................21 3.3.1.1. Hydrolysis of HoPS .....................................................................................21 3.3.1.2. Hydrolysis of HePS .....................................................................................21 3.3.2. Determination of sugar monomers in EPS with HPLC-RI ...................................21 3.3.3. Analysis of HePS monomer composition with HPAEC-PAD ...............................22 3.3.4. Analysis of macromolecular EPS structures with AF4-MALS .............................22 i INDEX 3.3.4.1. Analysis of HoPS .........................................................................................22 3.3.4.2. Analysis of HePS .........................................................................................23 3.3.5. Chemical structure analyses of EPS ..................................................................23 3.3.5.1. Determination of absolute monosaccharide configuration with GLC-MS ......23 3.3.5.2. Methylation analysis ....................................................................................23 3.3.5.3. NMR analyses .............................................................................................24 3.3.5.4. Endo-dextranase assay of glucans ..............................................................24 3.3.6. Quantification of dextrans in liquid solutions .......................................................25 3.3.7. Quantification of sugars and organic acids in liquid cultures ..............................25 3.4. Molecular biological methods ....................................................................................26 3.4.1. Isolation of genomic DNA and quality control .....................................................26 3.4.2. Protein quantification by the Bradford assay ......................................................26 3.5. Genomics ..................................................................................................................27 3.5.1. Genome sequencing, assembly and annotation .................................................27 3.5.1.1. Lactobacillus plantarum TMW 1.1478 ..........................................................27 3.5.1.2. Lactobacillus sakei TMW 1.411 ...................................................................27 3.5.2. Acquisition of published genomes ......................................................................27 3.6. Proteomics ................................................................................................................28 3.6.1. Experimental setup ............................................................................................28 3.6.2. Peptide preparation, separation and mass spectrometry ....................................28 3.6.3. Protein identification and quantification ..............................................................29 3.6.4. Proteomic data deposition ..................................................................................30 3.6.5. Data processing and statistical analysis .............................................................30 4. Results.............................................................................................................................31 4.1. Selection of EPS forming meat starter
Recommended publications
  • Rational Re-Design of Lactobacillus Reuteri 121 Inulosucrase for Product
    RSC Advances View Article Online PAPER View Journal | View Issue Rational re-design of Lactobacillus reuteri 121 inulosucrase for product chain length control† Cite this: RSC Adv.,2019,9, 14957 Thanapon Charoenwongpaiboon,a Methus Klaewkla,ab Surasak Chunsrivirot,ab Karan Wangpaiboon,a Rath Pichyangkura,a Robert A. Field c and Manchumas Hengsakul Prousoontorn *a Fructooligosaccharides (FOSs) are well-known prebiotics that are widely used in the food, beverage and pharmaceutical industries. Inulosucrase (E.C. 2.4.1.9) can potentially be used to synthesise FOSs from sucrose. In this study, inulosucrase from Lactobacillus reuteri 121 was engineered by site-directed mutagenesis to change the FOS chain length. Three variants (R483F, R483Y and R483W) were designed, and their binding free energies with 1,1,1-kestopentaose (GF4) were calculated with the Rosetta software. R483F and R483Y were predicted to bind with GF4 better than the wild type, suggesting that these engineered enzymes should be able to effectively extend GF4 by one residue and produce a greater quantity of GF5 than the wild type. MALDI-TOF MS analysis showed that R483F, R483Y and R483W variants Creative Commons Attribution-NonCommercial 3.0 Unported Licence. could synthesise shorter chain FOSs with a degree of polymerization (DP) up to 11, 10, and 10, respectively, while wild type produced longer FOSs and in polymeric form. Although the decrease in catalytic activity and the increase of hydrolysis/transglycosylation activity ratio was observed, the variants could effectively Received 20th March 2019 synthesise FOSs with the yield up to 73% of substrate. Quantitative analysis demonstrated that these Accepted 7th May 2019 variants produced a larger quantity of GF5 than wild type, which was in good agreement with the predicted DOI: 10.1039/c9ra02137j binding free energy results.
    [Show full text]
  • Bacterial Exopolysaccharides: Biosynthesis Pathways and Engineering Strategies
    REVIEW published: 26 May 2015 doi: 10.3389/fmicb.2015.00496 Bacterial exopolysaccharides: biosynthesis pathways and engineering strategies Jochen Schmid1*,VolkerSieber1 and Bernd Rehm2,3 1 Chair of Chemistry of Biogenic Resources, Technische Universität München, Straubing, Germany, 2 Institute of Fundamental Sciences, Massey University, Palmerston North, New Zealand, 3 The MacDiarmid Institute for Advanced Materials and Nanotechnology, Palmerston North, New Zealand Bacteria produce a wide range of exopolysaccharides which are synthesized via different biosynthesis pathways. The genes responsible for synthesis are often clustered within the genome of the respective production organism. A better understanding of the fundamental processes involved in exopolysaccharide biosynthesis and the regulation of these processes is critical toward genetic, metabolic and protein-engineering approaches to produce tailor-made polymers. These designer polymers will exhibit superior material properties targeting medical and industrial applications. Exploiting the Edited by: Weiwen Zhang, natural design space for production of a variety of biopolymer will open up a range of Tianjin University, China new applications. Here, we summarize the key aspects of microbial exopolysaccharide Reviewed by: biosynthesis and highlight the latest engineering approaches toward the production Jun-Jie Zhang, of tailor-made variants with the potential to be used as valuable renewable and Wuhan Institute of Virology, Chinese Academy of Sciences, China high-performance products
    [Show full text]
  • Lactobacillus Rhamnosus HN001 1.1 Probiotic Bacteria
    Copyright is owned by the Author of the thesis. Permission is given for a copy to be downloaded by an individual for the purpose of research and private study only. The thesis may not be reproduced elsewhere without the permission of the Author. DDiirreecctt sseelleeccttiioonn aanndd pphhaaggee ddiissppllaayy ooff tthhee LLaaccttoobbaacciilllluuss rrhhaammnnoossuuss HHNN000011 sseeccrreettoommee A thesis presented to Massey University in partial fulfillment of the requirements for the degree of Doctor of Philosophy by Dragana Jankovic 2008 Acknowledgments ii Acknowledgments I would like to thank the following people for the time, help, and support they have given me during my PhD work. Firstly and primarily I would like to thank my supervisor Dr Jasna Rakonjac for her encouragement, help, support, and expedience which were most appreciated. Her great scientific enthusiasm and amazing energy have been and will always be the inspiration for me. Also many thanks go to my cosupervisors Dr Mark Lubbers and Dr Michael Collett who were always a well of new ideas and discussion topics off all kinds. Their support was invaluable. I thank my cosupervisor Dr John Tweedie for helpful discussions and critical comments on my work. Special thanks to my office mates from Helipad lab, especially David Sheerin and Nicholas Bennett whose tolerance, patience and entertaining discussions were sometimes the only thing that kept me sane. Thanks to everyone at the Institute of Molecular BioSciences for their support. Thanks to them I looked forward to every coffee break to discuss new and interesting current issues. It was a pleasure and privilege working with such a great group of people.
    [Show full text]
  • Lehrstuhl Für Technische Mikrobiologie Sucrose Metabolism
    Lehrstuhl für Technische Mikrobiologie Sucrose metabolism in lactobacilli and bifidobacteria Susanne B. Kaditzky Vollständiger Abdruck der von der Fakultät Wissenschaftszentrum Weihenstephan für Ernährung, Landnutzung und Umwelt der Technischen Universität München zur Erlangung des akademischen Grades eines Doktors der Naturwissenschaften (Dr. rer. nat.) genehmigten Dissertation. Vorsitzender: Univ.-Prof. Dr.-Ing., Dr.-Ing. habil. Werner Back Prüfer der Dissertation: 1. Univ.-Prof. Dr. rer. nat. habil. Rudi F. Vogel 2. Univ.-Prof. Dr. rer. nat. habil. Siegfried Scherer 3. Ass. Prof. Dr. rer. nat. Michael Gänzle, University of Alberta / Kanada (schriftliche Beurteilung) Die Dissertation wurde am 25.10.2007 bei der Technischen Universität München eingereicht und durch die Fakultät Wissenschaftszentrum Weihenstephan für Ernährung, Landnutzung und Umwelt am 07.01.2008 angenommen. Lehrstuhl für Technische Mikrobiologie Sucrose metabolism in lactobacilli and bifidobacteria Susanne B. Kaditzky Doctoral thesis Fakultät Wissenschaftszentrum Weihenstephan für Ernährung, Landnutzung und Umwelt Freising 2008 Mein Dank gilt Rudi Vogel für die Überlassung des Themas und seine geduldige und unterstützende Begleitung durch die lehrreichen und interessanten Jahre, Michael Gänzle, Maher Korakli und Daniel Meissner für ihr Engagement und ihre Unterstützung, allen Kollegen für das gute und humorvolle Arbeitsklima, Andreas Stocker für die Charakterisierung des EPS mit FFF, Peter Kaden für die NMR- Analyse und Jürgen Behr für die Durchführung der 2D-Experimente,
    [Show full text]
  • Velisek 2.Indd
    Czech J. Food Sci. Vol. 23, No. 5: 173–183 Biosynthesis of Food Constituents: Saccharides. 2. Polysaccharides – a Review JAN VELÍŠEK and KAREL CEJPEK Department of Food Chemistry and Analysis, Faculty of Food and Biochemical Technology, Institute of Chemical Technology Prague, Prague, Czech Republic Abstract VELÍŠEK J., CEJPEK K. (2005): Biosynthesis of food constituents: Saccharides. 2. Polysaccharides – a review. Czech J. Food Sci., 23: 173–183. This review article gives a survey of the selected principal biosynthetic pathways that lead to the most important polysaccharides occurring in foods and in food raw materials and informs non-specialist readers about new scientific advances as reported in recently published papers. Subdivision of the topic is predominantly done via biosynthesis and includes reserve polysaccharides (starch and glycogen, fructans), plant cell wall polysaccharides (cellulose and cal- lose, pectin), and animal polysaccharides (chitin and glycosaminoglycans). Extensively used are the reaction schemes, sequences, and mechanisms with the enzymes involved and detailed explanations using sound chemical principles and mechanisms. Keywords: biosynthesis; polysaccharides; starch; glycogen; fructans; cellulose; callose; pectin; chitin; glycosylaminogly- cans; mucopolysaccharides Polysaccharides fulfil two main functions in liv- 1 RESERVE POLYSACCHARIDES ing organisms, as structural elements and food re- serves (VOET & VOET 1990; DEWICK 2002; VELÍŠEK 1.1 Starch and glycogen 2002). Most of the photosynthetically fixed carbon in plants is incorporated into cell wall polysac- The starch biosynthetic pathway plays a distinct charides. The central process of polysaccharide role in the plant metabolism. In the plastids of synthesis is the action of glycosyltransferases (also higher plants, either transient or reserve starch is called glycosylsynthases). These enzymes form formed.
    [Show full text]
  • Ep 1 117 822 B1
    Europäisches Patentamt (19) European Patent Office & Office européen des brevets (11) EP 1 117 822 B1 (12) EUROPÄISCHE PATENTSCHRIFT (45) Veröffentlichungstag und Bekanntmachung des (51) Int Cl.: Hinweises auf die Patenterteilung: C12P 19/18 (2006.01) C12N 9/10 (2006.01) 03.05.2006 Patentblatt 2006/18 C12N 15/54 (2006.01) C08B 30/00 (2006.01) A61K 47/36 (2006.01) (21) Anmeldenummer: 99950660.3 (86) Internationale Anmeldenummer: (22) Anmeldetag: 07.10.1999 PCT/EP1999/007518 (87) Internationale Veröffentlichungsnummer: WO 2000/022155 (20.04.2000 Gazette 2000/16) (54) HERSTELLUNG VON POLYGLUCANEN DURCH AMYLOSUCRASE IN GEGENWART EINER TRANSFERASE PREPARATION OF POLYGLUCANS BY AMYLOSUCRASE IN THE PRESENCE OF A TRANSFERASE PREPARATION DES POLYGLUCANES PAR AMYLOSUCRASE EN PRESENCE D’UNE TRANSFERASE (84) Benannte Vertragsstaaten: (56) Entgegenhaltungen: AT BE CH CY DE DK ES FI FR GB GR IE IT LI LU WO-A-00/14249 WO-A-00/22140 MC NL PT SE WO-A-95/31553 (30) Priorität: 09.10.1998 DE 19846492 • OKADA, GENTARO ET AL: "New studies on amylosucrase, a bacterial.alpha.-D-glucosylase (43) Veröffentlichungstag der Anmeldung: that directly converts sucrose to a glycogen- 25.07.2001 Patentblatt 2001/30 like.alpha.-glucan" J. BIOL. CHEM. (1974), 249(1), 126-35, XP000867741 (73) Patentinhaber: Südzucker AG Mannheim/ • BUTTCHER, VOLKER ET AL: "Cloning and Ochsenfurt characterization of the gene for amylosucrase 68165 Mannheim (DE) from Neisseria polysaccharea: production of a linear.alpha.-1,4-glucan" J. BACTERIOL. (1997), (72) Erfinder: 179(10), 3324-3330, XP002129879 • GALLERT, Karl-Christian • DE MONTALK, G. POTOCKI ET AL: "Sequence D-61184 Karben (DE) analysis of the gene encoding amylosucrase • BENGS, Holger from Neisseria polysaccharea and D-60598 Frankfurt am Main (DE) characterization of the recombinant enzyme" J.
    [Show full text]
  • Chemical and Functional Properties of Food Saccharides
    Chemical and Functional Properties of Food Saccharides © 2004 by CRC Press LLC Chemical and Functional Properties of Food Components Series SERIES EDITOR Zdzislaw E. Sikorski Chemical and Functional Properties of Food Proteins Edited by Zdzislaw E. Sikorski Chemical and Functional Properties of Food Components, Second Edition Edited by Zdzislaw E. Sikorski Chemical and Functional Properties of Food Lipids Edited by Zdzislaw E. Sikorski and Anna Kolakowska Chemical and Functional Properties of Food Saccharides Edited by Piotr Tomasik © 2004 by CRC Press LLC Chemical and Functional Properties of Food Saccharides EDITED BY Piotr Tomasik CRC PRESS Boca Raton London New York Washington, D.C. © 2004 by CRC Press LLC 1486_C00.fm Page 4 Monday, September 8, 2003 8:01 AM Library of Congress Cataloging-in-Publication Data Chemical and functional properites of food saccharides / edited by Piotr Tomasik. p. cm. — (Chemical and functional properites of food components series ; 5) Includes bibliographical references and index. ISBN 0-8493-1486-0 (alk. paper) 1. Sweeteners. I. Tomasik, Piotr. II. Title. III. Series. TP421.C44 2003 664—dc21 2003053186 This book contains information obtained from authentic and highly regarded sources. Reprinted material is quoted with permission, and sources are indicated. A wide variety of references are listed. Reasonable efforts have been made to publish reliable data and information, but the author and the publisher cannot assume responsibility for the validity of all materials or for the consequences of their use. Neither this book nor any part may be reproduced or transmitted in any form or by any means, electronic or mechanical, including photocopying, microfilming, and recording, or by any information storage or retrieval system, without prior permission in writing from the publisher.
    [Show full text]
  • O O2 Enzymes Available from Sigma Enzymes Available from Sigma
    COO 2.7.1.15 Ribokinase OXIDOREDUCTASES CONH2 COO 2.7.1.16 Ribulokinase 1.1.1.1 Alcohol dehydrogenase BLOOD GROUP + O O + O O 1.1.1.3 Homoserine dehydrogenase HYALURONIC ACID DERMATAN ALGINATES O-ANTIGENS STARCH GLYCOGEN CH COO N COO 2.7.1.17 Xylulokinase P GLYCOPROTEINS SUBSTANCES 2 OH N + COO 1.1.1.8 Glycerol-3-phosphate dehydrogenase Ribose -O - P - O - P - O- Adenosine(P) Ribose - O - P - O - P - O -Adenosine NICOTINATE 2.7.1.19 Phosphoribulokinase GANGLIOSIDES PEPTIDO- CH OH CH OH N 1 + COO 1.1.1.9 D-Xylulose reductase 2 2 NH .2.1 2.7.1.24 Dephospho-CoA kinase O CHITIN CHONDROITIN PECTIN INULIN CELLULOSE O O NH O O O O Ribose- P 2.4 N N RP 1.1.1.10 l-Xylulose reductase MUCINS GLYCAN 6.3.5.1 2.7.7.18 2.7.1.25 Adenylylsulfate kinase CH2OH HO Indoleacetate Indoxyl + 1.1.1.14 l-Iditol dehydrogenase L O O O Desamino-NAD Nicotinate- Quinolinate- A 2.7.1.28 Triokinase O O 1.1.1.132 HO (Auxin) NAD(P) 6.3.1.5 2.4.2.19 1.1.1.19 Glucuronate reductase CHOH - 2.4.1.68 CH3 OH OH OH nucleotide 2.7.1.30 Glycerol kinase Y - COO nucleotide 2.7.1.31 Glycerate kinase 1.1.1.21 Aldehyde reductase AcNH CHOH COO 6.3.2.7-10 2.4.1.69 O 1.2.3.7 2.4.2.19 R OPPT OH OH + 1.1.1.22 UDPglucose dehydrogenase 2.4.99.7 HO O OPPU HO 2.7.1.32 Choline kinase S CH2OH 6.3.2.13 OH OPPU CH HO CH2CH(NH3)COO HO CH CH NH HO CH2CH2NHCOCH3 CH O CH CH NHCOCH COO 1.1.1.23 Histidinol dehydrogenase OPC 2.4.1.17 3 2.4.1.29 CH CHO 2 2 2 3 2 2 3 O 2.7.1.33 Pantothenate kinase CH3CH NHAC OH OH OH LACTOSE 2 COO 1.1.1.25 Shikimate dehydrogenase A HO HO OPPG CH OH 2.7.1.34 Pantetheine kinase UDP- TDP-Rhamnose 2 NH NH NH NH N M 2.7.1.36 Mevalonate kinase 1.1.1.27 Lactate dehydrogenase HO COO- GDP- 2.4.1.21 O NH NH 4.1.1.28 2.3.1.5 2.1.1.4 1.1.1.29 Glycerate dehydrogenase C UDP-N-Ac-Muramate Iduronate OH 2.4.1.1 2.4.1.11 HO 5-Hydroxy- 5-Hydroxytryptamine N-Acetyl-serotonin N-Acetyl-5-O-methyl-serotonin Quinolinate 2.7.1.39 Homoserine kinase Mannuronate CH3 etc.
    [Show full text]
  • University of Groningen Glycosidic Bond Specificity of Glucansucrases
    University of Groningen Glycosidic bond specificity of glucansucrases Leemhuis, Hans; Pijning, Tjaard; Dobruchowska, Justyna M.; Dijkstra, Bauke W.; Dijkhuizen, Lubbert Published in: Biocatalysis and Biotransformation DOI: 10.3109/10242422.2012.676301 IMPORTANT NOTE: You are advised to consult the publisher's version (publisher's PDF) if you wish to cite from it. Please check the document version below. Document Version Publisher's PDF, also known as Version of record Publication date: 2012 Link to publication in University of Groningen/UMCG research database Citation for published version (APA): Leemhuis, H., Pijning, T., Dobruchowska, J. M., Dijkstra, B. W., & Dijkhuizen, L. (2012). Glycosidic bond specificity of glucansucrases: on the role of acceptor substrate binding residues. Biocatalysis and Biotransformation, 30(3), 366-376. DOI: 10.3109/10242422.2012.676301 Copyright Other than for strictly personal use, it is not permitted to download or to forward/distribute the text or part of it without the consent of the author(s) and/or copyright holder(s), unless the work is under an open content license (like Creative Commons). Take-down policy If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately and investigate your claim. Downloaded from the University of Groningen/UMCG research database (Pure): http://www.rug.nl/research/portal. For technical reasons the number of authors shown on this cover page is limited to 10 maximum. Download date: 11-02-2018 Biocatalysis and Biotransformation, May–June 2012; 30(3): 366–376 ORIGINAL ARTICLE Glycosidic bond specifi city of glucansucrases: on the role of acceptor substrate binding residues HANS LEEMHUIS 1 , TJAARD PIJNING 2 , JUSTYNA M.
    [Show full text]
  • 55856192.Pdf
    Members of the jury: Prof. dr. ir. Frank Devlieghere (chairman) Prof. dr. ir. Wim Soetaert (promotor) Prof. dr. ir. Erick Vandamme (promotor) Prof. dr. Els Vandamme Prof. dr. Savvas Savvides Dr. Tom Desmet Dr. Henk-Jan Joosten Promotors: Prof. dr. ir. Wim SOETAERT (promotor) Prof. dr. ir. Erick VANDAMME (promotor) Centre of expertise – Industrial Biotechnology and Biocatalysis Department of Biochemical and Microbial Technology Ghent University, Belgium Dean: Prof. dr. ir. Guido Van Huylenbroeck Rector: Prof. dr. Paul Van Cauwenberge The research was conducted at the Centre of expertise - Industrial Biotechnology and Biocatalysis, Department of Biochemical and Microbial Technology, Faculty of Bioscience Engineering, Ghent University (Ghent, Belgium) ir. An CERDOBBEL ENGINEERING THE THERMOSTABILITY OF SUCROSE PHOSPHORYLASE FOR INDUSTRIAL APPLICATIONS Thesis submitted in fulfilment of the requirements for the degree of Doctor (PhD) in Applied Biological Sciences Dutch translation of the title: Engineering van de thermostabiliteit van sucrose phosphorylase voor industriële toepassingen Cover illustration: “Three-dimensional structure of sucrose phosphorylase colored by B-factor.” Printed by University Press, Zelzate To refer to this thesis: Cerdobbel, A. (2011). Engineering the thermostability of sucrose phosphorylase for industrial applications. PhD thesis, Faculty of Bioscience Engineering, Ghent University, Ghent, 200 p. ISBN-number: 978-90-5989-414-3 The author and the promoter give the authorization to consult and to copy parts of this work for personal use only. Every other use is subject to the copyright laws. Permission to reproduce any material contained in this work should be obtained from the author. WOORD VOORAF Er wordt wel eens gezegd dat het woord vooraf het meest gelezen stukje is van een proefschrift.
    [Show full text]
  • 12) United States Patent (10
    US007635572B2 (12) UnitedO States Patent (10) Patent No.: US 7,635,572 B2 Zhou et al. (45) Date of Patent: Dec. 22, 2009 (54) METHODS FOR CONDUCTING ASSAYS FOR 5,506,121 A 4/1996 Skerra et al. ENZYME ACTIVITY ON PROTEIN 5,510,270 A 4/1996 Fodor et al. MICROARRAYS 5,512,492 A 4/1996 Herron et al. 5,516,635 A 5/1996 Ekins et al. (75) Inventors: Fang X. Zhou, New Haven, CT (US); 5,532,128 A 7/1996 Eggers Barry Schweitzer, Cheshire, CT (US) 5,538,897 A 7/1996 Yates, III et al. s s 5,541,070 A 7/1996 Kauvar (73) Assignee: Life Technologies Corporation, .. S.E. al Carlsbad, CA (US) 5,585,069 A 12/1996 Zanzucchi et al. 5,585,639 A 12/1996 Dorsel et al. (*) Notice: Subject to any disclaimer, the term of this 5,593,838 A 1/1997 Zanzucchi et al. patent is extended or adjusted under 35 5,605,662 A 2f1997 Heller et al. U.S.C. 154(b) by 0 days. 5,620,850 A 4/1997 Bamdad et al. 5,624,711 A 4/1997 Sundberg et al. (21) Appl. No.: 10/865,431 5,627,369 A 5/1997 Vestal et al. 5,629,213 A 5/1997 Kornguth et al. (22) Filed: Jun. 9, 2004 (Continued) (65) Prior Publication Data FOREIGN PATENT DOCUMENTS US 2005/O118665 A1 Jun. 2, 2005 EP 596421 10, 1993 EP 0619321 12/1994 (51) Int. Cl. EP O664452 7, 1995 CI2O 1/50 (2006.01) EP O818467 1, 1998 (52) U.S.
    [Show full text]
  • (12) Patent Application Publication (10) Pub. No.: US 2011/0165635 A1 Copenhaver Et Al
    US 2011 O165635A1 (19) United States (12) Patent Application Publication (10) Pub. No.: US 2011/0165635 A1 Copenhaver et al. (43) Pub. Date: Jul. 7, 2011 (54) METHODS AND MATERALS FOR Publication Classification PROCESSINGA FEEDSTOCK (51) Int. Cl. CI2P I 7/04 (2006.01) (75) Inventors: Gregory P. Copenhaver, Chapel CI2P I/00 (2006.01) Hill, NC (US); Daphne Preuss, CI2P 7/04 (2006.01) Chicago, IL (US); Jennifer Mach, CI2P 7/16 (2006.01) Chicago, IL (US) CI2P 7/06 (2006.01) CI2P 5/00 (2006.01) CI2P 5/02 (2006.01) (73) Assignee: CHROMATIN, INC., Chicago, IL CI2P3/00 (2006.01) (US) CI2P I/02 (2006.01) CI2N 5/10 (2006.01) (21) Appl. No.: 12/989,038 CI2N L/15 (2006.01) CI2N I/3 (2006.01) (52) U.S. Cl. ........... 435/126; 435/41; 435/157; 435/160; (22) PCT Fled: Apr. 21, 2009 435/161; 435/166; 435/167; 435/168; 435/171; 435/419,435/254.11: 435/257.2 (86) PCT NO.: PCT/US2O09/041260 (57) ABSTRACT S371 (c)(1), The present disclosure relates generally to methods for pro (2), (4) Date: Mar. 11, 2011 cessing a feedstock. Specifically, methods are provided for processing a feedstock by mixing the feedstock with an addi tive organism that comprises one or more transgenes coding Related U.S. Application Data for one or more enzymes. The expressed enzymes may be (60) Provisional application No. 61/046,705, filed on Apr. capable of breaking down cellulosic and lignocellulosic 21, 2008. materials and converting them to a biofuel.
    [Show full text]