Guidelines for Municipal Solid Waste Management Planning in Small Island Developing States in the Pacific Region
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Licensed Municipal Solid Waste Landfills County Facility Name
Licensed Municipal Solid Waste Landfills County Facility Name (place ID#) Facility Type Secondary Id Address Phone No. Ashtabula Geneva Landfill (54419) Municipal Solid Waste Landfill MSWL018758 4339 Tuttle Rd, Geneva, 44041 440‐466‐8804 Athens Athens‐Hocking Reclamation Center (3078) Municipal Solid Waste Landfill MSWL018746 17970 US Rte 33, Nelsonville, 45764 740‐385‐6019 Brown Rumpke Waste Inc Brown County Landfill (3916) Municipal Solid Waste Landfill MSWL018788 9427 Beyers Rd, Georgetown, 45121 513‐851‐0122 Clinton Wilmington Sanitary Landfill (6451) Municipal Solid Waste Landfill MSWL018744 397 S Nelson Ave, Wilmington, 45177 937‐382‐6474 Coshocton Coshocton Landfill Inc (7032) Municipal Solid Waste Landfill MSWL018823 19469 County Rd No 7, Coshocton, 43812 740‐787‐2327 Crawford Crawford County Landfill (7270) Municipal Solid Waste Landfill MSWL018774 5128 Lincoln Hwy East, Bucyrus, 44820 513‐851‐0122 Defiance Defiance County Sanitary Landfill (12919) Municipal Solid Waste Landfill MSWL018764 13207 Canal Rd, Defiance, 43512 419‐782‐5442 Erie Erie County Sanitary Landfill (13359) Municipal Solid Waste Landfill MSWL018741 10102 Hoover Road, Milan, 44846 419‐433‐5023 Fairfield Republic Services Pine Grove Regional Facility (13668) Municipal Solid Waste Landfill MSWL018818 5131 Drinkle Rd SW, Amanda, 43102 740‐969‐4487 Franklin SWACO Franklin County Sanitary Landfill (15005) Municipal Solid Waste Landfill MSWL018803 3851 London Groveport Rd, Grove City, 43123 614‐871‐5100 Gallia Gallia County Landfill (16671) Municipal Solid Waste Landfill -
Municipal Solid Waste Landfill Operation and Management Workbook
MUNICIPAL SOLID WASTE LANDFILL OPERATION AND MANAGEMENT WORKBOOK Revised April 2018 Preface In many ways, constructing, operating and maintaining a municipal solid waste landfill is similar to constructing, operating, and maintaining a highway, dam, canal, bridge, or other engineered structure. The most important similarity is that landfills, like other engineered structures, must be constructed and operated in a manner that will provide safe, long-term, and reliable service to the communities they serve. Proper design, construction, operation, monitoring, closure and post-closure care are critical because after disposal the waste can be a threat to human health and the environment for decades to centuries. This workbook is intended to provide municipal landfill operators and managers in Wyoming with the fundamental knowledge and technical background necessary to ensure that landfills are operated efficiently, effectively, and in a manner that is protective of human health and the environment. This workbook contains information regarding basic construction and operation activities that are encountered on a routine basis at most landfills. The basic procedures and fundamental elements of landfill permitting, construction management, monitoring, closure, post-closure care, and financial assurance are also addressed. The workbook includes informative tips and information that landfill operators and managers can use to conserve landfill space, minimize the potential for pollution, reduce operating costs, and comply with applicable rules and regulations. In addition to this workbook, operators and managers need to become familiar with the Wyoming Solid Waste Rules and Regulations applicable to municipal solid waste. The DEQ also provides numerous guidelines that may help understand regulatory requirements in more detail. -
DTE Green Waste to Fuel™ Technology
DTE Green Waste to Fuel™ Technology The DTE Green Waste to Fuel™ Series of Reports A Report by Delta Thermo Energy Labs, a Division of Delta Thermo Energy™ June 25, 2016 Notice Delta Thermo Energy Labs reports, white papers and legal updates are made available for educational purposes only. Our purpose is to provide general information only. At the time of publication all information referenced in our reports, white papers and updates, is as current and accurate as we could determine. As such, any additional developments or research, since publication, will not be reflected in this report. Please note that these materials may be changed, improved, or updated without notice. Delta Thermo Energy is not responsible for any errors or omissions in the content of this report or for damages arising from the use of this report under any circumstances. Delta Thermo Energy, Inc. Confidential and Proprietary Material Page 2 of 17 Copyright June 1, 2016 - All Rights Reserved Disclaimer Many of the competitive technologies identified within this report are many years old and some have been in use for many decades. Delta Thermo Energy many not be aware of the latest advances put in place by individual plant operators or by their suppliers and subcontractors. Comparisons with new Delta Thermo Energy DTE Green Waste to Fuel technology and the underlying core technology we use is based upon publicly available information available to us. Our core technology, DTE Hydrothermal Decomposition™, is supported by proprietary and unique intellectual property protected by existing and pending patents. Trade secrets are also part of our operating procedures and implementation and our necessary to achieve stated performance levels. -
Characterisation, Recovery and Recycling Potential of Solid Waste in a University of a Developing Economy
sustainability Article Characterisation, Recovery and Recycling Potential of Solid Waste in a University of a Developing Economy Oluwatobi Owojori 1,* , Joshua N. Edokpayi 2 , Ratshalingwa Mulaudzi 1 and John O. Odiyo 2 1 Department of Ecology and Resources Management, University of Venda, Thohoyandou 0950, South Africa; [email protected] 2 Department of Hydrology and Water Resources, University of Venda, Thohoyandou 0950, South Africa; [email protected] (J.N.E.); [email protected] (J.O.O.) * Correspondence: [email protected]; Tel.: +27-658432663 Received: 24 May 2020; Accepted: 18 June 2020; Published: 23 June 2020 Abstract: The present decade of Sustainable Development Goals has influenced higher educational institutions to assess and harness their great potential for waste diversion, recovery, and recycling. Institutional solid waste management in South Africa as a developing economy is yet to receive the required attention compared to developed countries. The measurement of the characteristics, and composition of solid waste is a fundamental pre-requisite towards creating a sustainable and viable process of solid waste management systems across institutions as this provides adequate and reliable information on the waste generated. This study aimed to determine the variations of waste components in the University of Venda (UNIVEN) by characterisation of the waste generated. Solid waste samples were collected from key activity areas and characterised using the ASTM D5321-92 method for unprocessed municipal solid waste. The recyclable, compostable, and non-recoverable components of the waste generated were found to be 61.7%, 34.4%, and 3.9%, respectively. The results of the waste audit revealed a strong potential for recycling in the institution (61.7%). -
Waste Minimisation
Waste Minimisation An Environmental Good Practice Guide For Industry This guide will help industry and the Environment Agency move forward together to minimise waste and achieve national environmental goals WASTE MINIMISATION An Environmental Good Practice Guide for Industry “The cost of your waste is not so much the cost of getting rid of it as the value of what you are getting rid of!” Published by the Environment Agency April 2001, to help business achieve sustainable practice through waste minimisation. Revised edition April 2001. First published April 1998. i Waste Minimisation Good Practice Guide Environment Agency April 2001 FOREWORD Minimise waste – maximise profit The way we use our planet’s natural resources is now widely recognised as one of the root causes of many environmental problems. Waste and industrial emissions have a major impact on the environment both nationally and globally. Effects such as global warming, ozone depletion, acid rain, air and water pollution are all derived from local emissions, but the resources consumed may be mined and manufactured from anywhere in the world. From extraction to consumption the global economy consumes vast quantities of raw materials, water and energy. In the UK some 600 million tonnes of raw materials, excluding water, are used each year. More than 90 per cent of the resources we consume are either thrown away as wastes or discharged to the environment as effluent or air emissions. Since the Environment Agency first published this guide in 1998, waste minimisation has become an established business practice for many organisations and thousands of businesses have now implemented waste reduction programmes. -
Reclamation of Acidic Copper Mine Tailings Using Municipal Biosolids1
RECLAMATION OF ACIDIC COPPER MINE TAILINGS USING MUNICIPAL BIOSOLIDS1 by M. T. Rogers, S.A. Bengson, and T.L. Thompson2 Abstract: Reclamation of copper mine tailings in a cost effective, successful, and sustainable manner is an ongoing area of evaluation in the arid southwest. A study was initiated in September, 1996 near Hayden, Arizona to evaluate the use of municipal biosolids for reclaiming acidic copper mine tailings (pH of 2.5 to 4.0). The main objectives of the study were to I) define an appropriate level of biosolids application for optimum plant growth, and 2) evaluate the effects of green waste and lime amendments. The experiment was a randomized complete block design with four biosolid rates of 20, 70, 100 and 135 dry tons/acre (45, 157, 224, 303 Mg/ha), three amendment treatments (none, green waste, and green waste plus lime); with three replications. Non-replicated controls (no treatment, green waste only and lime only) were included for comparison. Shortly after biosolids incorporation to a depth of 10-12 inches (25.4-30.5 cm), composite soil samples (0- 12 inches) of each plot were taken. Biosolids incorporation increased the pH of the tailings (>5. 75) and additional increases in pH were noted with lime application. In January 1997, the plots were seeded and sprinkler irrigation was commenced. A total of 4.47 inches (11.4 cm) of rainfall and 3.8 inches (9.7 cm) of irrigation were applied until harvest in May 1997. Data from the first growing season indicates optimum growth (>66 lbs/acre or >74 kg/ha) at biosolids rates of 70-100 dry tons/acre. -
The Biological Treatment of Organic Food Waste
The Biological Treatment of Organic Food Waste HALYNA KOSOVSKA KTH Chemical Engineering and Technology Master of Science Thesis Stockholm 2006 KTH Chemical Engineering and Technology Halyna Kosovska THE BIOLOGICAL TREATMENT OF ORGANIC FOOD WASTE Supervisor & Examiner: Monika Ohlsson Master of Science Thesis STOCKHOLM 2006 PRESENTED AT INDUSTRIAL ECOLOGY ROYAL INSTITUTE OF TECHNOLOGY TRITA-KET-IM 2006:2 ISSN 1402-7615 Industrial Ecology, Royal Institute of Technology www.ima.kth.se Abstract This Master Thesis “The Biological Treatment of Organic Food Waste” is done in the Master’s Programme in Sustainable Technology at the Royal Institute of Technology (KTH) in co-operation with the company SRV återvinning AB. The report is dedicated to analyze different biological treatment methods (that is composting and fermentation), which are used for the handling of organic food waste. From this analysis I will suggest the best method or methods for the company SRV återvinning AB (the Södertörn Area in Sweden) and for the Yavoriv Region in Ukraine in order to increase the environmental performance and to improve the environmental situation in the regions. To be able to do this, a lot of factors are taking into consideration and are described and discussed in this Thesis Work. General characteristic of the regions, different means of control for organic food waste handling, sorting methods of organic waste, as well as composting and fermentation methods for treatment of organic waste are described and the advantages and disadvantages of these methods, their treatment and investment costs are distinguished in the Thesis. Different treatment methods are discussed from technical and economical points of view for applying them for the SRV and the Södertörn Area in Sweden and for the Yavoriv Region in Ukraine and some solutions for these two regions are suggested. -
Preliminary Assessment Waste Management
Executive Summary 1 The purpose of this report is to make a preliminary assessment of green jobs potentials in the waste management sector in Lebanon, including solid waste management, hazardous waste management and wastewater treatment. This report provides an overview of waste management in Lebanon, considers potentials for greening the sector, and estimates current and future green jobs in waste management. The current state of the waste management sector in Lebanon is far from ideal. Collection activities are fairly advanced when it comes to municipal solid waste, but insufficient for wastewater, and totally lacking for hazardous waste. Currently only two-thirds of the total generated solid waste undergoes some form of treatment, while the remainder is discarded in open dumpsites or directly into nature. Moreover, wastewater treatment is insufficient and Lebanon currently lacks any effective strategy or system for dealing with most hazardous waste. Incrementally, the sector is nonetheless changing. In recent years green activities such as sorting, composting and recycling have become more common, advanced medical waste treatment is being developed, and several international organisations, NGOs and private enterprises have launched initiatives to green the sector and reduce its environmental impact. Also large-scale governmental initiatives to close down and rehabilitate dumpsites and construct new waste management facilities and wastewater treatment plants are currently being planned or implemented, which will have a considerable impact in greening the waste management sector in Lebanon. In this report, green jobs in waste management are defined as jobs providing decent work that seek to decrease waste loads and the use of virgin resources through reuse, recycling and recovery, and reduce the environmental impact of the waste sector by containing or treating substances that are harmful to the natural environment and public health. -
Environmental Protection Agency Batneec Guidance
ENVIRONMENTAL PROTECTION AGENCY BATNEEC GUIDANCE NOTE Class 3.3 FERROUS METAL FOUNDRIES (DRAFT 3) Processing of Iron & Steel in Forges - BATNEEC Page 1. Introduction 3 2. Interpretation of BATNEEC 4 3. Sectors covered 6 4. Control Technologies 7 5. Emission Limit Values 11 6. Compliance Monitoring 14 7. References 15 8. Appendix 1 - Sources & Emissions 16 BAT33v3.DOC 14/05/96 Page 2 of 21 Processing of Iron & Steel in Forges - BATNEEC 1. INTRODUCTION This Guidance Note is one of a series issued by the Environmental Protection Agency and is designed to provide guidance to those applying for integrated pollution control licences under the EPA Act. It should also be read in conjunction with Application Guidance Notes, available under separate cover. It should be noted at the outset, that noise is not included within the scope of this work and guidance on this parameter has been issued separately. This Guidance Note is comprised of seven main sections and an appendix. Following this introduction, Section 2 contains a general note on the interpretation of BATNEEC. The industrial activity covered by the terms of this note is given in Section 3. In Section 4, the technologies to control emissions are tabulated and in Section 5 the specific emission limit values (ELVs) are given. Section 6 contains comments on compliance monitoring requirements, while the principal references are given in Section 7. The Appendix gives the main sources of emissions, and the principal releases from such sources. All applicants for Integrated Pollution Control licences, in the sector covered by this note, should carefully examine the information laid down in this Guidance Note, and should use this information to assist in the making of a satisfactory application for an Integrated Pollution Control licence to the Agency. -
Meeting of the MED POL National Coordinators
UNEP(DEC)/MED WG.231/6 5 May 2003 ENGLISH MEDITERRANEAN ACTION PLAN Meeting of the MED POL National Coordinators Sangemini, Italy, 27 - 30 May 2003 STRATEGIC ACTION PROGRAMME GUIDELINES SEWAGE TREATMENT AND DISPOSAL IN THE MEDITERRANEAN REGION In cooperation with WHO UNEP Athens, 2003 Table of Contents Page No. 1. INTRODUCTION 1 Purpose of Document 1 Target Audience 2 2. ENVIRONMENTAL CONSIDERATIONS 3 Background water quality 3 Wastewater characteristics 3 Characteristics of wastewater discharges 5 Aesthetics 5 Pathogens 5 Nutrients 6 Toxicants 6 Dissolved solids 7 Suspended solids 7 Other considerations 7 Environmental uses and water quality 8 Use area definition 8 Environmental Quality Objective and Environmental Quality Standards 9 Legislation and role of authorities 12 Approaches 12 Role of authorities 13 Monitoring 14 3. MANAGEMENT FRAMEWORK 16 Aims and Objectives 16 Strategy and Principles 16 Control Mechanisms 17 Regulations 17 Enforcement 18 Economic tools 18 Effluent Quality 19 Effluent management and environmental values/water uses 19 Technology-based guidelines 21 Determination of effluent quality 21 Receiving Water Body and Aquatic Ecosystem Protection 22 Stakeholders 23 The Role of the Wastewater Company/Authority 23 Page No. Community Consultation 24 4. OPTIONS FOR EFFLUENT MANAGEMENT 26 Waste Minimisation 27 Managing the Collection Systems 28 Managing the Treatment Systems 30 Effluent Reuse 30 Land Application 32 Discharge to Coastal Waters 35 Discharge to Inland Waters 37 Treatment of wastewater 38 Treatment processes 38 Sludge processing and disposal/reuse 39 Selection of flow scheme 41 Submarine Outfall 42 Mixing zone 44 Treatment and disposal design philosophy 45 Environmental quality objectives 45 Use areas 46 Design of wastewater sanitation schemes/sewerage schemes 46 5. -
Glossary of Terms
The Study on Master Plan for Hazardous Waste Management in Romania Final Report Japan International Cooperation Agency Volume 7 Pilot Project 2 Waste Minimisation and Treatment in Metal Surface Treatment Process GLOSSARY OF TERMS Terms Meaning Acquis Communautaire or Acquis The ‘Body of Law’ of the European Union covering all legislation prepared and adopted by EU institutions. ADR European Agreement for international transport of hazardous substances (Accord Européen Relatif au Transport International des Marchandises Dangerouses par Route) BAT Best Available Techniques BG Bulgaria CAP Common Agricultural Policy CAS Country Assistance Strategy CBC Cross-border Co-operation CEE Central and Eastern European countries CPC Clean Production Centre DDBRA Danube Delta Biodiversity Reserve Authority or DfID Department for International Development DISAE Development of Implementation Strategies for Approximation in Environment EBRD European Bank for Reconstruction and Development EDC Ethylene Dichloride EEC European Economic Communities EIA Environmental impact assessment EIB European Investment Bank EIS Environmental impact statement EIU Economist Intelligence Unit EMAS Eco-management and Audit Scheme EPI Environmental Protection Inspectorate EPR Environmental Performance Report Ref: 28. EQS Environment Quality Standard ERM Environmental Resources Management EWC European Waste Catalogue EU The European Union GD Government Decision GEF Global Environment Fund GEO Government Emergency Ordinance GMP Genetically modified products GO Government Ordinance -
Waste Management
10 Waste Management Coordinating Lead Authors: Jean Bogner (USA) Lead Authors: Mohammed Abdelrafie Ahmed (Sudan), Cristobal Diaz (Cuba), Andre Faaij (The Netherlands), Qingxian Gao (China), Seiji Hashimoto (Japan), Katarina Mareckova (Slovakia), Riitta Pipatti (Finland), Tianzhu Zhang (China) Contributing Authors: Luis Diaz (USA), Peter Kjeldsen (Denmark), Suvi Monni (Finland) Review Editors: Robert Gregory (UK), R.T.M. Sutamihardja (Indonesia) This chapter should be cited as: Bogner, J., M. Abdelrafie Ahmed, C. Diaz, A. Faaij, Q. Gao, S. Hashimoto, K. Mareckova, R. Pipatti, T. Zhang, Waste Management, In Climate Change 2007: Mitigation. Contribution of Working Group III to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change [B. Metz, O.R. Davidson, P.R. Bosch, R. Dave, L.A. Meyer (eds)], Cambridge University Press, Cambridge, United Kingdom and New York, NY, USA. Waste Management Chapter 10 Table of Contents Executive Summary ................................................. 587 10.5 Policies and measures: waste management and climate ....................................................... 607 10.1 Introduction .................................................... 588 10.5.1 Reducing landfill CH4 emissions .......................607 10.2 Status of the waste management sector ..... 591 10.5.2 Incineration and other thermal processes for waste-to-energy ...............................................608 10.2.1 Waste generation ............................................591 10.5.3 Waste minimization, re-use and