Transcriptional Neoteny in the Human Brain

Total Page:16

File Type:pdf, Size:1020Kb

Transcriptional Neoteny in the Human Brain Transcriptional neoteny in the human brain Mehmet Somela,b,1, Henriette Franzb,c, Zheng Yana, Anna Lorencb, Song Guoa, Thomas Gigerb, Janet Kelsob, Birgit Nickelb, Michael Dannemannb, Sabine Bahnd, Maree J. Webstere, Cynthia S. Weickertf, Michael Lachmannb,2, Svante Pa¨ a¨ bob,2, and Philipp Khaitovicha,b,1,2 aPartner Institute for Computational Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, 320 Yue Yang Road, Shanghai 200031, China; bMax Planck Institute for Evolutionary Anthropology, Deutscher Platz 6, D-04103 Leipzig, Germany; cMax Planck Institute for Biophysical Chemistry, Am Fassberg 11, D-37077 Go¨ttingen, Germany; dInstitute of Biotechnology, University of Cambridge, Cambridge CB2 1TN, United Kingdom; eStanley Medical Research Institute, 9800 Medical Center Drive, Rockville, MD 20850; and fMacquarie Group Foundation Chair of Schizophrenia Research, Schizophrenia Research Institute, Prince of Wales Medical Research Institute, University of New South Wales, Sydney, NSW 2052, Australia Edited by Morris Goodman, Wayne State University, School of Medicine, Detroit, MI, and approved February 18, 2009 (received for review January 16, 2009) In development, timing is of the utmost importance, and the timing brain development between humans and apes would be crucial for of developmental processes often changes as organisms evolve. In understanding human evolution. Here we address this issue by human evolution, developmental retardation, or neoteny, has been analyzing genome-wide gene expression levels in human, chimpan- proposed as a possible mechanism that contributed to the rise of zee, and macaque brains during postnatal development. many human-specific features, including an increase in brain size and the emergence of human-specific cognitive traits. We analyzed mRNA Results and Discussion expression in the prefrontal cortex of humans, chimpanzees, and General Pattern of Expression Changes During Brain Development. We rhesus macaques to determine whether human-specific neotenic analyzed gene expression levels in the dorsolateral prefrontal cortex changes are present at the gene expression level. We show that the (DLPFC) of 39 humans, 14 chimpanzees, and 9 rhesus macaques by brain transcriptome is dramatically remodeled during postnatal de- using Affymetrix GeneChip Human Genome (GC HG)-U133 Plus velopment and that developmental changes in the human brain are 2.0 microarrays (see Materials and Methods and SI Appendix, Table indeed delayed relative to other primates. This delay is not uniform S1). For both humans and chimpanzees, the individuals’ age across the human transcriptome but affects a specific subset of genes distributions cover the entire span of postnatal ontogenesis, with a that play a potential role in neural development. particular focus on early life stages (Fig. 1A and SI Appendix, Fig. S1). In these individuals, we reliably detected and quantified the human evolution ͉ brain development ͉ gene expression ͉ heterochrony ͉ expression of 7,958 genes (Materials and Methods). Among these chimpanzee genes, we first analyzed the relative influence of 3 factors—age, sex, and species—on total expression variation among individuals. umans differ from their closest living relatives, chimpanzees, in Quantitatively, age explains the largest part of the total expression Hbrain size and numerous cognitive traits (1–5). Humans also variation at 29%, followed by species at 17% and sex at Ͻ2% (Fig. differ from chimpanzees in the timing of particular developmental 1B). Although the effects of age and species are highly significant landmarks. For example, female sexual maturity is reached between (permutation test, P Ͻ 0.001), the effect of sex is not (P ϭ 0.54) (SI 8 and 9 years of age in chimpanzees and between 13 and 14 years Appendix, Table S2). Thus, in our dataset, age has by far the greatest in humans (6, 7). Studies of comparative primate morphology, some influence on expression levels. Consistently, we find that a striking dating back to the 19th century, suggested that human ontogenesis 71% of the 7,958 genes expressed in the human brain change proceeds at a slower rate than in other primates; consequently, adult significantly during postnatal development [at a false discovery rate humans retain features characteristic of juvenile primates. This type (FDR) of 10%] (Fig. 1C). Functionally, these genes are significantly of heterochronic shift is known as neoteny (see ref. 6 and references enriched in a range of biological processes that include cell adhe- therein). Neoteny has been ascribed a central role in human sion, synaptic transmission, and axonogenesis (permutation test for evolution (8); for example, as a possible explanation for the overall enrichment, P ϭ 0.002) (SI Appendix, Table S3). emergence of human-specific cognitive abilities through an ex- Next, we estimated when during human and chimpanzee brain tended period of high neuronal plasticity (4, 6, 9). development these expression changes take place. We find that in To date, human and chimpanzee ontogenesis have mainly been both species gene expression changes occur most rapidly during the compared in terms of skeletal morphology. Results from these first few years of life. Approximately 50% of the total expression comparisons indicate that neoteny may indeed explain some human change observed between newborns and 40-year-olds occurred features, such as small jaws (10). They also show that neoteny is not within the first year of life (Fig. 1D). Furthermore, the overall a ubiquitous feature of the human phenotype (10–14). The reason trajectory of age-related expression changes in the chimpanzee EVOLUTION for the large human brain size, for example, appears to be rapid brain, although based on fewer samples, closely resembles the early postnatal brain-growth rates rather than an extended brain- growth period in human infants (3). Meanwhile, the timing of human ontogenesis relative to that in other primates at the molec- Author contributions: S.B., M.J.W., C.S.W., M.L., S.P., and P.K. designed research; H.F., Z.Y., ular and histological levels remains unexplored. For instance, it is A.L., and B.N. performed research; A.L., S.G., T.G., J.K., M.D., S.B., M.J.W., and C.S.W. contributed new reagents/analytic tools; M.S., M.L., and P.K. analyzed data; and M.S., M.L., unknown whether all genes expressed in the human brain show a S.P., and P.K. wrote the paper. consistent delay in expression timing relative to the chimpanzee or, The authors declare no conflict of interest. alternatively, whether different structures or molecular networks This article is a PNAS Direct Submission. are affected to different extents. More generally, how the transcrip- Freely available online through the PNAS open access option. tome as a whole is affected by evolutionary shifts in developmental Data deposition: The data reported in this paper have been deposited in the Gene timing is an open question. Although studies in model organisms Expression Omnibus (GEO) database, www.ncbi.nlm.nih.gov/geo (GEO accession nos. have previously documented how changes in gene expression timing GSE11528, GSE11512, and GSE15163). during development can produce morphological and functional 1To whom correspondence may be addressed. E-mail: [email protected] or novelties (15, 16), this type of evolutionary change has not yet been [email protected]. investigated on a genome-wide scale. 2M.L., S.P., and P.K. contributed equally as supervisors of this study. More than 30 years ago, M. C. King and A. Wilson (17) proposed This article contains supporting information online at www.pnas.org/cgi/content/full/ that identifying differences in the timing of gene expression during 0900544106/DCSupplemental. www.pnas.org͞cgi͞doi͞10.1073͞pnas.0900544106 PNAS ͉ April 7, 2009 ͉ vol. 106 ͉ no. 14 ͉ 5743–5748 Downloaded by guest on October 2, 2021 Fig. 1. Expression variation during pri- 60 mate and rodent brain development. (A) A 44 B The first 2 principle components of the hu- 80 7 12 denialpx 50 man and chimpanzee DLPFC dataset. The 6 351212 60 Hominids numbers represent each individual’s age in Rodents years. The first and second components ex- 40 40 e Expected 0.1 ecna plain 25% and 15% of the total variance 0.1 2CP 0 1 30 and are significantly correlated with age 20 0 0.50 47 Ϫ i (r ϭ 0.86, P Ͻ 10 16) and species identity (r ϭ r 25433846 a Ͻ Ϫ16 0 2536 % v 20 0.84, P 10 ), respectively. Red, humans; 125 2018222423 blue, chimpanzees. (B) The mean propor- 1817 −20 3 5171213 tion of the total variance explained by sex, 0.2 2 588 10 0.2 0.3 2 species identity, and age across all ex- 0.20.1 0.40.3 0.9 −40 0.1 0.80.40.50.5 pressed genes. The values for 39 humans 0 and 14 chimpanzees (orange bars, left) are −100 −50 0 50 Sex Species Age based on 7,958 genes. The values for ro- PC1 identity dents (yellow bars, right) are based on ● ● 8,362 genes measured in 18 individuals. The C D noisserp 100 expected values are calculated as the me- ● ● ● dian of 1,000 permutations of each factor. ● ● ●● ● 80 ● ●●● ● Note that the proportion of variance ex- Age+,Sp− Age+,Sp+ x ●● ● ● e ● ●● ● ● plained by sex does not exceed the random l ● ● ● %37 %34 a ●● tantso ● expectation in humans and chimpanzees, (2914) (2739) 60 ● ● ●● whereas in mice it is not estimated, because ●● only males were used. (C) Proportions of p 40 ● ni egn ni ● ● age-related genes and genes showing sig- %16 %13 ● nificant expression differences between ● Human (1254) (1051) 20 ●● humans and chimpanzees in the DLPFC a ● hc % hc Chimpanzee ϩ Ϫ ● transcriptome. Age /Age represents ● genes showing/not showing a significant Age−,Sp− Age−,Sp+ 0 ϩ expression difference with age, and Sp / 010203040 SpϪ represents genes showing/not show- ing a significant expression difference be- Age (years) tween species.
Recommended publications
  • Review Heterochronic Genes and the Nature of Developmental Time
    View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by Elsevier - Publisher Connector Current Biology 17, R425–R434, June 5, 2007 ª2007 Elsevier Ltd All rights reserved DOI 10.1016/j.cub.2007.03.043 Heterochronic Genes and the Nature of Review Developmental Time Eric G. Moss that have arisen to solve the problem of regulated tim- ing in animal development. Timing is a fundamental issue in development, with Heterochrony and Developmental Timing a range of implications from birth defects to evolu- in Evolution tion. In the roundworm Caenorhabditis elegans, Changes in developmental timing have long been be- the heterochronic genes encode components of lieved to be a major force in the evolution of morphol- a molecular developmental timing mechanism. This ogy [1]. A variety of changes is encompassed by the mechanism functions in diverse cell types through- concept of ‘heterochrony’ — differences in the relative out the animal to specify cell fates at each larval timing of developmental events between two closely stage. MicroRNAs play an important role in this related species. A classic example of heterochrony is mechanism by stage-specifically repressing cell- the axolotl. This salamander reaches sexual maturity fate regulators. Recent studies reveal the surprising without undergoing metamorphosis, such that its complexity surrounding this regulation — for exam- non-gonadal tissues retain larval features of other ple, a positive feedback loop may make the regula- salamanders. Different species of axolotls exhibit ge- tion more robust, and certain components of the netic differences in the production or activity of thyroid mechanism are expressed in brief periods at each hormones that trigger metamorphosis from aquatic stage.
    [Show full text]
  • How Morphological Development Can Guide Evolution Sam Kriegman1,*, Nick Cheney1, and Josh Bongard1
    How morphological development can guide evolution Sam Kriegman1,*, Nick Cheney1, and Josh Bongard1 1University of Vermont, Department of Computer Science, Burlington, VT, USA *[email protected] ABSTRACT Organisms result from adaptive processes interacting across different time scales. One such interaction is that between development and evolution. Models have shown that development sweeps over several traits in a single agent, sometimes exposing promising static traits. Subsequent evolution can then canalize these rare traits. Thus, development can, under the right conditions, increase evolvability. Here, we report on a previously unknown phenomenon when embodied agents are allowed to develop and evolve: Evolution discovers body plans robust to control changes, these body plans become genetically assimilated, yet controllers for these agents are not assimilated. This allows evolution to continue climbing fitness gradients by tinkering with the developmental programs for controllers within these permissive body plans. This exposes a previously unknown detail about the Baldwin effect: instead of all useful traits becoming genetically assimilated, only traits that render the agent robust to changes in other traits become assimilated. We refer to this as differential canalization. This finding also has implications for the evolutionary design of artificial and embodied agents such as robots: robots robust to internal changes in their controllers may also be robust to external changes in their environment, such as transferal from simulation to reality or deployment in novel environments. Introduction The shape of life changes on many different time scales. From generation to generation, populations gradually increase in complexity and relative competency. At the individual level, organisms grow from a single-celled egg and exhibit extreme postnatal change as they interact with the outside world during their lifetimes.
    [Show full text]
  • Transformations of Lamarckism Vienna Series in Theoretical Biology Gerd B
    Transformations of Lamarckism Vienna Series in Theoretical Biology Gerd B. M ü ller, G ü nter P. Wagner, and Werner Callebaut, editors The Evolution of Cognition , edited by Cecilia Heyes and Ludwig Huber, 2000 Origination of Organismal Form: Beyond the Gene in Development and Evolutionary Biology , edited by Gerd B. M ü ller and Stuart A. Newman, 2003 Environment, Development, and Evolution: Toward a Synthesis , edited by Brian K. Hall, Roy D. Pearson, and Gerd B. M ü ller, 2004 Evolution of Communication Systems: A Comparative Approach , edited by D. Kimbrough Oller and Ulrike Griebel, 2004 Modularity: Understanding the Development and Evolution of Natural Complex Systems , edited by Werner Callebaut and Diego Rasskin-Gutman, 2005 Compositional Evolution: The Impact of Sex, Symbiosis, and Modularity on the Gradualist Framework of Evolution , by Richard A. Watson, 2006 Biological Emergences: Evolution by Natural Experiment , by Robert G. B. Reid, 2007 Modeling Biology: Structure, Behaviors, Evolution , edited by Manfred D. Laubichler and Gerd B. M ü ller, 2007 Evolution of Communicative Flexibility: Complexity, Creativity, and Adaptability in Human and Animal Communication , edited by Kimbrough D. Oller and Ulrike Griebel, 2008 Functions in Biological and Artifi cial Worlds: Comparative Philosophical Perspectives , edited by Ulrich Krohs and Peter Kroes, 2009 Cognitive Biology: Evolutionary and Developmental Perspectives on Mind, Brain, and Behavior , edited by Luca Tommasi, Mary A. Peterson, and Lynn Nadel, 2009 Innovation in Cultural Systems: Contributions from Evolutionary Anthropology , edited by Michael J. O ’ Brien and Stephen J. Shennan, 2010 The Major Transitions in Evolution Revisited , edited by Brett Calcott and Kim Sterelny, 2011 Transformations of Lamarckism: From Subtle Fluids to Molecular Biology , edited by Snait B.
    [Show full text]
  • Study of Natural Longlife Juvenility and Tissue Regeneration in Caudate Amphibians and Potential Application of Resulting Data in Biomedicine
    Journal of Developmental Biology Review Study of Natural Longlife Juvenility and Tissue Regeneration in Caudate Amphibians and Potential Application of Resulting Data in Biomedicine Eleonora N. Grigoryan Kol’tsov Institute of Developmental Biology, Russian Academy of Sciences, 119334 Moscow, Russia; [email protected]; Tel.: +7-(499)-1350052 Abstract: The review considers the molecular, cellular, organismal, and ontogenetic properties of Urodela that exhibit the highest regenerative abilities among tetrapods. The genome specifics and the expression of genes associated with cell plasticity are analyzed. The simplification of tissue structure is shown using the examples of the sensory retina and brain in mature Urodela. Cells of these and some other tissues are ready to initiate proliferation and manifest the plasticity of their phenotype as well as the correct integration into the pre-existing or de novo forming tissue structure. Without excluding other factors that determine regeneration, the pedomorphosis and juvenile properties, identified on different levels of Urodele amphibians, are assumed to be the main explanation for their high regenerative abilities. These properties, being fundamental for tissue regeneration, have been lost by amniotes. Experiments aimed at mammalian cell rejuvenation currently use various approaches. They include, in particular, methods that use secretomes from regenerating tissues of caudate amphibians and fish for inducing regenerative responses of cells. Such an approach, along with those developed on the basis of knowledge about the molecular and genetic nature and age dependence of regeneration, may become one more step in the development of regenerative medicine Citation: Grigoryan, E.N. Study of Keywords: salamanders; juvenile state; tissue regeneration; extracts; microvesicles; cell rejuvenation Natural Longlife Juvenility and Tissue Regeneration in Caudate Amphibians and Potential Application of Resulting Data in 1.
    [Show full text]
  • Eugenics, Biopolitics, and the Challenge of the Techno-Human Condition
    Nathan VAN CAMP Redesigning Life The emerging development of genetic enhancement technologies has recently become the focus of a public and philosophical debate between proponents and opponents of a liberal eugenics – that is, the use of Eugenics, Biopolitics, and the Challenge these technologies without any overall direction or governmental control. Inspired by Foucault’s, Agamben’s of the Techno-Human Condition and Esposito’s writings about biopower and biopolitics, Life Redesigning the author sees both positions as equally problematic, as both presuppose the existence of a stable, autonomous subject capable of making decisions concerning the future of human nature, while in the age of genetic technology the nature of this subjectivity shall be less an origin than an effect of such decisions. Bringing together a biopolitical critique of the way this controversial issue has been dealt with in liberal moral and political philosophy with a philosophical analysis of the nature of and the relation between life, politics, and technology, the author sets out to outline the contours of a more responsible engagement with genetic technologies based on the idea that technology is an intrinsic condition of humanity. Nathan VAN CAMP Nathan VAN Philosophy Philosophy Nathan Van Camp is postdoctoral researcher at the University of Antwerp, Belgium. He focuses on continental philosophy, political theory, biopolitics, and critical theory. & Politics ISBN 978-2-87574-281-0 Philosophie & Politique 27 www.peterlang.com P.I.E. Peter Lang Nathan VAN CAMP Redesigning Life The emerging development of genetic enhancement technologies has recently become the focus of a public and philosophical debate between proponents and opponents of a liberal eugenics – that is, the use of Eugenics, Biopolitics, and the Challenge these technologies without any overall direction or governmental control.
    [Show full text]
  • Sonic Hedgehog Signaling in Limb Development
    REVIEW published: 28 February 2017 doi: 10.3389/fcell.2017.00014 Sonic Hedgehog Signaling in Limb Development Cheryll Tickle 1* and Matthew Towers 2* 1 Department of Biology and Biochemistry, University of Bath, Bath, UK, 2 Department of Biomedical Science, The Bateson Centre, University of Sheffield, Western Bank, Sheffield, UK The gene encoding the secreted protein Sonic hedgehog (Shh) is expressed in the polarizing region (or zone of polarizing activity), a small group of mesenchyme cells at the posterior margin of the vertebrate limb bud. Detailed analyses have revealed that Shh has the properties of the long sought after polarizing region morphogen that specifies positional values across the antero-posterior axis (e.g., thumb to little finger axis) of the limb. Shh has also been shown to control the width of the limb bud by stimulating mesenchyme cell proliferation and by regulating the antero-posterior length of the apical ectodermal ridge, the signaling region required for limb bud outgrowth and the laying down of structures along the proximo-distal axis (e.g., shoulder to digits axis) of the limb. It has been shown that Shh signaling can specify antero-posterior positional values in Edited by: limb buds in both a concentration- (paracrine) and time-dependent (autocrine) fashion. Andrea Erika Münsterberg, University of East Anglia, UK Currently there are several models for how Shh specifies positional values over time in the Reviewed by: limb buds of chick and mouse embryos and how this is integrated with growth. Extensive Megan Davey, work has elucidated downstream transcriptional targets of Shh signaling. Nevertheless, it University of Edinburgh, UK Robert Hill, remains unclear how antero-posterior positional values are encoded and then interpreted University of Edinburgh, UK to give the particular structure appropriate to that position, for example, the type of digit.
    [Show full text]
  • Personality Traits in Competition Dogs – a Quantitative Genetic Study on Competition Dogs
    Faculty of Veterinary Medicine and Animal Science Personality traits in competition dogs – A quantitative genetic study on competition dogs Evelina Kess Master´s thesis • 30 credits Animal Science Uppsala 2019 Personality traits in competition dogs – A quantitative genetic study on competition dogs Personlighet hos tävlingshundar – En kvantitativ genetisk studie på tävlingshundar Evelina Kess Supervisor: Katja Nilsson, Swedish University of Agricultural Sciences, Department of Animal Breeding and Genetics Examiner: Erling Strandberg, Swedish University of Agricultural Sciences, Department of Animal Breeding and Genetics Credits: 30 credits Level: Second cycle, A2E Course title: Independent project in Animal Science Course code: EX0870 Programme/education: Animal Science Course coordinating department: Department of Animal Breeding and Genetics Place of publication: Uppsala Year of publication: 2019 Online publication: https://stud.epsilon.slu.se Cover photo: Carla Schmeyer Keywords: dog, personality, competition, heritability, dog mentality assessment, IPO, IGP, German shepherd, Belgian shepherd Malinois, Dutch Shepherd Swedish University of Agricultural Sciences Faculty of Veterinary Medicine and Animal Science Department of Animal Breeding and Genetics Abstract The purpose of this study was to investigate the relationship between per- formance and personality in three working dog breeds. The breeds that were chosen were the German Shepherd, the Belgian Shepherd Malinois and the Dutch Shepherd (Short haired). Pedigree data included pedigrees from 28536 dogs, out of those dogs 26 572 dogs also had personality test data and 1714 of those dogs had IPO results. The relationship between success in IPO and the five personality traits Playfulness, Curiosity/Fearlessness, Chase-prone- ness, Sociability and Aggressiveness was analysed using a linear model. Questionnaire data from a modified C-BARQ about everyday behaviour was also collected for analysis.
    [Show full text]
  • Differences in Neural Stem Cell Identity and Differentiation Capacity Drive Divergent Regenerative Outcomes in Lizards and Salamanders
    Differences in neural stem cell identity and differentiation capacity drive divergent regenerative outcomes in lizards and salamanders Aaron X. Suna,b,c, Ricardo Londonoa, Megan L. Hudnalla, Rocky S. Tuana,c, and Thomas P. Lozitoa,1 aCenter for Cellular and Molecular Engineering, Department of Orthopaedic Surgery, University of Pittsburgh School of Medicine, Pittsburgh, PA 15219; bMedical Scientist Training Program, University of Pittsburgh School of Medicine, Pittsburgh, PA 15213; and cDepartment of Bioengineering, University of Pittsburgh Swanson School of Engineering, Pittsburgh, PA 15213 Edited by Robb Krumlauf, Stowers Institute for Medical Research, Kansas City, MO, and approved July 24, 2018 (received for review March 2, 2018) While lizards and salamanders both exhibit the ability to re- lizard tail regenerate (20), and the key to understanding this generate amputated tails, the outcomes achieved by each are unique arrangement of tissues is in identifying the patterning markedly different. Salamanders, such as Ambystoma mexicanum, signals involved. regenerate nearly identical copies of original tails. Regenerated lizard Both lizards and salamanders follow similar mechanisms of tails, however, exhibit important morphological differences compared tail development during embryonic development. The embryonic with originals. Some of these differences concern dorsoventral pat- spinal cord and surrounding structures are formed and patterned terning of regenerated skeletal and spinal cord tissues; regenerated by the neural tube (21, 22). The neural tube exhibits distinct + salamander tail tissues exhibit dorsoventral patterning, while re- domains: roof plate (characterized by expression of Pax7 , BMP- + + + grown lizard tissues do not. Additionally, regenerated lizard tails lack 2 , and Sox10 among others), lateral domain (Pax6 ), and floor + + characteristically roof plate-associated structures, such as dorsal root plate (Shh , FoxA2 ).
    [Show full text]
  • 2019.12.20.883900V1.Full.Pdf
    bioRxiv preprint doi: https://doi.org/10.1101/2019.12.20.883900; this version posted December 20, 2019. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY-NC-ND 4.0 International license. 1 Title 2 Sequence heterochrony led to a gain of functionality in an immature 3 stage of the central complex: a fly-beetle insight 4 Short title: Sequence heterochrony in central complex evolution 5 6 Authors: 7 Max S. Farnwortha,c, Kolja N. Eckermannb,c, Gregor Buchera,* 8 9 a Department of Evolutionary Developmental Genetics, Johann-Friedrich-Blumenbach Institute, GZMB, 10 University of Göttingen, Göttingen, Germany, b Department of Developmental Biology, Johann-Friedrich- 11 Blumenbach Institute, GZMB, University of Göttingen, Göttingen, Germany, c Göttingen Graduate Center for 12 Molecular Biosciences, Neurosciences and Biophysics (GGNB), Göttingen, Germany 13 14 * Corresponding author: Gregor Bucher 15 Email: [email protected] 16 17 ORCID: Max S. Farnworth https://orcid.org/0000-0003-2418-3203, Gregor Bucher 18 https://orcid.org/0000-0002-4615-6401 19 - 1 - bioRxiv preprint doi: https://doi.org/10.1101/2019.12.20.883900; this version posted December 20, 2019. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY-NC-ND 4.0 International license. 20 Abstract 21 Animal behavior is guided by the brain.
    [Show full text]
  • Homeobox Genes D11–D13 and A13 Control Mouse Autopod Cortical
    Research article Homeobox genes d11–d13 and a13 control mouse autopod cortical bone and joint formation Pablo Villavicencio-Lorini,1,2 Pia Kuss,1,2 Julia Friedrich,1,2 Julia Haupt,1,2 Muhammed Farooq,3 Seval Türkmen,2 Denis Duboule,4 Jochen Hecht,1,5 and Stefan Mundlos1,2,5 1Max Planck Institute for Molecular Genetics, Berlin, Germany. 2Institute for Medical Genetics, Charité, Universitätsmedizin Berlin, Berlin, Germany. 3Human Molecular Genetics Laboratory, National Institute for Biotechnology & Genetic Engineering (NIBGE), Faisalabad, Pakistan. 4National Research Centre Frontiers in Genetics, Department of Zoology and Animal Biology, University of Geneva, Geneva, Switzerland. 5Berlin-Brandenburg Center for Regenerative Therapies (BCRT), Charité, Universitätsmedizin Berlin, Berlin, Germany. The molecular mechanisms that govern bone and joint formation are complex, involving an integrated network of signaling pathways and gene regulators. We investigated the role of Hox genes, which are known to specify individual segments of the skeleton, in the formation of autopod limb bones (i.e., the hands and feet) using the mouse mutant synpolydactyly homolog (spdh), which encodes a polyalanine expansion in Hoxd13. We found that no cortical bone was formed in the autopod in spdh/spdh mice; instead, these bones underwent trabecular ossification after birth. Spdh/spdh metacarpals acquired an ovoid shape and developed ectopic joints, indicating a loss of long bone characteristics and thus a transformation of metacarpals into carpal bones. The perichon- drium of spdh/spdh mice showed abnormal morphology and decreased expression of Runt-related transcription factor 2 (Runx2), which was identified as a direct Hoxd13 transcriptional target. Hoxd11–/–Hoxd12–/–Hoxd13–/– tri- ple-knockout mice and Hoxd13–/–Hoxa13+/– mice exhibited similar but less severe defects, suggesting that these Hox genes have similar and complementary functions and that the spdh allele acts as a dominant negative.
    [Show full text]
  • Genetics of Canine Behavior
    ACTA VET. BRNO 2007, 76: 431-444; doi:10.2754/avb200776030431 Review article Genetics of Canine Behavior K.A. HOUPT American College of Veterinary Behaviorists, Animal Behavior Clinic, Department of Clinical Sciences, College of Veterinary Medicine, Cornell University, Ithaca, NY, USA Received February 6, 2007 Accepted June 5, 2007 Abstract Houpt K.A.: Genetics of Canine Behavior. Acta Vet. Brno 2007, 76: 431-444. Canine behavioral genetics is a rapidly moving area of research. In this review, breed differences in behavior are emphasized. Dog professionals’ opinions of the various breeds on many behavior traits reveal factors such as reactivity, aggression, ease of training and immaturity. Heritability of various behaviors – hunting ability, playfulness, and aggression to people and other dogs – has been calculated. The neurotransmitters believed to be involved in aggression are discussed. The gene for aggression remains elusive, but identifi cation of single nucleotide polymorphisms associated with breed-specifi c behavior traits are leading us in the right direction. The unique syndrome of aggression found in English Springer Spaniels may be a model for detecting the gene involved. Dog aggression, heritability, temperament Behavior is a result of nature (genetics) and nurture (learning or experience). We shall review the history of canine behavioral genetics and explore the latest fi ndings. The publication of the canine genome allows us to make some inferences (Kirkness et al. 2003). Foxes One of the most thorough studies of canid behavioral genetics deals with foxes, not dogs. Selection for a tame and for an aggressive strain of silver foxes over 30 years by Dmitry Belyaev and Lyudmila Trut resulted in large differences in behavior and in morphology (Trut et al.
    [Show full text]
  • Evolutionary Developmental Biology 573
    EVOC20 29/08/2003 11:15 AM Page 572 Evolutionary 20 Developmental Biology volutionary developmental biology, now often known Eas “evo-devo,” is the study of the relation between evolution and development. The relation between evolution and development has been the subject of research for many years, and the chapter begins by looking at some classic ideas. However, the subject has been transformed in recent years as the genes that control development have begun to be identified. This chapter looks at how changes in these developmental genes, such as changes in their spatial or temporal expression in the embryo, are associated with changes in adult morphology. The origin of a set of genes controlling development may have opened up new and more flexible ways in which evolution could occur: life may have become more “evolvable.” EVOC20 29/08/2003 11:15 AM Page 573 CHAPTER 20 / Evolutionary Developmental Biology 573 20.1 Changes in development, and the genes controlling development, underlie morphological evolution Morphological structures, such as heads, legs, and tails, are produced in each individual organism by development. The organism begins life as a single cell. The organism grows by cell division, and the various cell types (bone cells, skin cells, and so on) are produced by differentiation within dividing cell lines. When one species evolves into Morphological evolution is driven another, with a changed morphological form, the developmental process must have by developmental evolution changed too. If the descendant species has longer legs, it is because the developmental process that produces legs has been accelerated, or extended over time.
    [Show full text]