Scope: Munis Entomology & Zoology Publishes a Wide Variety of Papers

Total Page:16

File Type:pdf, Size:1020Kb

Scope: Munis Entomology & Zoology Publishes a Wide Variety of Papers Munis Entomology & Zoology Mun. Ent. Zool. https://www.munisentzool.org/ (January, 2021) 457 ISSN 1306-3022 © MRG ___________________________________________________________ EXPLORING THE ACULEATA HYMENOPTERA OF BANGLADESH BY DNA BARCODING OF MALAISE TRAP COLLECTION Santosh Mazumdar*, Paul D. N. Hebert** and Badrul Amin Bhuiya*** * Department of Zoology, University of Chittagong, BANGLADESH. E-mail: [email protected]; ORCID ID: 0000-0001-6403-577X ** Centre for Biodiversity Genomics, University of Guelph, 50 Stone Road East, Guelph, Ontario, CANADA. ORCID ID: 0000-0002-3081-6700 *** Biodiversity Research for Environment & Ecosystem Protection (BREEP), Chattogram- 4325, BANGLADESH. [Mazumdar, S., Hebert, P. D. N. & Bhuiya, B. A. 2021. Exploring the Aculeata Hymenoptera of Bangladesh by DNA barcoding of Malaise trap collection. Munis Entomology & Zoology, 16 (1): 457-464] ABSTRACT: Aculeata hymenopterans play a crucial role in ecology and economics. Diversity analysis of 901 Aculeata wasps at Chittagong University Campus a site in Bangladesh was performed by sequencing DNA barcodes (658 bp sequence from the 5′-end of cytochromeoxidase I). Specimens were collected by a Malaise trap from April 2014 to March 2015. The results revealed 22 species and 42 genera from 20 families in three superfamilies namely Apoidea, Chrysidoidea and Vespoidea. Among them 15 species, 22 genera, two subfamilies (Dolichoderinae and Ponerinae), and one family named Dryinidae are the first county records in Bangladesh. All the specimen records, with the Barcode Index Numbers (BINs) are available on the Barcode of Life Data System (BOLD). KEY WORDS: Aculeata Hymenoptera, Malaise trap, DNA barcode, Bangladesh Aculeata hymenopterans or stinging wasps (Hymenoptera: Aculeata) such as bees, ants, and many wasps play vital ecological roles as predators and pollinators and some have medicinal value as well (Zimmermann & Vilhelmsen, 2016). In addition, aculeate hymenopterans assist in biodiversity conservation and the management of forest reserves (Ribeiro et al., 2019). Reliance on only morphological identification for biological classification has posed many challenges for taxonomists (Ojha et al., 2014). DNA barcoding technique has emerged as a trustworthy way for rapid and accurate species identification and biological diversity assessment (Hebert et al., 2003; deWaard et al., 2019). A partial fragment of cytochrome c oxidase I gene (COI) of Mitochondrial DNA (mtDNA) is used in DNA barcoding (Hebert et al., 2004; Mazumdar et al., 2015, 2019). Malaise trap is an effective insect collection apparatus commonly used for monitoring ecosystem compositions particularly in arthropod biodiversity assessment (Morinière et al., 2016; Ashfaq et al., 2018). Several studies have been carried out on Aculeata in Bangladesh by Bhuiya & Miah (1990), Gapud (1992), Hannan (2007 & 2008), Ahmed (2009), Mazumdar et al. (2010), Mazumdar et al. (2014), and they authors provided useful information on the aculeate hymenopterans fauna of Bangladesh. However, prior studies have mainly used morphological identification. The current study aimed to explore the aculeate hymenopterans through Malaise trap, and confirmed by coupling DNA Munis Entomology & Zoology Mun. Ent. Zool. 458 https://www.munisentzool.org/ (January, 2021) ISSN 1306-3022 © MRG ___________________________________________________________ barcoding and morphological appearances. The data generated in this study will provide an important reference for further work on stinging wasps in Bangladesh. MATERIALS AND METHODS Specimen sampling, processing, identification and specimens’ deposition By following the Standard Operating Protocol for the Global Malaise Trap Program (www.dnabarcoding.ca.), a Townes-style Malaise trap (BioQuip Inc. USA) was deployed at the Chittagong University Campus (CUC) (Lat. 22.46359°N; Long. 91.7808°E) in Bangladesh. In short, CUC consists of about 1753.88 acres of land, of which about 72% land consists of hills and hillocks ranging from 10-90m, and remaining are either plains or valleys. Climate of Campus is typically tropical monsoon, characterized by hot humid summer and dry chilled water. Region has a mean annual rainfall of about 275 cm. Temperature varies from 46°F in January to 95°F in May. Ecologically, CUC falls under tropical evergreen forest. Plains and valleys are now under cultivation of rice and vegetables. About 10% of land is now occupied by roads, building, inhabitants and gardens (CU, 2016; Shuvo, 2015; WOCU, 2018). Insect specimens were collected during March 2014 to February 2015. The samples were collected weekly in a 500 mL plastic Nalgene bottle that was filled with 375 mL of 95% ethanol and placed in 500 mL of fresh ethanol before storage at -20°C until analysis. Collected insects were analyzed, following standard barcoding protocols (http://ccdb.ca/resources.php), at the Canadian Centre for DNA Barcoding within the Centre for Biodiversity Genomics, University of Guelph, Canada.Collection data, voucher information and taxonomy for each specimen are available in the Barcode of Life Data Systems (http://v3.boldsystems.org/index.php/TaxBrowser_Taxonpage?taxid=125). All the specimens analyzed in this study have been curated at the Centre for Biodiversity Genomics, University of Guelph, Guelph, Ontario, Canada. Molecular analysis and Data analysis DNA was extracted from a single leg of larger specimen and from the whole body of smaller taxa. Vouchers were recovered after DNA extraction for imaging and curation. Tissue lysis, DNA extraction, PCR amplification, cycle sequencing and sequence analysis were performed at the Canadian Centre for DNA Barcoding following the standard protocols (CCDB). PCR amplification of the target gene region Cytochrome Oxidase 1 (COI)-5′) was performed with primers C_LepFolF and C_LepFolR (http://www.ccdb.ca/docs/CCDB_PrimerSets) following PCR conditions; 94°C (1 min), 5 cycles at 94°C (40 s), 45°C (40 s), 72°C (1 min); 35 cycles at 94°C (40 s), 51°C (40 s), 72°C (1 min) and a final extension at 72°C (5 min).The amplicons were sequenced using BigDye v3.1 (Applied Biosystems) on an ABI 3730XL sequencer. Sequences were assembled, aligned, and edited using CodonCode Aligner (CodonCode Corporation, USA) and submitted to the Barcode of Life Data Systems (BOLD) (www.boldsystems.org). RESULT AND DISCUSSION The present study barcoded 901 specimens of sting wasps that represented three superfamilies namely Apoidea, Chrysidoidea and Vespoidea. A total number Munis Entomology & Zoology Mun. Ent. Zool. https://www.munisentzool.org/ (January, 2021) 459 ISSN 1306-3022 © MRG ___________________________________________________________ of 872 of the 901 specimens were assigned to 258 BINs. DNA barcodes of 240 specimens of 10 families in the superfamily Apoidea were assigned to 97 BINs. In the superfamily Chrysidoidea, with 3 families, DNA barcoded 126 specimens and the sequences were assigned to 56. Finally, 525 specimens of the superfamily Vespoidea included 6 families, and were assigned to 105 BINs (Table 1). Table 2 shows the list of the confirmed species of aculeate hymenopterans in the present study. Table 1. Number of DNA barcodes and BINs recovered for aculeate Hymenoptera collected by a Malaise trap at Chittagong University Campus. A total of 22 species and 42 genera were confirmed through DNA barcoding which belonged to three superfamilies viz. Apoidea, Chrysidoidea and Vespoidea. Superfamily Apoidea consists of 10 families viz. Ampulicidae (no genus/ no species identified), Apidae (4 genera/2 species), Bembicidae (1 genus/ 1 species), Colletidae (1 genus/ no species identified), Crabronidae (9 genera/3 species), Halictidae (5 genera/2 species), Megachilidae (3 genera/no species identified), Pemphredonidae (1 genus/ no species identified), Philanthidae (2genera/ 1species), Psenidae (no genus/ no species identified) and Sphecidae (1 genus/1species). Superfamily Chrysidoidea consists of Bethylidae (no genus/ no species identified), Chrysididae (1 genus/ no species identified) and Dryinidae (no genus/ no species identified). Identified specimens of the superfamily Vespoidea belonged to the family Formicidae (13 genus/ 11 species), Mutillidae (no genus/no species identified), Pompilidae (no genus/ no species identified), Scoliidae (no genus/ no species identified), Tiphiidae (no genus/ no species identified) and Vespidae (2 genera/2 species). Munis Entomology & Zoology Mun. Ent. Zool. 460 https://www.munisentzool.org/ (January, 2021) ISSN 1306-3022 © MRG ___________________________________________________________ Table 2. List of DNA barcoded Aculeata Hymenoptera collected at the Chittagong University. Munis Entomology & Zoology Mun. Ent. Zool. https://www.munisentzool.org/ (January, 2021) 461 ISSN 1306-3022 © MRG ___________________________________________________________ Psenidae New Vespinae Vespa tropica (L., 1758) Aktar et al., 2020 Munis Entomology & Zoology Mun. Ent. Zool. 462 https://www.munisentzool.org/ (January, 2021) ISSN 1306-3022 © MRG ___________________________________________________________ Bhuiya & Miah (1990) have previously published a report on 18 bees from Chittagong, Bangladesh which included four apidid, seven xylocopid, four megachillid, two anthophorid, and one halictid bees. Tadauchi & Alam (1993) surveyed bees, and have recorded one megachilid, one andrenid, two anthophorid, and three halictid bee species from 33 mustard fields in Bangladesh. The prospects of beekeeping for increased production of honey from the Sundarban
Recommended publications
  • Sensory and Cognitive Adaptations to Social Living in Insect Societies Tom Wenseleersa,1 and Jelle S
    COMMENTARY COMMENTARY Sensory and cognitive adaptations to social living in insect societies Tom Wenseleersa,1 and Jelle S. van Zwedena A key question in evolutionary biology is to explain the solitarily or form small annual colonies, depending upon causes and consequences of the so-called “major their environment (9). And one species, Lasioglossum transitions in evolution,” which resulted in the pro- marginatum, is even known to form large perennial euso- gressive evolution of cells, organisms, and animal so- cial colonies of over 400 workers (9). By comparing data cieties (1–3). Several studies, for example, have now from over 30 Halictine bees with contrasting levels of aimed to determine which suite of adaptive changes sociality, Wittwer et al. (7) now show that, as expected, occurred following the evolution of sociality in insects social sweat bee species invest more in sensorial machin- (4). In this context, a long-standing hypothesis is that ery linked to chemical communication, as measured by the evolution of the spectacular sociality seen in in- the density of their antennal sensillae, compared with sects, such as ants, bees, or wasps, should have gone species that secondarily reverted back to a solitary life- hand in hand with the evolution of more complex style. In fact, the same pattern even held for the socially chemical communication systems, to allow them to polymorphic species L. albipes if different populations coordinate their complex social behavior (5). Indeed, with contrasting levels of sociality were compared (Fig. whereas solitary insects are known to use pheromone 1, Inset). This finding suggests that the increased reliance signals mainly in the context of mate attraction and on chemical communication that comes with a social species-recognition, social insects use chemical sig- lifestyle indeed selects for fast, matching adaptations in nals in a wide variety of contexts: to communicate their sensory systems.
    [Show full text]
  • A Review of Sampling and Monitoring Methods for Beneficial Arthropods
    insects Review A Review of Sampling and Monitoring Methods for Beneficial Arthropods in Agroecosystems Kenneth W. McCravy Department of Biological Sciences, Western Illinois University, 1 University Circle, Macomb, IL 61455, USA; [email protected]; Tel.: +1-309-298-2160 Received: 12 September 2018; Accepted: 19 November 2018; Published: 23 November 2018 Abstract: Beneficial arthropods provide many important ecosystem services. In agroecosystems, pollination and control of crop pests provide benefits worth billions of dollars annually. Effective sampling and monitoring of these beneficial arthropods is essential for ensuring their short- and long-term viability and effectiveness. There are numerous methods available for sampling beneficial arthropods in a variety of habitats, and these methods can vary in efficiency and effectiveness. In this paper I review active and passive sampling methods for non-Apis bees and arthropod natural enemies of agricultural pests, including methods for sampling flying insects, arthropods on vegetation and in soil and litter environments, and estimation of predation and parasitism rates. Sample sizes, lethal sampling, and the potential usefulness of bycatch are also discussed. Keywords: sampling methodology; bee monitoring; beneficial arthropods; natural enemy monitoring; vane traps; Malaise traps; bowl traps; pitfall traps; insect netting; epigeic arthropod sampling 1. Introduction To sustainably use the Earth’s resources for our benefit, it is essential that we understand the ecology of human-altered systems and the organisms that inhabit them. Agroecosystems include agricultural activities plus living and nonliving components that interact with these activities in a variety of ways. Beneficial arthropods, such as pollinators of crops and natural enemies of arthropod pests and weeds, play important roles in the economic and ecological success of agroecosystems.
    [Show full text]
  • Systematics of Polistes (Hymenoptera: Vespidae), with a Phylogenetic Consideration of Hamilton’S Haplodiploidy Hypothesis
    Ann. Zool. Fennici 43: 390–406 ISSN 0003-455X Helsinki 29 December 2006 © Finnish Zoological and Botanical Publishing Board 2006 Systematics of Polistes (Hymenoptera: Vespidae), with a phylogenetic consideration of Hamilton’s haplodiploidy hypothesis Kurt M. Pickett*, James M. Carpenter & Ward C. Wheeler Division of Invertebrate Zoology, American Museum of Natural History, Central Park West at 79th Street, New York, NY 10023, USA * Current address: Department of Biology, University of Vermont, Room 120A Marsh Life Science Building, 109 Carrigan Drive, Burlington, VT 05405, USA Received 30 Nov. 2005, revised version received 21 Nov. 2006, accepted 4 May 2006 Pickett, K. M., Carpenter, J. M. & Wheeler, W. C. 2006: Systematics of Polistes (Hymenoptera: Vespidae), with a phylogenetic consideration of Hamilton’s haplodiploidy hypothesis. — Ann. Zool. Fennici 43: 390–406. A review of previously published cladistic analyses of Polistes is presented. The two most recent analyses of Polistes are shown to be largely consistent phylogenetically. Although the taxonomy implied by each differs, this difference is shown to be mostly due to taxon sampling. After the review, a phylogenetic analysis of Polistes — the most data-rich yet undertaken — is presented. The analysis includes new data and the data from previously published analyses. The differing conclusions of the previous studies are discussed in light of the new analysis. After discussing the status of subge- neric taxonomy in Polistes, the new phylogeny is used to test an important hypothesis regarding the origin of social behavior: the haplodiploidy hypothesis of Hamilton. Prior phylogenetic analyses so while these studies achieved their goal, with within Polistes resolutions leading to rejection of Emery’s Rule, they had little to say about broader phylogenetic Cladistic analysis of species-level relationships patterns within the genus.
    [Show full text]
  • A Preliminary Detective Survey of Hymenopteran Insects at Jazan Lake Dam Region, Southwest of Saudi Arabia
    Saudi Journal of Biological Sciences 28 (2021) 2342–2351 Contents lists available at ScienceDirect Saudi Journal of Biological Sciences journal homepage: www.sciencedirect.com Original article A preliminary detective survey of hymenopteran insects at Jazan Lake Dam Region, Southwest of Saudi Arabia Hanan Abo El-Kassem Bosly 1 Biology Department - Faculty of Science - Jazan University, Saudi Arabia article info abstract Article history: A preliminary detective survey for the hymenopteran insect fauna of Jazan Lake dam region, Southwest Received 16 November 2020 Saudi Arabia, was carried out for one year from January 2018 to January 2019 using mainly sweep nets Revised 6 January 2021 and Malaise traps. The survey revealed the presence of three hymenopteran Superfamilies (Apoidea, Accepted 12 January 2021 Vespoidea and Evanioidea) representing 15 species belonging to 10 genera of 6 families (Apidae, Available online 28 January 2021 Crabronidae, Sphecidae, Vespidae, Mutillidae, and Evaniidae). The largest number of species has belonged to the family Crabronidae is represented by 6 species under 2 genera. While the family Apidae, is repre- Keywords: sented by 2 species under 2 genera. Family Vespidae is represented by 2 species of one genus. While, the Survey rest of the families Sphecidae, Mutillida, and Evaniidae each is represented by only one species and one Insect fauna Hymenoptera genus each. Eleven species are predators, two species are pollinators and two species are parasitics. Note Jazan for each family was provided, and species was provided with synonyms and general and taxonomic Saudi Arabia remarks and their worldwide geographic distribution and information about their economic importance are also included.
    [Show full text]
  • Pollination of Cultivated Plants in the Tropics 111 Rrun.-Co Lcfcnow!Cdgmencle
    ISSN 1010-1365 0 AGRICULTURAL Pollination of SERVICES cultivated plants BUL IN in the tropics 118 Food and Agriculture Organization of the United Nations FAO 6-lina AGRICULTUTZ4U. ionof SERNES cultivated plans in tetropics Edited by David W. Roubik Smithsonian Tropical Research Institute Balboa, Panama Food and Agriculture Organization of the United Nations F'Ø Rome, 1995 The designations employed and the presentation of material in this publication do not imply the expression of any opinion whatsoever on the part of the Food and Agriculture Organization of the United Nations concerning the legal status of any country, territory, city or area or of its authorities, or concerning the delimitation of its frontiers or boundaries. M-11 ISBN 92-5-103659-4 All rights reserved. No part of this publication may be reproduced, stored in a retrieval system, or transmitted in any form or by any means, electronic, mechanical, photocopying or otherwise, without the prior permission of the copyright owner. Applications for such permission, with a statement of the purpose and extent of the reproduction, should be addressed to the Director, Publications Division, Food and Agriculture Organization of the United Nations, Viale delle Terme di Caracalla, 00100 Rome, Italy. FAO 1995 PlELi. uion are ted PlauAr David W. Roubilli (edita Footli-anal ISgt-iieulture Organization of the Untled Nations Contributors Marco Accorti Makhdzir Mardan Istituto Sperimentale per la Zoologia Agraria Universiti Pertanian Malaysia Cascine del Ricci° Malaysian Bee Research Development Team 50125 Firenze, Italy 43400 Serdang, Selangor, Malaysia Stephen L. Buchmann John K. S. Mbaya United States Department of Agriculture National Beekeeping Station Carl Hayden Bee Research Center P.
    [Show full text]
  • In Dir Lower, Khyber Pakhtunkhwa, Pakistan
    IAJPS 2019, 06 (10), 13512-13520 Abdul Baset et al ISSN 2349-7750 CODEN [USA]: IAJPBB ISSN: 2349-7750 INDO AMERICAN JOURNAL OF PHARMACEUTICAL SCIENCES Available online at: http://www.iajps.com Research Article DIVERSITY OF CARPENTER BEE FAUNA (XYLOCOPA SPP.) IN DIR LOWER, KHYBER PAKHTUNKHWA, PAKISTAN Akbar Hussain1, Mohammad Attaullah2, Muhammad Ather Rafi3, Hamad Khan1, Abdul Waris4, Anwar Zeb5, Abdul Baset 6 1Department of Zoology, Shaheed Benazir Bhutto University, Sheringal, Dir Upper, Khyber Pakhtunkhwa, Pakistan 2Department of Zoology, Faculty of Biological Science, University of Malakand, Pakistan 3Department of Zoology, Women University Swabi, Pakistan, Director National Insect Museum, Islamabad, Pakistan 4Department of Biotechnology, Quaid-e-Azam University Islamabad, Pakistan 5Department of Zoology, Faculty of Science, Hazara University, Mansehra, Pakistan 6 Department of Zoology, Bacha Khan University, Charsadda, Pakistan *Corresponding author: [email protected] Abstract: This study was conducted at District Dir Lower, in north western Pakistan for the evaluation of diversity of Xylocopa spp. during March to September 2015. The study area was divided in 7 different localities namely Chakdara, Talash, Timergara, Jandol, Khal, Darmal and Lal Qilla. Higher Simpson’s index (1_D) values were calculated for Talash (0.7464) followed by Khal (0.7392), Chakdara and Jandol (same value 0.7366), Darmal (0.7268), Lal Qila (0.7244) and lowest value was calculated for Timergara (0.716). Divider and Scale method was used for the morphometric measurement of carpenter bees. Out of the total 321 specimens collected, four species namely, Xylocopa collaris, Xylocopa acutipennis, Xylocopa dissimilis and Xylocopa pubescens were identified. X. dissimilis was the abundant species recorded which represented 29.60 % of the total collection, while X.
    [Show full text]
  • Nesting Behaviour of Bembecinus Agilis (Smith, 1873) in the Biological Station of Santa Lúcia (Southeastern Brazil) (Hymenoptera: Apoidea: Crabronidae) 133-142 Mitt
    ZOBODAT - www.zobodat.at Zoologisch-Botanische Datenbank/Zoological-Botanical Database Digitale Literatur/Digital Literature Zeitschrift/Journal: Mitteilungen des Internationalen Entomologischen Vereins Jahr/Year: 2009 Band/Volume: 34_2009 Autor(en)/Author(s): Buys Sandor Christiano Artikel/Article: Nesting behaviour of Bembecinus agilis (Smith, 1873) in the Biological Station of Santa Lúcia (southeastern Brazil) (Hymenoptera: Apoidea: Crabronidae) 133-142 Mitt. internat. entomol. Ver. Frankfurt a.M. ISSN 1019-2808 Band 34 . Heft 3/4 Seiten 133 - 142 23. November 2009 Nesting behaviour of Bembecinus agilis (Smith, 1873) in the Biological Station of Santa Lúcia (southeastern Brazil) (Hymenoptera: Apoidea: Crabronidae) Sandor Christiano BUYS Abstract: The nesting behaviour of the solitary wasp Bembecinus agilis (Smith, 1873) is described based on observations carried out in the Biological Station of Santa Lúcia (city of Santa Teresa, Espírito Santo State, southeastern Brazil), an area covered by the Atlantic Forest. Spe- cies of the following genera of leafhoppers (Hemiptera: Cicadellidae) are recorded as prey: Acrogonia, Amblyscartidia, Crossogonalia, Deselvana, Dilobopterus, Exogonia, Hanshumba, Homalodisca, Juliaca, Oncometo- pia, Pamplonoidea, besides an unidentified planthopper genus (Hemi- ptera: Flatidae). The wasp’s cocoon is described. Key words: Hymenoptera, Apoidea, Crabronidae, Sphecidae, wasp, biology, reproduction, cocoon, leafhopper, Cicadellidae Introduction Bembecinus Costa, 1859 is a genus of solitary ground-nesting wasps distributed in all the continents (BOHART & MENKE 1976, EVANS & O’NEILL 2007) and currently with 185 species (PULAWSKI 2009). EVANS & O’NEILL (2007) listed 22 species of Bembecinus for which exist pub- lished biological notes, but among these only a few species were detailed studied (e.g. EVANS 1955, GESS & GESS 1975, O’NEILL & EVANS 1983, O’NEILL et al.
    [Show full text]
  • James K. Wetterer
    James K. Wetterer Wilkes Honors College, Florida Atlantic University 5353 Parkside Drive, Jupiter, FL 33458 Phone: (561) 799-8648; FAX: (561) 799-8602; e-mail: [email protected] EDUCATION UNIVERSITY OF WASHINGTON, Seattle, WA, 9/83 - 8/88 Ph.D., Zoology: Ecology and Evolution; Advisor: Gordon H. Orians. MICHIGAN STATE UNIVERSITY, East Lansing, MI, 9/81 - 9/83 M.S., Zoology: Ecology; Advisors: Earl E. Werner and Donald J. Hall. CORNELL UNIVERSITY, Ithaca, NY, 9/76 - 5/79 A.B., Biology: Ecology and Systematics. UNIVERSITÉ DE PARIS III, France, 1/78 - 5/78 Semester abroad: courses in theater, literature, and history of art. WORK EXPERIENCE FLORIDA ATLANTIC UNIVERSITY, Wilkes Honors College 8/04 - present: Professor 7/98 - 7/04: Associate Professor Teaching: Biodiversity, Principles of Ecology, Behavioral Ecology, Human Ecology, Environmental Studies, Tropical Ecology, Field Biology, Life Science, and Scientific Writing 9/03 - 1/04 & 5/04 - 8/04: Fulbright Scholar; Ants of Trinidad and Tobago COLUMBIA UNIVERSITY, Department of Earth and Environmental Science 7/96 - 6/98: Assistant Professor Teaching: Community Ecology, Behavioral Ecology, and Tropical Ecology WHEATON COLLEGE, Department of Biology 8/94 - 6/96: Visiting Assistant Professor Teaching: General Ecology and Introductory Biology HARVARD UNIVERSITY, Museum of Comparative Zoology 8/91- 6/94: Post-doctoral Fellow; Behavior, ecology, and evolution of fungus-growing ants Advisors: Edward O. Wilson, Naomi Pierce, and Richard Lewontin 9/95 - 1/96: Teaching: Ethology PRINCETON UNIVERSITY, Department of Ecology and Evolutionary Biology 7/89 - 7/91: Research Associate; Ecology and evolution of leaf-cutting ants Advisor: Stephen Hubbell 1/91 - 5/91: Teaching: Tropical Ecology, Introduction to the Scientific Method VANDERBILT UNIVERSITY, Department of Psychology 9/88 - 7/89: Post-doctoral Fellow; Visual psychophysics of fish and horseshoe crabs Advisor: Maureen K.
    [Show full text]
  • Bees of Sub-Saharan Africa Poster
    Bees of Sub-Saharan Africa It is estimated that there are around 30 000 bee species worldwide of which about 20 500 have been described, 2755 occur in sub-Saharan Africa and about 1200 occur in South Africa. Bees, in many shapes and sizes, pollinate about 80% of all flowering plants and 75% of the vegetables, fruits and nuts we eat. The symbols next to each bee indicate their sociality, where they nest and where they get their food. Megachilidae are long tongued bees with two submarginal cells on their wings that collect pollen Apidae are long tongued bees with two or three submarginal wing cells that collect pollen on their hind legs. under their abdomens. The group comprises almost every type of nest building behaviour. Most are solitary but some are social. Parasitism includes social parasites, cleptoparasites and robbers. ♂ ♂ ♀ ♀ ♀ ♀ ♀ ♂ C ♀ C ♀ ♂ F Pasites ♀ appletoni C C F Cleft Cuckoo Ammobates ♀ Nomada gigas Bee auster Gnathanthidium Wasp Cuckoo Sandwalker prionognathum Bee Cuckoo Bee F Big Jawed Afromelecta fulvohirta Euaspis abdominalis Xylocopa lugubris Fidelia braunsiana Redtailed Cuckoo Bee Carder Bee Coelioxys circumscriptus Large Carpenter Bee Pathwork Cuckoo Bee Pot Bee Cone Cuckoo Bee ♀ ♂ ♀ ♀ ♂ C ♂ ♀ F ♂ C ♂ ♀ ♀ ♂ ♀ ♀ F ♀ ♂ F Ceratina Sphecodopsis Icteranthidium ♀ ♂ Schwarzia emmae moerenhouti Max Cuckoo Bee vespericena F grohmani Small Carpenter Bee Cape Cuckoo Ridge Cheeked Bee C F Hoplitis similis Carder Bee F Lithurgus spiniferus Big Resin Bee Aglaoapis trifasciata Stone Bee Toothed Cuckoo Bee F ♀ ♂ ♀ ♂ Aspidosmia arnoldi ♀ ♂ Ugly Faced Carder Bee ♀ F ♀ ♀ Thyreus pictus Xylocopa scioensis F F Neon Cuckoo Bee Afroheriades sp. ♀ Large Carpenter Bee Compsomelissa Macrogalea candida African Resin Bee Ochreriades F ♀ Stenoheriades sp.
    [Show full text]
  • Behavioural and Biological Notes on Crabronidae (Hymenoptera: Apoidea) and New Geographic Records to the Espírito Santo State (Southeast Brazil)
    BOL. MUS. BIOL. MELLO LEITÃO (N. SÉR.) 33:19-24. JANEIRO DE 2014 19 Behavioural and biological notes on Crabronidae (Hymenoptera: Apoidea) and new geographic records to the Espírito Santo State (Southeast Brazil) Sandor Christiano Buys1* ABSTRACT: The following species of crabronid wasps are added to the list of Hymenoptera of Espírito Santo State: Stictia maccus (Handlirsch, 1895), Hoplisoides vespoides (F. Smith, 1873), Trachypus fulvipennis (Tachenberg, 1875), Trachypus romandi (Saussure, 1854). Notes on nesting behaviour of H. vespoides, S. maccus and T. fulvipennis in the Biological Station of Santa Lúcia (city of Santa Teresa) are presented. Hoplisoides vespoides used as prey Umbonia spinosa (Fabricius, 1775) (Hemiptera: Membracidae) and T. fuvipennis used as prey three species of stingless bees (Hymenoptera: Apidae: Meliponinae): Plebeia remota (Holmberg, 1903), Partamona aff. cupira (Smith, 1863), Schwarziana quadripunctata (Lepeletier, 1836). Key-words: Trachypus, Stictia, Hoplisoides, Meliponinae bee, solitary wasps, Atlantic Forest. RESUMO: Notas biológicas e comportamentais sobre Crabronidae (Hymenoptera: Apoidea) e novos registros geográficos para o Estado do Espírito Santo (Sudeste do Brasil). As seguintes espécies de vespas crabronídeas são adicionadas à lista de Hymenoptera do Estado do Espírito Santo: Stictia maccus (Handlirsch, 1895), Hoplisoides vespoides (F. Smith, 1873), Trachypus fulvipennis (Tachenberg, 1875), Trachypus romandi (Saussure, 1854). Notas sobre comportamento de nidificação de Hoplisoides vespoides, S. maccus e T. fulvipennis na Estação Biológica de Santa Lúcia (Santa Teresa) são apresentadas. Hoplisoides vespoides usou como presa Umbonia spinosa (Fabricius, 1775) (Hemiptera: Membracidae) e T. fuvipennis usou como presa três espécies de abelhas meliponíneas (Hymenoptera: Apidae: Meliponinae): Plebeia remota (Holmberg, 1903), Partamona aff. cupira (Smith, 1863), Schwarziana quadripunctata (Lepeletier, 1836).
    [Show full text]
  • Invasive Ant Pest Risk Assessment Project: Preliminary Risk Assessment
    Invasive ant pest risk assessment project: Preliminary risk assessment Harris, R. 1) Aim To assess the threat to New Zealand of a wide range of ant species not already established in New Zealand and identify those worthy of more detailed assessment. 2) Scope 2.1. Specific exclusions Solenopsis invicta was specifically excluded from consideration as this species has already been subject to detailed consideration by Biosecurity New Zealand. 2.2 Specific inclusions Biosecurity New Zealand requested originally that the following taxa be included in the assessment: Solenopsis richteri Solenopsis geminata Wasmannia auropunctata Anoplolepis gracilipes Paratrechina longicornis Carpenter ants (Camponotus spp.) Leaf cutting ants (Atta spp.) Myrmecia pilosula Tapinoma melanocephalum Monomorium sydneyense (incursion found in New Zealand) Hypoponera punctatissima (incursion found in New Zealand) Big headed ants (Pheidole spp.) M. sydneyense and H. punctatissima have since been deemed not under official control and are now considered established in New Zealand. Profiles of these species have been prepared as part of the Ants of New Zealand section (see http://www.landcareresearch.co.nz/research/biosecurity/stowaways/Ants/antsinnewzealand.asp). INVASIVE ANT PEST RISK ASSESSMENT PROJECT: Preliminary risk assessment 3) Methodology A risk assessment scorecard was developed (Appendix 1) in consultation with a weed risk assessment expert (Dr Peter Williams) and with Simon O’Connor and Amelia Pascoe of Biosecurity New Zealand, to initially separate
    [Show full text]
  • ARTHROPODA Subphylum Hexapoda Protura, Springtails, Diplura, and Insects
    NINE Phylum ARTHROPODA SUBPHYLUM HEXAPODA Protura, springtails, Diplura, and insects ROD P. MACFARLANE, PETER A. MADDISON, IAN G. ANDREW, JOCELYN A. BERRY, PETER M. JOHNS, ROBERT J. B. HOARE, MARIE-CLAUDE LARIVIÈRE, PENELOPE GREENSLADE, ROSA C. HENDERSON, COURTenaY N. SMITHERS, RicarDO L. PALMA, JOHN B. WARD, ROBERT L. C. PILGRIM, DaVID R. TOWNS, IAN McLELLAN, DAVID A. J. TEULON, TERRY R. HITCHINGS, VICTOR F. EASTOP, NICHOLAS A. MARTIN, MURRAY J. FLETCHER, MARLON A. W. STUFKENS, PAMELA J. DALE, Daniel BURCKHARDT, THOMAS R. BUCKLEY, STEVEN A. TREWICK defining feature of the Hexapoda, as the name suggests, is six legs. Also, the body comprises a head, thorax, and abdomen. The number A of abdominal segments varies, however; there are only six in the Collembola (springtails), 9–12 in the Protura, and 10 in the Diplura, whereas in all other hexapods there are strictly 11. Insects are now regarded as comprising only those hexapods with 11 abdominal segments. Whereas crustaceans are the dominant group of arthropods in the sea, hexapods prevail on land, in numbers and biomass. Altogether, the Hexapoda constitutes the most diverse group of animals – the estimated number of described species worldwide is just over 900,000, with the beetles (order Coleoptera) comprising more than a third of these. Today, the Hexapoda is considered to contain four classes – the Insecta, and the Protura, Collembola, and Diplura. The latter three classes were formerly allied with the insect orders Archaeognatha (jumping bristletails) and Thysanura (silverfish) as the insect subclass Apterygota (‘wingless’). The Apterygota is now regarded as an artificial assemblage (Bitsch & Bitsch 2000).
    [Show full text]