Following Bees and Wasps up Mt. Kilimanjaro: from Diversity and Traits to Hidden Interactions of Species

Total Page:16

File Type:pdf, Size:1020Kb

Following Bees and Wasps up Mt. Kilimanjaro: from Diversity and Traits to Hidden Interactions of Species Following Bees and Wasps up Mt. Kilimanjaro: From Diversity and Traits to hidden Interactions of Species Auf den Spuren von Bienen und Wespen auf den Kilimandscharo: Eine Studie über die Diversität, Merkmale und verborgenen Wechselwirkungen zwischen Arten Dissertation zur Erlangung des naturwissenschaftlichen Doktorgrades Julius-Maximilians-Universität Würzburg vorgelegt von Antonia Veronika Mayr geboren in Eschwege Würzburg, 2019 Submitted/Eingereicht 4 April 2019 Members of the doctoral committee/Mitglieder der Promotionskommission Chairperson/Vorsitzender Prof. Dr. Ricarda Scheiner Referee/Gutachter Prof. Dr. Ingolf Steffan-Dewenter Referee /Gutachter Prof. Dr. Alexandra-Maria Klein Defence/Promotionskolloquium 29 May 2019 Date of Receipt of Certificates/Doktorurkunde ausgehändigt am: Die Wissenschaft, richtig verstanden, heilt den Menschen von seinem Stolz- denn sie zeigt ihm seine Grenzen. Albert Schweitzer To all the tiny creatures who had to give their lives for science Table of Contents Affidavit.............................................................................................................................. 1 Summary............................................................................................................................. 3 Zusammenfassung ............................................................................................................ 7 Chapter 1 .......................................................................................................................... 11 General Introduction ................................................................................................ 11 1.1 Global change: impact on biodiversity and ecosystem services ...... 15 1.2 Spatial and temporal changes of biodiversity .................................... 17 1.3 Tropical (mountain) ecosystems and elevational gradients ............. 19 1.4 Study design ............................................................................................ 21 Chapter 2 .......................................................................................................................... 33 Climate and food resources shape species richness and trophic interactions of cavity-nesting Hymenoptera ........................................ 33 2.1 Introduction ............................................................................................ 35 2.2 Methods ................................................................................................... 38 2.3 Results ...................................................................................................... 43 2.4 Discussion ............................................................................................... 46 2.5 Conclusions ............................................................................................ 50 2.6 Appendix ................................................................................................. 51 Chapter 3 .......................................................................................................................... 65 Seasonal variation in the ecology of tropical cavity-nesting Hymenoptera ..................................................................................................... 65 3.1 Introduction ............................................................................................ 67 3.2 Methods ................................................................................................... 69 3.3 Results ...................................................................................................... 74 3.4 Discussion ............................................................................................... 80 3.5 Conclusion .............................................................................................. 87 3.6 Appendix ................................................................................................. 88 Chapter 4 .......................................................................................................................... 99 Cryptic species and hidden ecological interactions of halictine bees along an elevational gradient ...................................................................... 99 4.1 Introduction .......................................................................................... 101 4.2 Methods ................................................................................................. 102 4.3 Results .................................................................................................... 108 4.4 Discussion ............................................................................................. 113 4.5 Conclusion ............................................................................................ 119 4.6 Appendix ............................................................................................... 120 Chapter 5 ........................................................................................................................ 127 General Discussion .................................................................................................. 127 5.1 Drivers of biodiversity along spatial and temporal environmental gradients – species, traits and interactions ....................................... 131 5.2 Implications for Kilimanjaro´s biodiversity under global change . 137 5.3 Outlook ................................................................................................. 143 5.4 Conclusion ............................................................................................ 150 General Appendix ......................................................................................................... 151 References ...................................................................................................................... 153 Author Contributions ................................................................................................... 179 Publication List .............................................................................................................. 185 Acknowledgements ....................................................................................................... 187 Affidavit Affidavit I hereby declare that my thesis entitled: „ Following Bees and Wasps up Mt. Kilimanjaro: From Diversity and Traits to hidden Interactions of Species” is the result of my own work. I did not receive any help or support from commercial consultants. All sources and / or materials applied are listed and specified in the thesis. Furthermore I verify that the thesis has not been submitted as part of another examination process neither in identical nor in similar form. Besides I declare that if I do not hold the copyright for figures and paragraphs, I obtained it from the rights holder and that paragraphs and figures have been marked according to law or for figures taken from the internet the hyperlink has been added accordingly. Eidesstattliche Erklärung Hiermit erkläre ich an Eides statt, die Dissertation: „Auf den Spuren von Bienen und Wespen auf den Kilimandscharo: Eine Studie über die Diversität, Merkmale und verborgenen Wechselwirkungen zwischen Arten“, eigenständig, d. h. insbesondere selbständig und ohne Hilfe eines kommerziellen Promotionsberaters, angefertigt und keine anderen, als die von mir angegebenen Quellen und Hilfsmittel verwendet zu haben. Ich erkläre außerdem, dass die Dissertation weder in gleicher noch in ähnlicher Form bereits in einem anderen Prüfungsverfahren vorgelegen hat. Weiterhin erkläre ich, dass bei allen Abbildungen und Texten bei denen die Verwertungsrechte (Copyright) nicht bei mir liegen, diese von den Rechtsinhabern eingeholt wurden und die Textstellen bzw. Abbildungen entsprechend den rechtlichen Vorgaben gekennzeichnet sind sowie bei Abbildungen, die dem Internet entnommen wurden, der entsprechende Hypertextlink angegeben wurde. Würzburg, den Place, Date Signature 1 Following Bees and Wasps up Mt. Kilimanjaro 2 Summary Summary Chapter 1 – General Introduction One of the greatest challenges of ecological research is to predict the response of ecosystems to global change; that is to changes in climate and land use. A complex question in this context is how changing environmental conditions affect ecosystem processes at different levels of communities. To shed light on this issue, I investigate drivers of biodiversity on the level of species richness, functional traits and species interactions in cavity-nesting Hymenoptera. For this purpose, I take advantage of the steep elevational gradient of Mt. Kilimanjaro that shows strong environmental changes on a relatively small spatial scale and thus, provides a good environmental scenario for investigating drivers of diversity. In this thesis, I focus on 1) drivers of species richness at different trophic levels (Chapter 2); 2) seasonal patterns in nest-building activity, life-history traits and ecological rates in three different functional groups and at different elevations (Chapter 3) and 3) changes in cuticular hydrocarbons, pollen composition and microbiomes in Lasioglossum bees caused by climatic variables (Chapter 4). Chapter 2 – Climate and food resources shape species richness and trophic interactions of cavity-nesting Hymenoptera Drivers of species richness have been subject to research for centuries. Temperature, resource availability and top-down regulation as well as the impact of land use are
Recommended publications
  • Diversity of Bees (Hymenoptera: Apoidea) in and Around Namdapha National Park, with an Updated Checklist from Arunachal Pradesh, India
    Rec. zool. Surv. India: Vol. 118(4)/ 413-425, 2018 ISSN (Online) : (Applied for) DOI: 10.26515/rzsi/v118/i4/2018/122129 ISSN (Print) : 0375-1511 Diversity of Bees (Hymenoptera: Apoidea) in and around Namdapha National Park, with an Updated Checklist from Arunachal Pradesh, India Jagdish Saini*, Kailash Chandra, Hirdesh Kumar, Dibya Jyoti Ghosh, S. I. Kazmi, Arajush Payra and C. K. Deepak Zoological Survey of India, M-Block, New Alipore, Kolkata-700053, India; [email protected] Abstract The present study documents a preliminary checklist of bee diversity from Arunachal Pradesh, India based on literature study and the surveys undertaken during October, 2016 to July, 2017. Altogether, 49 species have been recorded belonging to 12 genera under 03 families viz. Apidae, Halictidae, and Megachilidae. Family Megachilidae, Genus Ceratina and 13 Keywords: Apidae, Bee diversity, Eastern Himalaya, Halictidae, Megachilidae species of bees are recorded first time from Arunachal Pradesh. Introduction The paper presents an updated checklist of superfamily Apoidea of Arunachal Pradesh. Family Megachilidae with Bees are considered to be the most effective insect in five species is recorded for the first time from Arunachal pollination service (Free, 1993; Torchio, 1990; Thakur Pradesh. Genus Ceratina Latreille is also recorded for the and Dongarwar, 2012; Raj et al., 2012). A sharp decline first time from Arunachal Pradesh. To understand the in bee population globally is been observed due to lack distribution knowledge of bees of eastern Himalaya it is of quality food resources, anthropogenic effects like impeccable that more intensive studies are required from habitat fragmentation, degradation, climate change and the region.
    [Show full text]
  • Les Abeilles Des Graminées Ou Lipotriches Gerstaecker, 1858, Sensu Stricto (Hymenoptera Apoidea Halictidae Nomiinae) De La Région Orientale
    Les abeilles des graminées ou Lipotriches Gerstaecker, 1858, sensu stricto (Hymenoptera Apoidea Halictidae Nomiinae) de la Région Orientale Document de Travail du 24 Décembre 2012, unpublished document ! par Alain PAULY (Institut Royal des Sciences Naturelles de Belgique, Département Entomologie, Rue Vautier 29, B-1000 Bruxelles, Belgique). Introduction Le genre Lipotriches sensu stricto est caractérisé par le plateau basal des tibias postérieurs des femelles incomplet. Les deux sexes ont le col du pronotum lamellé. Le calcar interne des tibias postérieurs est généralement scuplté par une crête lamellée continue et non des dents. La plupart des groupes de Lipotriches récoltent le pollen des graminées, ceux qui ont les soies des tibias postérieurs en lasso le récoltent exclusivement. On rencontre 58 espèces valides en Afrique plus une dizaine d’espèces nouvelles, et 28 espèces valides sont étudiées ici de la Région Orientale. Trois espèces atteignent le nord de l’Australie. Matériel et méthode Acronymes des collections étudiées (entre parenthèses le nom des personnes ayant aidé au prêt de matériel) : AMNH : American Museum of Natural History, New York, USA (J. S. ASCHER; E. L. QUINTER). BBMH: Bishop Museum, Honolulu, Hawai, USA (T. GONSALVES). BMNH : Natural History Museum, London, UK [anciennement British Museum (Natural History)] (G. ELSE; D. NOTTON). CAS: California Academy of Sciences, San Francisco, USA (W.J. PULAWSKI). FSAG: Faculté Universitaire des Sciences Agronomiques, Gembloux, Belgique (E. HAUBRUGE). HNM: Magyar Nemzeti Museum, Budapest, Hongrie. HYAS : Entomological Laboratory, Hyogo University of Agriculture, Sesayama, Japon. IRSNB: Institut royal des Sciences naturelles de Belgique, Bruxelles, Belgique (P. GROOTAERT ; J.L. BOEVE ; J. CONSTANT). ITZA : Instituut voor Taxonomische Zoologie, Amsterdam, Pays-Bas (W.
    [Show full text]
  • Development of Native Bees As Pollinators of Vegetable Seed Crops
    Development of native bees as pollinators of vegetable seed crops Dr Katja Hogendoorn The University of Adelaide Project Number: VG08179 VG08179 This report is published by Horticulture Australia Ltd to pass on information concerning horticultural research and development undertaken for the vegetables industry. The research contained in this report was funded by Horticulture Australia Ltd with the financial support of Rijk Zwaan Australia Pty Ltd. All expressions of opinion are not to be regarded as expressing the opinion of Horticulture Australia Ltd or any authority of the Australian Government. The Company and the Australian Government accept no responsibility for any of the opinions or the accuracy of the information contained in this report and readers should rely upon their own enquiries in making decisions concerning their own interests. ISBN 0 7341 2699 9 Published and distributed by: Horticulture Australia Ltd Level 7 179 Elizabeth Street Sydney NSW 2000 Telephone: (02) 8295 2300 Fax: (02) 8295 2399 © Copyright 2011 Horticulture Australia Limited Final Report: VG08179 Development of native bees as pollinators of vegetable seed crops 1 July 2009 – 9 September 2011 Katja Hogendoorn Mike Keller The University of Adelaide HAL Project VG08179 Development of native bees as pollinators of vegetable seed crops 1 July 2009 – 9 September 2011 Project leader: Katja Hogendoorn The University of Adelaide Waite Campus Adelaide SA 5005 e-mail: [email protected] Phone: 08 – 8303 6555 Fax: 08 – 8303 7109 Other key collaborators: Assoc. Prof. Mike Keller, The University of Adelaide Mr Arie Baelde, Rijk Zwaan Australia Ms Lea Hannah, Rijk Zwaan Australia Ir. Ronald Driessen< Rijk Zwaan This report details the research and extension delivery undertaken in the above project aimed at identification of the native bees that contribute to the pollination of hybrid carrot and leek, and at the development of methods to enhance the presence of these bees on the crops and at enabling their use inside greenhouses.
    [Show full text]
  • Downloading Or Purchasing Online At
    Native Australian Bees as Potential Pollinators of Lucerne October 2012 RIRDC Publication No. 12/052 Native Australian Bees as Potential Pollinators of Lucerne by Katja Hogendoorn and Mike Keller October 2012 RIRDC Publication No 12/048 RIRDC Project No 005657 © 2012 Rural Industries Research and Development Corporation. All rights reserved. ISBN 978-1-74254-391-8 ISSN 1440-6845 Native Australian Bees as Potential Pollinators of Lucerne Publication No. 12/048 Project No. PRJ-005657 The information contained in this publication is intended for general use to assist public knowledge and discussion and to help improve the development of sustainable regions. You must not rely on any information contained in this publication without taking specialist advice relevant to your particular circumstances. While reasonable care has been taken in preparing this publication to ensure that information is true and correct, the Commonwealth of Australia gives no assurance as to the accuracy of any information in this publication. The Commonwealth of Australia, the Rural Industries Research and Development Corporation (RIRDC), the authors or contributors expressly disclaim, to the maximum extent permitted by law, all responsibility and liability to any person, arising directly or indirectly from any act or omission, or for any consequences of any such act or omission, made in reliance on the contents of this publication, whether or not caused by any negligence on the part of the Commonwealth of Australia, RIRDC, the authors or contributors. The Commonwealth of Australia does not necessarily endorse the views in this publication. This publication is copyright. Apart from any use as permitted under the Copyright Act 1968, all other rights are reserved.
    [Show full text]
  • Bees of Sub-Saharan Africa Poster
    Bees of Sub-Saharan Africa It is estimated that there are around 30 000 bee species worldwide of which about 20 500 have been described, 2755 occur in sub-Saharan Africa and about 1200 occur in South Africa. Bees, in many shapes and sizes, pollinate about 80% of all flowering plants and 75% of the vegetables, fruits and nuts we eat. The symbols next to each bee indicate their sociality, where they nest and where they get their food. Megachilidae are long tongued bees with two submarginal cells on their wings that collect pollen Apidae are long tongued bees with two or three submarginal wing cells that collect pollen on their hind legs. under their abdomens. The group comprises almost every type of nest building behaviour. Most are solitary but some are social. Parasitism includes social parasites, cleptoparasites and robbers. ♂ ♂ ♀ ♀ ♀ ♀ ♀ ♂ C ♀ C ♀ ♂ F Pasites ♀ appletoni C C F Cleft Cuckoo Ammobates ♀ Nomada gigas Bee auster Gnathanthidium Wasp Cuckoo Sandwalker prionognathum Bee Cuckoo Bee F Big Jawed Afromelecta fulvohirta Euaspis abdominalis Xylocopa lugubris Fidelia braunsiana Redtailed Cuckoo Bee Carder Bee Coelioxys circumscriptus Large Carpenter Bee Pathwork Cuckoo Bee Pot Bee Cone Cuckoo Bee ♀ ♂ ♀ ♀ ♂ C ♂ ♀ F ♂ C ♂ ♀ ♀ ♂ ♀ ♀ F ♀ ♂ F Ceratina Sphecodopsis Icteranthidium ♀ ♂ Schwarzia emmae moerenhouti Max Cuckoo Bee vespericena F grohmani Small Carpenter Bee Cape Cuckoo Ridge Cheeked Bee C F Hoplitis similis Carder Bee F Lithurgus spiniferus Big Resin Bee Aglaoapis trifasciata Stone Bee Toothed Cuckoo Bee F ♀ ♂ ♀ ♂ Aspidosmia arnoldi ♀ ♂ Ugly Faced Carder Bee ♀ F ♀ ♀ Thyreus pictus Xylocopa scioensis F F Neon Cuckoo Bee Afroheriades sp. ♀ Large Carpenter Bee Compsomelissa Macrogalea candida African Resin Bee Ochreriades F ♀ Stenoheriades sp.
    [Show full text]
  • Scope: Munis Entomology & Zoology Publishes a Wide Variety of Papers
    Munis Entomology & Zoology Mun. Ent. Zool. https://www.munisentzool.org/ (January, 2021) 457 ISSN 1306-3022 © MRG ___________________________________________________________ EXPLORING THE ACULEATA HYMENOPTERA OF BANGLADESH BY DNA BARCODING OF MALAISE TRAP COLLECTION Santosh Mazumdar*, Paul D. N. Hebert** and Badrul Amin Bhuiya*** * Department of Zoology, University of Chittagong, BANGLADESH. E-mail: [email protected]; ORCID ID: 0000-0001-6403-577X ** Centre for Biodiversity Genomics, University of Guelph, 50 Stone Road East, Guelph, Ontario, CANADA. ORCID ID: 0000-0002-3081-6700 *** Biodiversity Research for Environment & Ecosystem Protection (BREEP), Chattogram- 4325, BANGLADESH. [Mazumdar, S., Hebert, P. D. N. & Bhuiya, B. A. 2021. Exploring the Aculeata Hymenoptera of Bangladesh by DNA barcoding of Malaise trap collection. Munis Entomology & Zoology, 16 (1): 457-464] ABSTRACT: Aculeata hymenopterans play a crucial role in ecology and economics. Diversity analysis of 901 Aculeata wasps at Chittagong University Campus a site in Bangladesh was performed by sequencing DNA barcodes (658 bp sequence from the 5′-end of cytochromeoxidase I). Specimens were collected by a Malaise trap from April 2014 to March 2015. The results revealed 22 species and 42 genera from 20 families in three superfamilies namely Apoidea, Chrysidoidea and Vespoidea. Among them 15 species, 22 genera, two subfamilies (Dolichoderinae and Ponerinae), and one family named Dryinidae are the first county records in Bangladesh. All the specimen records, with the Barcode Index Numbers (BINs) are available on the Barcode of Life Data System (BOLD). KEY WORDS: Aculeata Hymenoptera, Malaise trap, DNA barcode, Bangladesh Aculeata hymenopterans or stinging wasps (Hymenoptera: Aculeata) such as bees, ants, and many wasps play vital ecological roles as predators and pollinators and some have medicinal value as well (Zimmermann & Vilhelmsen, 2016).
    [Show full text]
  • Changing Paradigms in Insect Social Evolution: Insights from Halictine and Allodapine Bees
    ANRV297-EN52-07 ARI 18 July 2006 2:13 V I E E W R S I E N C N A D V A Changing Paradigms in Insect Social Evolution: Insights from Halictine and Allodapine Bees Michael P. Schwarz,1 Miriam H. Richards,2 and Bryan N. Danforth3 1School of Biological Sciences, Flinders University, Adelaide S.A. 5001, Australia; email: Michael.Schwarz@flinders.edu.au 2Department of Biological Sciences, Brock University, St. Catharines, ON L2S 3A1, Canada; email: [email protected] 3Department of Entomology, Cornell University, Ithaca, New York 14853; email: [email protected] Annu. Rev. Entomol. 2007. 52:127–50 Key Words The Annual Review of Entomology is online at sex allocation, caste determination, phylogenetics, kin selection ento.annualreviews.org This article’s doi: Abstract 10.1146/annurev.ento.51.110104.150950 Until the 1980s theories of social insect evolution drew strongly Copyright c 2007 by Annual Reviews. on halictine and allodapine bees. However, that early work suffered All rights reserved from a lack of sound phylogenetic inference and detailed informa- 0066-4170/07/0107-0127$20.00 tion on social behavior in many critical taxa. Recent studies have changed our understanding of these bee groups in profound ways. It has become apparent that forms of social organization, caste de- termination, and sex allocation are more labile and complex than previously thought, although the terminologies for describing them are still inadequate. Furthermore, the unexpected complexity means that many key parameters in kin selection and reproductive skew models remain unquantified, and addressing this lack of informa- tion will be formidable.
    [Show full text]
  • Insect Egg Size and Shape Evolve with Ecology but Not Developmental Rate Samuel H
    ARTICLE https://doi.org/10.1038/s41586-019-1302-4 Insect egg size and shape evolve with ecology but not developmental rate Samuel H. Church1,4*, Seth Donoughe1,3,4, Bruno A. S. de Medeiros1 & Cassandra G. Extavour1,2* Over the course of evolution, organism size has diversified markedly. Changes in size are thought to have occurred because of developmental, morphological and/or ecological pressures. To perform phylogenetic tests of the potential effects of these pressures, here we generated a dataset of more than ten thousand descriptions of insect eggs, and combined these with genetic and life-history datasets. We show that, across eight orders of magnitude of variation in egg volume, the relationship between size and shape itself evolves, such that previously predicted global patterns of scaling do not adequately explain the diversity in egg shapes. We show that egg size is not correlated with developmental rate and that, for many insects, egg size is not correlated with adult body size. Instead, we find that the evolution of parasitoidism and aquatic oviposition help to explain the diversification in the size and shape of insect eggs. Our study suggests that where eggs are laid, rather than universal allometric constants, underlies the evolution of insect egg size and shape. Size is a fundamental factor in many biological processes. The size of an 526 families and every currently described extant hexapod order24 organism may affect interactions both with other organisms and with (Fig. 1a and Supplementary Fig. 1). We combined this dataset with the environment1,2, it scales with features of morphology and physi- backbone hexapod phylogenies25,26 that we enriched to include taxa ology3, and larger animals often have higher fitness4.
    [Show full text]
  • Photographic Catalogue of Hymenopteran Pollinators in Agricultural
    Journal of Entomology and Zoology Studies 2020; 8(5): 1330-1346 E-ISSN: 2320-7078 P-ISSN: 2349-6800 Photographic catalogue of hymenopteran www.entomoljournal.com JEZS 2020; 8(5): 1330-1346 pollinators in agricultural landscape area of © 2020 JEZS Received: 02-06-2020 South Gujarat Accepted: 05-08-2020 HD Zinzuvadiya Ph.D., Scholar, Department of HD Zinzuvadiya, LV Ghetiya, SD Chaudhari and GB Kalariya Entomology, N. M. College of Agriculture, NAU, Navsari, Abstract Gujarat, India The study on preparation of photographic catalogue of hymenopteran pollinators in agricultural LV Ghetiya landscape area of South Gujarat was carried out through survey of the different districts of South Gujarat Associate Professor, Department i.e. Bharuch, Narmada, Surat, Tapi, Navsari, The Dangs and Valsad during September 2017 to December of Entomology, N. M. College of 2019. The insect pollinators of hymenoptera order were observed, collected and identified upto species Agriculture, NAU, Navsari, level. The photographic catalogue of 44 hymenopteran pollinators recorded in agricultural landscape area Gujarat, India of South Gujarat was prepared and published for its further use of identification and conservation. SD Chaudhari Keywords: Pollinators, Hymenoptera, photographic catalogue Ph.D., Scholar, Department of Entomology, N. M. College of Introduction Agriculture, NAU, Navsari, Gujarat, India Pollination, an essential ecosystem service provided by insect pollinators, is many times taken for granted and little attention is paid to the need of conserving
    [Show full text]
  • INSECT DIVERSITY and PEST STATUS on SWITCHGRASS GROWN for BIOFUEL in SOUTH CAROLINA Claudia Holguin Clemson University, [email protected]
    Clemson University TigerPrints All Theses Theses 8-2010 INSECT DIVERSITY AND PEST STATUS ON SWITCHGRASS GROWN FOR BIOFUEL IN SOUTH CAROLINA Claudia Holguin Clemson University, [email protected] Follow this and additional works at: https://tigerprints.clemson.edu/all_theses Part of the Entomology Commons Recommended Citation Holguin, Claudia, "INSECT DIVERSITY AND PEST STATUS ON SWITCHGRASS GROWN FOR BIOFUEL IN SOUTH CAROLINA" (2010). All Theses. 960. https://tigerprints.clemson.edu/all_theses/960 This Thesis is brought to you for free and open access by the Theses at TigerPrints. It has been accepted for inclusion in All Theses by an authorized administrator of TigerPrints. For more information, please contact [email protected]. INSECT DIVERSITY AND PEST STATUS ON SWITCHGRASS GROWN FOR BIOFUEL IN SOUTH CAROLINA A Thesis Presented to the Graduate School of Clemson University In Partial Fulfillment of the Requirements for the Degree Master of Science Entomology by Claudia Maria Holguin August 2010 Accepted by: Dr. Francis Reay-Jones, Committee Chair Dr. Peter Adler Dr. Juang-Horng 'JC' Chong Dr. Jim Frederick ABSTRACT Switchgrass (Panicum virgatum L.) has tremendous potential as a biomass and stock crop for cellulosic ethanol production or combustion as a solid fuel. The first goal of this study was to assess diversity of insects in a perennial switchgrass crop in South Carolina. A three-year study was conducted to sample insects using pitfall traps and sweep nets at the Pee Dee Research and Education Center in Florence, SC, from 2007- 2009. Collected specimens were identified to family and classified by trophic groups, and predominant species were identified.
    [Show full text]
  • Wasps and Bees in Southern Africa
    SANBI Biodiversity Series 24 Wasps and bees in southern Africa by Sarah K. Gess and Friedrich W. Gess Department of Entomology, Albany Museum and Rhodes University, Grahamstown Pretoria 2014 SANBI Biodiversity Series The South African National Biodiversity Institute (SANBI) was established on 1 Sep- tember 2004 through the signing into force of the National Environmental Manage- ment: Biodiversity Act (NEMBA) No. 10 of 2004 by President Thabo Mbeki. The Act expands the mandate of the former National Botanical Institute to include respon- sibilities relating to the full diversity of South Africa’s fauna and flora, and builds on the internationally respected programmes in conservation, research, education and visitor services developed by the National Botanical Institute and its predecessors over the past century. The vision of SANBI: Biodiversity richness for all South Africans. SANBI’s mission is to champion the exploration, conservation, sustainable use, appreciation and enjoyment of South Africa’s exceptionally rich biodiversity for all people. SANBI Biodiversity Series publishes occasional reports on projects, technologies, workshops, symposia and other activities initiated by, or executed in partnership with SANBI. Technical editing: Alicia Grobler Design & layout: Sandra Turck Cover design: Sandra Turck How to cite this publication: GESS, S.K. & GESS, F.W. 2014. Wasps and bees in southern Africa. SANBI Biodi- versity Series 24. South African National Biodiversity Institute, Pretoria. ISBN: 978-1-919976-73-0 Manuscript submitted 2011 Copyright © 2014 by South African National Biodiversity Institute (SANBI) All rights reserved. No part of this book may be reproduced in any form without written per- mission of the copyright owners. The views and opinions expressed do not necessarily reflect those of SANBI.
    [Show full text]
  • Grass Flower- Visiting Bees of the Peradeniy a University Park
    Proceedings of the Peradeniya University Research Sessions, Sri Lanka. Vol. 9. November 10, 2004 GRASS FLOWER- VISITING BEES OF THE PERADENIY A UNIVERSITY PARK WA THSALA N. LIY ANAGE AND JAY ANTHI P. EDIRISINGHE Department of Zoology, Faculty of Science, University of Peradeniya A study of grass flower-visiting bees of the Peradeniya University Park was conducted in 7 grassland types selected on the basis of their location and degree of disturbance. The grassland types are (l)mowed lawns (2)open areas periodically slashed (3)shady slopes under large trees (4)shady areas under scattered treelets (5)undisturbed embankments and slopes (6)along roadsides and foot paths and (7)areas subjected to periodic burning. Bees were collected by sweeping the grass using a standard insect net. Particular attention was paid to grass inflorescences from where bees that had alighted on flowers were collected. The study documented 12 species of bees in 8 genera and in the 3 families Anthophoridae, Apidae and Halictidae. The bees colIected are Pithitis binghami Cockerel (F.Anthophoridae); Apis cerana Fabricius, Apis dorsata Fabricius, Trigona iridipennis Smith (F.Apidae); Lasioglossum serenum Cameron, Leuconomia sp., Lipotriches notiomorpha Hirashirna, Lipotriches exagens Walker, Lipotriches fulvinerva Cameron, Lipotriches new sp. Hoplonomia westwoodii Griboda Pseudapis oxybeloides Smith, all of which belong to family Halictidae. Thus, the majority of the bees (67%) belonged to the family Halictidae and to the genus Lipotriches. Of the Apidae bees, Apis florea was not recorded from grass flowers. Family Megachilidae (with 29 bee species in Sri Lanka) was absent from the grass habitat. The collected bees were examined for pollen on their body.
    [Show full text]