Health Threat from Cosmic Radiation During Manned Missions to Mars
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Planetary Geologic Mappers Annual Meeting
Program Lunar and Planetary Institute 3600 Bay Area Boulevard Houston TX 77058-1113 Planetary Geologic Mappers Annual Meeting June 12–14, 2018 • Knoxville, Tennessee Institutional Support Lunar and Planetary Institute Universities Space Research Association Convener Devon Burr Earth and Planetary Sciences Department, University of Tennessee Knoxville Science Organizing Committee David Williams, Chair Arizona State University Devon Burr Earth and Planetary Sciences Department, University of Tennessee Knoxville Robert Jacobsen Earth and Planetary Sciences Department, University of Tennessee Knoxville Bradley Thomson Earth and Planetary Sciences Department, University of Tennessee Knoxville Abstracts for this meeting are available via the meeting website at https://www.hou.usra.edu/meetings/pgm2018/ Abstracts can be cited as Author A. B. and Author C. D. (2018) Title of abstract. In Planetary Geologic Mappers Annual Meeting, Abstract #XXXX. LPI Contribution No. 2066, Lunar and Planetary Institute, Houston. Guide to Sessions Tuesday, June 12, 2018 9:00 a.m. Strong Hall Meeting Room Introduction and Mercury and Venus Maps 1:00 p.m. Strong Hall Meeting Room Mars Maps 5:30 p.m. Strong Hall Poster Area Poster Session: 2018 Planetary Geologic Mappers Meeting Wednesday, June 13, 2018 8:30 a.m. Strong Hall Meeting Room GIS and Planetary Mapping Techniques and Lunar Maps 1:15 p.m. Strong Hall Meeting Room Asteroid, Dwarf Planet, and Outer Planet Satellite Maps Thursday, June 14, 2018 8:30 a.m. Strong Hall Optional Field Trip to Appalachian Mountains Program Tuesday, June 12, 2018 INTRODUCTION AND MERCURY AND VENUS MAPS 9:00 a.m. Strong Hall Meeting Room Chairs: David Williams Devon Burr 9:00 a.m. -
Modelling and the Transit of Venus
Modelling and the transit of Venus Dave Quinn University of Queensland <[email protected]> Ron Berry University of Queensland <[email protected]> Introduction enior secondary mathematics students could justifiably question the rele- Svance of subject matter they are being required to understand. One response to this is to place the learning experience within a context that clearly demonstrates a non-trivial application of the material, and which thereby provides a definite purpose for the mathematical tools under consid- eration. This neatly complements a requirement of mathematics syllabi (for example, Queensland Board of Senior Secondary School Studies, 2001), which are placing increasing emphasis on the ability of students to apply mathematical thinking to the task of modelling real situations. Success in this endeavour requires that a process for developing a mathematical model be taught explicitly (Galbraith & Clatworthy, 1991), and that sufficient opportu- nities are provided to students to engage them in that process so that when they are confronted by an apparently complex situation they have the think- ing and operational skills, as well as the disposition, to enable them to proceed. The modelling process can be seen as an iterative sequence of stages (not ) necessarily distinctly delineated) that convert a physical situation into a math- 1 ( ematical formulation that allows relationships to be defined, variables to be 0 2 l manipulated, and results to be obtained, which can then be interpreted and a n r verified as to their accuracy (Galbraith & Clatworthy, 1991; Mason & Davis, u o J 1991). The process is iterative because often, at this point, limitations, inac- s c i t curacies and/or invalid assumptions are identified which necessitate a m refinement of the model, or perhaps even a reassessment of the question for e h t which we are seeking an answer. -
Predictable Patterns in Planetary Transit Timing Variations and Transit Duration Variations Due to Exomoons
Astronomy & Astrophysics manuscript no. ms c ESO 2016 June 21, 2016 Predictable patterns in planetary transit timing variations and transit duration variations due to exomoons René Heller1, Michael Hippke2, Ben Placek3, Daniel Angerhausen4, 5, and Eric Agol6, 7 1 Max Planck Institute for Solar System Research, Justus-von-Liebig-Weg 3, 37077 Göttingen, Germany; [email protected] 2 Luiter Straße 21b, 47506 Neukirchen-Vluyn, Germany; [email protected] 3 Center for Science and Technology, Schenectady County Community College, Schenectady, NY 12305, USA; [email protected] 4 NASA Goddard Space Flight Center, Greenbelt, MD 20771, USA; [email protected] 5 USRA NASA Postdoctoral Program Fellow, NASA Goddard Space Flight Center, 8800 Greenbelt Road, Greenbelt, MD 20771, USA 6 Astronomy Department, University of Washington, Seattle, WA 98195, USA; [email protected] 7 NASA Astrobiology Institute’s Virtual Planetary Laboratory, Seattle, WA 98195, USA Received 22 March 2016; Accepted 12 April 2016 ABSTRACT We present new ways to identify single and multiple moons around extrasolar planets using planetary transit timing variations (TTVs) and transit duration variations (TDVs). For planets with one moon, measurements from successive transits exhibit a hitherto unde- scribed pattern in the TTV-TDV diagram, originating from the stroboscopic sampling of the planet’s orbit around the planet–moon barycenter. This pattern is fully determined and analytically predictable after three consecutive transits. The more measurements become available, the more the TTV-TDV diagram approaches an ellipse. For planets with multi-moons in orbital mean motion reso- nance (MMR), like the Galilean moon system, the pattern is much more complex and addressed numerically in this report. -
Volcanism on Mars
Author's personal copy Chapter 41 Volcanism on Mars James R. Zimbelman Center for Earth and Planetary Studies, National Air and Space Museum, Smithsonian Institution, Washington, DC, USA William Brent Garry and Jacob Elvin Bleacher Sciences and Exploration Directorate, Code 600, NASA Goddard Space Flight Center, Greenbelt, MD, USA David A. Crown Planetary Science Institute, Tucson, AZ, USA Chapter Outline 1. Introduction 717 7. Volcanic Plains 724 2. Background 718 8. Medusae Fossae Formation 725 3. Large Central Volcanoes 720 9. Compositional Constraints 726 4. Paterae and Tholi 721 10. Volcanic History of Mars 727 5. Hellas Highland Volcanoes 722 11. Future Studies 728 6. Small Constructs 723 Further Reading 728 GLOSSARY shield volcano A broad volcanic construct consisting of a multitude of individual lava flows. Flank slopes are typically w5, or less AMAZONIAN The youngest geologic time period on Mars identi- than half as steep as the flanks on a typical composite volcano. fied through geologic mapping of superposition relations and the SNC meteorites A group of igneous meteorites that originated on areal density of impact craters. Mars, as indicated by a relatively young age for most of these caldera An irregular collapse feature formed over the evacuated meteorites, but most importantly because gases trapped within magma chamber within a volcano, which includes the potential glassy parts of the meteorite are identical to the atmosphere of for a significant role for explosive volcanism. Mars. The abbreviation is derived from the names of the three central volcano Edifice created by the emplacement of volcanic meteorites that define major subdivisions identified within the materials from a centralized source vent rather than from along a group: S, Shergotty; N, Nakhla; C, Chassigny. -
March 21–25, 2016
FORTY-SEVENTH LUNAR AND PLANETARY SCIENCE CONFERENCE PROGRAM OF TECHNICAL SESSIONS MARCH 21–25, 2016 The Woodlands Waterway Marriott Hotel and Convention Center The Woodlands, Texas INSTITUTIONAL SUPPORT Universities Space Research Association Lunar and Planetary Institute National Aeronautics and Space Administration CONFERENCE CO-CHAIRS Stephen Mackwell, Lunar and Planetary Institute Eileen Stansbery, NASA Johnson Space Center PROGRAM COMMITTEE CHAIRS David Draper, NASA Johnson Space Center Walter Kiefer, Lunar and Planetary Institute PROGRAM COMMITTEE P. Doug Archer, NASA Johnson Space Center Nicolas LeCorvec, Lunar and Planetary Institute Katherine Bermingham, University of Maryland Yo Matsubara, Smithsonian Institute Janice Bishop, SETI and NASA Ames Research Center Francis McCubbin, NASA Johnson Space Center Jeremy Boyce, University of California, Los Angeles Andrew Needham, Carnegie Institution of Washington Lisa Danielson, NASA Johnson Space Center Lan-Anh Nguyen, NASA Johnson Space Center Deepak Dhingra, University of Idaho Paul Niles, NASA Johnson Space Center Stephen Elardo, Carnegie Institution of Washington Dorothy Oehler, NASA Johnson Space Center Marc Fries, NASA Johnson Space Center D. Alex Patthoff, Jet Propulsion Laboratory Cyrena Goodrich, Lunar and Planetary Institute Elizabeth Rampe, Aerodyne Industries, Jacobs JETS at John Gruener, NASA Johnson Space Center NASA Johnson Space Center Justin Hagerty, U.S. Geological Survey Carol Raymond, Jet Propulsion Laboratory Lindsay Hays, Jet Propulsion Laboratory Paul Schenk, -
A Disintegrating Minor Planet Transiting a White Dwarf!
A Disintegrating Minor Planet Transiting a White Dwarf! Andrew Vanderburg1, John Asher Johnson1, Saul Rappaport2, Allyson Bieryla1, Jonathan Irwin1, John Arban Lewis1, David Kipping1,3, Warren R. Brown1, Patrick Dufour4, David R. Ciardi5, Ruth Angus1,6, Laura Schaefer1, David W. Latham1, David Charbonneau1, Charles Beichman5, Jason Eastman1, Nate McCrady7, Robert A. Wittenmyer8, & Jason T. Wright9,10. ! White dwarfs are the end state of most stars, including We initiated follow-up ground-based photometry to the Sun, after they exhaust their nuclear fuel. Between better time-resolve the transits seen in the K2 data (Figure 1/4 and 1/2 of white dwarfs have elements heavier than S1). We observed WD 1145+017 frequently over the course helium in their atmospheres1,2, even though these of about a month with the 1.2-meter telescope at the Fred L. elements should rapidly settle into the stellar interiors Whipple Observatory (FLWO) on Mt. Hopkins, Arizona; unless they are occasionally replenished3–5. The one of the 0.7-meter MINERVA telescopes, also at FLWO; abundance ratios of heavy elements in white dwarf and four of the eight 0.4-meter telescopes that compose the atmospheres are similar to rocky bodies in the Solar MEarth-South Array at Cerro Tololo Inter-American system6,7. This and the existence of warm dusty debris Observatory in Chile. Most of these data showed no disks8–13 around about 4% of white dwarfs14–16 suggest interesting or significant signals, but on two nights we that rocky debris from white dwarf progenitors’ observed deep (up to 40%), short-duration (5 minutes), planetary systems occasionally pollute the stars’ asymmetric transits separated by the dominant 4.5 hour atmospheres17. -
Contents JUPITER Transits
1 Contents JUPITER Transits..........................................................................................................5 JUPITER Conjunct Sun..............................................................................................6 JUPITER Opposite Sun............................................................................................10 JUPITER Sextile Sun...............................................................................................14 JUPITER Square Sun...............................................................................................17 JUPITER Trine Sun..................................................................................................20 JUPITER Conjunct Moon.........................................................................................23 JUPITER Opposite Moon.........................................................................................28 JUPITER Sextile Moon.............................................................................................32 JUPITER Square Moon............................................................................................36 JUPITER Trine Moon................................................................................................40 JUPITER Conjunct Mercury.....................................................................................45 JUPITER Opposite Mercury.....................................................................................48 JUPITER Sextile Mercury........................................................................................51 -
A Warm Terrestrial Planet with Half the Mass of Venus Transiting a Nearby Star∗
Astronomy & Astrophysics manuscript no. toi175 c ESO 2021 July 13, 2021 A warm terrestrial planet with half the mass of Venus transiting a nearby star∗ y Olivier D. S. Demangeon1; 2 , M. R. Zapatero Osorio10, Y. Alibert6, S. C. C. Barros1; 2, V. Adibekyan1; 2, H. M. Tabernero10; 1, A. Antoniadis-Karnavas1; 2, J. D. Camacho1; 2, A. Suárez Mascareño7; 8, M. Oshagh7; 8, G. Micela15, S. G. Sousa1, C. Lovis5, F. A. Pepe5, R. Rebolo7; 8; 9, S. Cristiani11, N. C. Santos1; 2, R. Allart19; 5, C. Allende Prieto7; 8, D. Bossini1, F. Bouchy5, A. Cabral3; 4, M. Damasso12, P. Di Marcantonio11, V. D’Odorico11; 16, D. Ehrenreich5, J. Faria1; 2, P. Figueira17; 1, R. Génova Santos7; 8, J. Haldemann6, N. Hara5, J. I. González Hernández7; 8, B. Lavie5, J. Lillo-Box10, G. Lo Curto18, C. J. A. P. Martins1, D. Mégevand5, A. Mehner17, P. Molaro11; 16, N. J. Nunes3, E. Pallé7; 8, L. Pasquini18, E. Poretti13; 14, A. Sozzetti12, and S. Udry5 1 Instituto de Astrofísica e Ciências do Espaço, CAUP, Universidade do Porto, Rua das Estrelas, 4150-762, Porto, Portugal 2 Departamento de Física e Astronomia, Faculdade de Ciências, Universidade do Porto, Rua Campo Alegre, 4169-007, Porto, Portugal 3 Instituto de Astrofísica e Ciências do Espaço, Faculdade de Ciências da Universidade de Lisboa, Campo Grande, PT1749-016 Lisboa, Portugal 4 Departamento de Física da Faculdade de Ciências da Universidade de Lisboa, Edifício C8, 1749-016 Lisboa, Portugal 5 Observatoire de Genève, Université de Genève, Chemin Pegasi, 51, 1290 Sauverny, Switzerland 6 Physics Institute, University of Bern, Sidlerstrasse 5, 3012 Bern, Switzerland 7 Instituto de Astrofísica de Canarias (IAC), Calle Vía Láctea s/n, E-38205 La Laguna, Tenerife, Spain 8 Departamento de Astrofísica, Universidad de La Laguna (ULL), E-38206 La Laguna, Tenerife, Spain 9 Consejo Superior de Investigaciones Cientícas, Spain 10 Centro de Astrobiología (CSIC-INTA), Crta. -
Abstracts of the Annual Meeting of Planetary Geologic Mappers, Flagstaff, AZ 2014
Abstracts of the Annual Meeting of Planetary Geologic Mappers, Flagstaff, AZ 2014 Edited by: James A. Skinner, Jr. U. S. Geological Survey, Flagstaff, AZ David Williams Arizona State University, Tempe, AZ NOTE: Abstracts in this volume can be cited using the following format: Graupner, M. and Hansen, V.L., 2014, Structural and Geologic Mapping of Tellus Region, Venus, in Skinner, J. A., Jr. and Williams, D. A., eds., Abstracts of the Annual Meeting of Planetary Geologic Mappers, Flagstaff, AZ, June 23-25, 2014. SCHEDULE OF EVENTS Monday, June 23– Planetary Geologic Mappers Meeting Time Planet/Body Topic 8:30 am Arrive/Set-up – 2255 N. Gemini Drive (USGS) 9:00 Welcome/Logistics 9:10 NASA HQ and Program Remarks (M. Kelley) 9:30 USGS Map Coordinator Remarks (J. Skinner) 9:45 GIS and Web Updates (C. Fortezzo) 10:00 RPIF Updates (J. Hagerty) 10:15 BREAK / POSTERS 10:40 Venus Irnini Mons (D. Buczkowski) 11:00 Moon Lunar South Pole (S. Mest) 11:20 Moon Copernicus Quad (J. Hagerty) 11:40 Vesta Iterative Geologic Mapping (A. Yingst) 12:00 pm LUNCH / POSTERS 1:30 Vesta Proposed Time-Stratigraphy (D. Williams) 1:50 Mars Global Geology (J. Skinner) 2:10 Mars Terra Sirenum (R. Anderson) 2:30 Mars Arsia/Pavonis Montes (B. Garry) 2:50 Mars Valles Marineris (C. Fortezzo) 3:10 BREAK / POSTERS 3:30 Mars Candor Chasma (C. Okubo) 3:50 Mars Hrad Vallis (P. Mouginis-Mark) 4:10 Mars S. Margaritifer Terra (J. Grant) 4:30 Mars Ladon basin (C. Weitz) 4:50 DISCUSSION / POSTERS ~5:15 ADJOURN Tuesday, June 24 - Planetary Geologic Mappers Meeting Time Planet/Body Topic 8:30 am Arrive/Set-up/Logistics 9:00 Mars Upper Dao and Niger Valles (S. -
Thursday, October 29, 2015 HIGH-LATITUDE I 10:00 A.M. Lecture Hall
First Landing Site/Exploration Zone Workshop for Human Missions to the Surface of Mars (2015) sess302.pdf Thursday, October 29, 2015 HIGH-LATITUDE I 10:00 a.m. Lecture Hall 10:00 a.m. Head J. W. III * Dickson J. Milliken R. Scott D. Johnson B. Marchant D. Levy J. Kinch K. Hvidberg C. Forget F. Boucher D. Mikucki J. Fastook J. Klaus K. Mars Human Science Exploration and Resource Utilization: The Dichotomy Boundary Deuteronilus Mensae Exploration Zone [#1033] Deuteronilus Mensae EZ combines: 1) Fundamental MEPAG scientific objectives; 2) Samples from the Noachian, Hesperian and Amazonian); 3) ISRU access to abundant water ice mapped by SHARAD; 4) Civil engineering to reduce reliance on Earth supplies. 10:15 a.m. Rice J. W. Jr. * Crown D. A. Feldman W. C. Pathare A. V. Feustel A. J. Gertsch L. S. Manned Mars Mission Exploration Zone: Eastern Rim of Hellas Impact Basin [#1038] Our proposed 200 km diameter Exploration Zone centered near 40°S; 104°E is located along the eastern rim of the Hellas basin which will allow astronauts to study and collect very ancient deep seated materials which were excavated in the impact event. 10:30 a.m. Levy J. S. * Holt J. W. A Human Landing Site on the Hellas Rim: Ancient Craters, Flowing Water, and Abundant Ice [#1037] Hellas basin rim/Ancient highlands and lavas/Lots of ice to drink. 10:45 a.m. Plaut J. J. * A Resource-Rich, Scientifically Compelling Exploration Zone for Human Missions at Deuteronilus Mensae, Mars [#1044] The Deuteronilus Mensae region of Mars is promising as a potential landing site for human exploration because it contains vast, readily accessible deposits of water ice in a setting of key scientific importance. -
Geologic Evolution of Eastern Hellas, Mars: Styles and Timing of Volatile- Driven Activity
Second Conference on Early Mars (2004) 8027.pdf GEOLOGIC EVOLUTION OF EASTERN HELLAS, MARS: STYLES AND TIMING OF VOLATILE- DRIVEN ACTIVITY. David A. Crown1, Leslie F. Bleamaster III1, and Scott C. Mest2, 1Planetary Science Institute, 1700 E. Ft. Lowell Rd., Suite 106, Tucson, AZ 85719, [email protected], 2Geodynamics, NASA Goddard Space Flight Center, Greenbelt, MD, 20771. Introduction. The east rim of the Hellas basin parallel troughs. The Late Noachian and Early and the surrounding highlands comprise a Hesperian Epochs were marked by continued geologically significant region for evaluating volatile modification of older surfaces, volcanism forming the abundance, volatile distribution and cycling, and main structures of Tyrrhena and Hadriaca Paterae potential changes in Martian environmental (subsequently eroded by fluvial processes), and the conditions. This region of the Martian surface emplacement of Hesperia Planum. In the Late exhibits landforms shaped by a diversity of geologic Hesperian Epoch, channeled and smooth varieties of processes and has a well-preserved geologic record, sedimentary plains filled low-lying areas within the with exposures of Noachian, Hesperian, and highlands and were dissected by the extensive Amazonian units, as well as spans a wide range in canyons of Dao, Harmakhis, and Reull Valles, which both latitude and elevation due to the magnitude presumably contributed sediment and volatiles to of Hellas basin. In addition, geologically Hellas Planitia. A complicated sequence of erosional contemporaneous volcanism and volatile-driven and depositional events at the east rim and on the activity in the circum-Hellas highlands provide basin floor may have included lacustrine and glacial important ingredients for creating habitats for activity [20-21]. -
Analysis of Unusual Fault Structures in Terra Cimmeria, Mars
Lunar and Planetary Science XXXIV (2003) 1298.pdf ANALYSIS OF UNUSUAL FAULT STRUCTURES IN TERRA CIMMERIA, MARS. R. E. Kilby1, and R. R. Herrick2. 1Department of Geology. Washington and Lee University, Lexington VA 24450, ([email protected]), 2Lunar and Planetary Institute, 3600 Bay Area Blvd. Houston TX 77058, ([email protected]). Introduction: Most major geologic structures on imagery we determined whether or not each crater was Mars are related to a major volcanic province (Tharsis, faulted. Through this examination we obtained a Elysium) or a large impact basin. It is of interest then percentage value that yields the age of scarp to identify and study tectonic features not attributable development relative to the Terra Cimmeria crater to known volcanic provinces or impact basins. count and thus relative to other features on Mars. Located in the central Terra Cimmeria region of the Results: The mean strike of 159 measured features Southern Highlands of Mars is a set of linear scarps is N350E when azimuth values are graphed on a rose not clearly associated with major known tectonic plot with 100 bins (Figure 1). The maximum observed provinces. Several scarps exhibit relief in excess of 500 meters and the set displays a consistent NE-SW 0 trend for over 1500 kilometers. The analysis of these Figure 1: Rose Plot of 159 Scarps in 10 bins. scarps of undefined origin is divided into three parts. The first element is mapping and characterization of the observable scarps. The next is construction of a geologic history aided by the determination of the relative age of the scarp set by use of crater counts and cross cutting relationships.