Existence of a Hexatic Phase in Porous Media

Total Page:16

File Type:pdf, Size:1020Kb

Existence of a Hexatic Phase in Porous Media VOLUME 89, NUMBER 7 PHYSICAL REVIEW LETTERS 12AUGUST 2002 Existence of a Hexatic Phase in Porous Media Ravi Radhakrishnan,1 Keith E. Gubbins,2 and Malgorzata Sliwinska-Bartkowiak3 1Massachusetts Institute of Technology, 77 Massachusetts Avenue, 66-021, Cambridge, Massachusetts 02139 2North Carolina State University, 113 Riddick Labs, Raleigh, North Carolina 27695 3Institute of Physics, Adam Mickiewicz University, Umultowska 85, 61-614 Poznan, Poland (Received 7 August 2000; revised manuscript received 17 April 2002; published 25 July 2002) Molecular simulations for simple fluids in narrow slit-shaped carbon pores exhibit crystal-hexatic and hexatic-liquid transitions that are consistent with Kosterlitz-Thouless-Halperin-Nelson-Young theory. The temperature range over which the hexatic phase is stable is dramatically widened under confinement. Remarkably, the transitions, which are continuous for a single adsorbed layer, become weakly first order when the pore can accommodate two molecular layers. Nonlinear dielectric effect measurements for CCl4 and aniline in activated carbon fibers (pore width 1.4 nm) show divergence at these transitions, confirming the hexatic phase. DOI: 10.1103/PhysRevLett.89.076101 PACS numbers: 68.35.Rh Two-dimensional systems have a special significance for ment of thermal equilibrium because of large particle sizes phase transitions in which continuous symmetry is broken compared to molecular dimensions. (such as freezing transitions). The Mermin-Wagner theo- Activated carbon fibers (ACF) possess microcrystallites rem states that true long-range order cannot exist in such made up of graphene sheets that tend to align in similar systems [1]. Nelson and Halperin [2] proposed the directions, with slit-shaped voids between the microcrys- KTHNY (Kosterlitz-Thouless-Halperin-Nelson-Young) tals. The spontaneous ordering of the molecules adsorbed mechanism for melting of a crystal in two dimensions, in these voids into distinct two-dimensional molecular which involves two transitions of the Kosterlitz-Thouless layers makes the adsorbed phase a quasi-two-dimensional (KT) kind [3]: The crystal to hexatic transition occurs system, with none of the complications mentioned above. through the unbinding of dislocation pairs, and the hexatic Here, we investigate melting in a quasi-two-dimensional to liquid transition involves the unbinding of disclination system consisting of simple, near-spherical molecules ad- pairs. The KTHNY theory predicts that for the hexatic sorbed in slit-shaped pores, using both molecular simula- phase the correlation function associated with the bond tion and experiment. The results are compared with the orientational order parameter decays algebraically with predictions of KTHNY theory. exponent 0 <6 < 1=4 (quasi-long-range orientational In the simulations, carbon tetrachloride is chosen as the order), while there is only short-range translational order. adsorbate to make contact with recent experimental studies Early simulation studies on small, strictly two- of this system. The fluid-wall potential was modeled to be dimensional systems failed to provide compelling evidence of the form of the ‘‘10-4-3’’ Steele Potential, with parame- to support the KTHNY melting scenario (for a review, see ters chosen to represent the strongly attractive graphite Strandburg [4]). However, it was demonstrated by Bagchi pore [11]. The fluid-fluid Lennard-Jones (LJ) parameters et al. [5], using a systematic scaling analysis on large sys- were chosen to reproduce the bulk freezing temperature at tem sizes, and subsequently by Jaster [6], that the equili- 1 atm pressure [12]. Two pore widths, H 1ff fw brium properties of a two-dimensional system of disks with 0:911 nm and H 2ff fw 1:41 nm, where H rep- repulsive interactions are indeed consistent with the resents the shortest distance between the planes passing KTHNY theory of melting, suggesting the earlier studies through the carbon nuclei on the surface of the opposing were plagued by serious system size effects. pore walls, were chosen, so that the adsorbed phase had The hexatic phase was first observed experimentally in one and two molecular layers of CCl4, respectively. The an electron diffraction experiment on a quasi-two- calculations for the larger pore width also enable a direct dimensional system of a thin film of a liquid-crystalline comparison with experimental measurements for CCl4 material (see [7] and references therein). However, the confined in porous activated carbon fiber ACF A-10, of intrinsic presence of a herringbone symmetry and its cou- mean pore width H 1:4nm. The extent of the rectilinear pling to the hexatic symmetry in multilayer liquid-crystal- simulation cell was 180ff 180ff (93 nm 93 nm) line films causes the phase behavior to be more compli- in the xy plane so that correlations up to 90ff were cated [8]. Quasi-two-dimensional systems consisting of captured in the simulations (z is normal to the pore walls). micron-sized colloidal particles confined between parallel Periodic boundary conditions were used in the x and the y glass plates do not have this complication [9,10], but in dimensions. We expect the approximation of a structure- some [9] cases are faced with the question of the attain- less graphite wall to be a good one here, since the diameter 076101-1 0031-9007=02=89(7)=076101(4)$20.00 2002 The American Physical Society 076101-1 VOLUME 89, NUMBER 7 PHYSICAL REVIEW LETTERS 12AUGUST 2002 1 of the LJ molecule (0.514 nm) is much larger than the C-C 10 σ bond length in graphite (0.14 nm). We use the Landau- 10 40 σ Ginzburg formalism [12] to calculate the free energy sur- 0 60 σ face as a function of the hexatic bond-orientational order 10 180 σ parameter, 6;j in layer j, as defined in Ref. [12]. GL γ Grand canonical Monte Carlo simulations were used to -1 10 study the freezing behavior of LJ CCl4 in our model graph- ite pore. Our simulation cell contained up to 64 000 mol- -2 ecules. The state conditions were such that the confined 10 phase was in equilibrium with bulk LJ CCl at 1 atm 300.0 320.0 340.0 4 T / K pressure. The simulations were started from a well equili- brated confined liquid phase at T 400 K, and in succes- FIG. 1. Ginzburg parameter, GL, for four different system sive simulation runs the temperature was reduced. Equili- sizes: 10ff 10ff H, 40ff 40ff H, 60ff bration was for a minimum of eleven billion steps. The 60ff H, and 180ff 180ff H. The simulations are two-dimensional, in-plane positional and orientational cor- for a pore width, H 1:4nm, consisting of two adsorbed layers relation functions [gj r and G6;j r of layer j], were of CCl4. Finite system size calculations are self-consistent in the monitored to keep track of the nature of the confined phase. regime GL 1. The positional pair correlation function is the familiar radial distribution function. The bond orientational pair the scaling properties of the orientational correlation func- correlation function is G h 0 i, where 6;j 6;j 6;j tion, we plot logI LB=I L as a function of logLB=L in ~ xe^ ye^ . x y Fig. 2, where L was chosen to be 180ff and three differ- Our results for the two confined molecular layers of ent values, LB 60ff, 90ff, and 135ff, were used. CCl at three different temperatures were as follows [13]: 4 The integral I LB is evaluated from G6;j for the 180ff The high temperature phase at T 360 K was character- system, by integrating over a subvolume of dimension ized by an isotropic g r and exponentially decaying LB LB H instead of the total volume. A slope of ÿ2 G6;j r, and, hence, was a liquid. At T 330 K, the posi- corresponds to having a finite correlation length (liquid), a tional pair correlation function was isotropic and the ori- slope of ÿ1=4 corresponds to an algebraic decay of the entational correlation function decayed algebraically, a orientational correlation function with exponent ÿ1=4 signature of the hexatic phase. At T 290 K, the confined (hexatic), and a zero slope corresponds to true long-range phase was a two- dimensional hexagonal crystal, with order [5]. In Fig. 2, the lines correspond to the scaling quasi-long-range positional order and long-range orienta- predicted by the KTHNY theory [5] and the symbols are tional order [13]. These features were verified using system our simulation results at three different temperatures; size scaling analysis as discussed below. Since simulation agreement between the simulations and theory is excellent. results are always for a finite system size, we have estab- Therefore, the correlations in the one-layer system and the lished the self-consistency of our calculations by comput- two-layer system are both consistent with the KTHNY ing the Ginzburg parameter [14], GL, for the different predictions. phases as a function of temperature and system size: 2 h 6;ji I L 3.5 ÿ 1; (1) GL 2 2 crystal, bilayer h 6;ji h 6;ji 3 liquid, bilayer 2 hexatic, bilayer where L H V, the volume of the system, and I L is crystal, monolayer given by 2.5 R liquid, monolayer 2 hexatic, monolayer V Rd~G6;j ) / I(L) ] I L : (2) B V d~ 1.5 The Ginzburg parameter is calculated by numerically in- 1 tegrating Eq. (2). If GL 1, the simulations are self- consistent, i.e., (i) fluctuations do not destroy the ordered log [ I(L 0.5 phase observed in the simulations, and (ii) the scaling 0 behavior is not mean-field-like. It is clear from Fig. 1 -1.5 -1 -0.5 0 that, for system sizes greater than 60ff 60ff H, log [ L /L ] and for the temperature range of our simulations, our B results are self-consistent.
Recommended publications
  • Notes on Statistical Field Theory
    Lecture Notes on Statistical Field Theory Kevin Zhou [email protected] These notes cover statistical field theory and the renormalization group. The primary sources were: • Kardar, Statistical Physics of Fields. A concise and logically tight presentation of the subject, with good problems. Possibly a bit too terse unless paired with the 8.334 video lectures. • David Tong's Statistical Field Theory lecture notes. A readable, easygoing introduction covering the core material of Kardar's book, written to seamlessly pair with a standard course in quantum field theory. • Goldenfeld, Lectures on Phase Transitions and the Renormalization Group. Covers similar material to Kardar's book with a conversational tone, focusing on the conceptual basis for phase transitions and motivation for the renormalization group. The notes are structured around the MIT course based on Kardar's textbook, and were revised to include material from Part III Statistical Field Theory as lectured in 2017. Sections containing this additional material are marked with stars. The most recent version is here; please report any errors found to [email protected]. 2 Contents Contents 1 Introduction 3 1.1 Phonons...........................................3 1.2 Phase Transitions......................................6 1.3 Critical Behavior......................................8 2 Landau Theory 12 2.1 Landau{Ginzburg Hamiltonian.............................. 12 2.2 Mean Field Theory..................................... 13 2.3 Symmetry Breaking.................................... 16 3 Fluctuations 19 3.1 Scattering and Fluctuations................................ 19 3.2 Position Space Fluctuations................................ 20 3.3 Saddle Point Fluctuations................................. 23 3.4 ∗ Path Integral Methods.................................. 24 4 The Scaling Hypothesis 29 4.1 The Homogeneity Assumption............................... 29 4.2 Correlation Lengths.................................... 30 4.3 Renormalization Group (Conceptual)..........................
    [Show full text]
  • Melting of Two-Dimensional Tunable-Diameter Colloidal Crystals
    PHYSICAL REVIEW E 77, 041406 ͑2008͒ Melting of two-dimensional tunable-diameter colloidal crystals Y. Han,* N. Y. Ha,† A. M. Alsayed, and A. G. Yodh Department of Physics and Astronomy, University of Pennsylvania, 209 South 33rd Street, Philadelphia, Pennsylvania 19104-6396, USA ͑Received 12 February 2007; revised manuscript received 24 November 2007; published 18 April 2008͒ Melting of two-dimensional colloidal crystals is studied by video microscopy. The samples were composed of microgel spheres whose diameters could be temperature tuned, and whose pair potentials were measured to be short ranged and repulsive. We observed two-step melting from the crystal to a hexatic phase and from the hexatic to the liquid phase as a function of the temperature-tunable volume fraction. The translational and orientational susceptibilities enabled us to definitively determine the phase transition points, avoiding ambigu- ities inherent in other analyses and resolving a “dislocation precursor stage” in the solid phase that some of the traditional analyses may incorrectly associate with the hexatic phase. A prefreezing stage of the liquid with ordered patches was also found. DOI: 10.1103/PhysRevE.77.041406 PACS number͑s͒: 82.70.Ϫy, 64.60.Cn, 64.70.DϪ I. INTRODUCTION to follow the spatiotemporal evolution of the same sample area through the entire sequence of transitions. This feature ͑ ͒ Two-dimensional 2D melting is a classic problem in is attractive and was not realized in previous colloidal melt- ͓ ͔ condensed matter physics 1 , and, over the years, theories ing experiments which employed samples composed of attempting to understand 2D melting have emphasized topo- charged spheres in the wedge geometry with density gradi- ͓ ͔ ͓ ͔ logical defects 2–5 , geometrical defects 6 , and grain ents ͓11͔, nor in experiments that employed samples com- ͓ ͔ boundaries 7 .
    [Show full text]
  • Trends in Mathematical Crystallisation May 2016 Organiser: Stefan Adams, Markus Heydenreich, Frank Den Hollander, Sabine Jansen
    Trends in mathematical crystallisation May 2016 Organiser: Stefan Adams, Markus Heydenreich, Frank den Hollander, Sabine Jansen Description and aim: The workshop concentrates on the mathematical theory of crystallisation. More precisely, we focus on five topics that are closely connected with crystallisation, and approach these topics from different mathematical angles. These five topics are: (1) Spatial symmetry breaking at positive temperature (2) Crystallisation and surface effects at zero temperature (3) Continuum particle systems (Gibbs point fields, metastability, and Percolation) (4) Elasticity (variational analysis & gradient fields and quasi-crystals and liquid crystals (5) Differential/integral geometry We expect participants from analysis, statistical physics and probability. Our primary goal is to discuss the different approaches towards crystallisation in these disciplines. Vision: Crystallisation is the (natural or artificial) process of formation of solid crystals precipitating from a solution, melt or more rarely deposited directly from a gas. Crystallisation is also a chemical solid-liquid separation technique, in which mass transfer of a solute from the liquid solution to a pure solid crystalline phase occurs. In chemical engineering crystallisation occurs in a crystalliser. Crystallisation is therefore an aspect of precipitation, obtained through a variation of the solubility conditions of the solute in the solvent, as compared to precipitation due to chemical reaction. Crystallisation poses major challenges for mathematicians - it is one of the challenging open interdisciplinary problems involving analysts, probabilists, applied mathematicians, physicists and material scientists. There are many open questions, among which are the following. Most of these have been discussed at the workshop 'Facets of mathematical crystallization' - Lorentz Center Leiden, September 2014. A key challenge of the workshop is to address and clarify their potential further.
    [Show full text]
  • Bond-Orientational Order and Frank's Constant in Two-Dimensional
    IOP Journal of Physics: Condensed Matter Journal of Physics: Condensed Matter J. Phys.: Condens. Matter J. Phys.: Condens. Matter 30 (2018) 104003 (6pp) https://doi.org/10.1088/1361-648X/aaab31 30 Bond-orientational order and Frank’s 2018 constant in two-dimensional colloidal © 2018 IOP Publishing Ltd hard spheres JCOMEL Alice L Thorneywork1,2, Joshua L Abbott1, Dirk G A L Aarts1, Peter Keim3 and Roel P A Dullens1 104003 1 Department of Chemistry, Physical and Theoretical Chemistry Laboratory, University of Oxford, South Parks Road, Oxford, OX1 3QZ, United Kingdom A L Thorneywork et al 2 Cavendish Laboratory, University of Cambridge, Cambridge CB3 0HE, United Kingdom 3 Department of Physics, University of Konstanz, Konstanz 78464, Germany Bond-orientational order and Frank s constant in two-dimensional colloidal hard spheres ’ E-mail: [email protected] Printed in the UK Received 26 October 2017, revised 12 January 2018 Accepted for publication 29 January 2018 Published 15 February 2018 CM Abstract Recently, the full phase behaviour of 2D colloidal hard spheres was experimentally 10.1088/1361-648X/aaab31 established, and found to involve a first order liquid to hexatic transition and a continuous hexatic to crystal transition (Thorneywork et al 2017 Phys. Rev. Lett. 118 158001). Here, we expand upon this work by considering the behaviour of the bond-orientational correlation Paper time and Frank’s constant in the region of these phase transitions. We also consider the excess entropy, as calculated from the radial distribution functions, for a wide range of area fractions covering the liquid, hexatic and crystal phases.
    [Show full text]
  • Kosterlitz–Thouless Physics: a Review of Key Issues Accepted for Publication 7 October 2015 Published 28 January 2016
    Reports on Progress in Physics REVIEW Related content - Berezinskii–Kosterlitz–Thouless transition Kosterlitz–Thouless physics: a review of key and two-dimensional melting V N Ryzhov, E E Tareyeva, Yu D Fomin et issues al. - Depinning and nonequilibrium dynamic phases of particle assemblies driven over To cite this article: J Michael Kosterlitz 2016 Rep. Prog. Phys. 79 026001 random and ordered substrates: a review C Reichhardt and C J Olson Reichhardt - Quantum phase transitions Matthias Vojta View the article online for updates and enhancements. Recent citations - Isolating long-wavelength fluctuation from structural relaxation in two-dimensional glass: cage-relative displacement Hayato Shiba et al - Disappearance of the Hexatic Phase in a Binary Mixture of Hard Disks John Russo and Nigel B. Wilding - Berezinskii—Kosterlitz—Thouless transition and two-dimensional melting Valentin N. Ryzhov et al This content was downloaded from IP address 128.227.24.141 on 25/02/2018 at 11:47 IOP Reports on Progress in Physics Reports on Progress in Physics Rep. Prog. Phys. Rep. Prog. Phys. 79 (2016) 026001 (59pp) doi:10.1088/0034-4885/79/2/026001 79 Review 2016 Kosterlitz–Thouless physics: a review of key © 2016 IOP Publishing Ltd issues RPPHAG J Michael Kosterlitz 026001 Department of Physics, Brown University, Providence, RI 02912, USA J M Kosterlitz E-mail: [email protected] Received 1 June 2015, revised 5 October 2015 Kosterlitz–Thouless physics: a review of key issues Accepted for publication 7 October 2015 Published 28 January 2016 Printed in the UK Abstract This article reviews, from a very personal point of view, the origins and the early work on ROP transitions driven by topological defects such as vortices in the two dimensional planar rotor model and in 4Helium films and dislocations and disclinations in 2D crystals.
    [Show full text]
  • Arxiv:1101.4337V2 [Cond-Mat.Stat-Mech] 18 Mar 2011 Havior in Agreement with the KTHNY Predictions
    Characterization of the Melting Transition in Two Dimensions at Vanishing External Pressure Using Molecular Dynamics Simulations Daniel Asenjo1;4, Fernando Lund1, Sim´onPoblete2, Rodrigo Soto1, and Marcos Sotomayor3 1Departamento de F´ısica and CIMAT, Facultad de Ciencias F´ısicas y Matem´aticas, Universidad de Chile, Santiago, Chile 2Max Planck Institute for Polymer Research, Ackermannweg 10, 55128 Mainz, Germany 3 Howard Hughes Medical Institute and Neurobiology Department, Harvard Medical School, Boston, MA, USA 4Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge CB2 1EW, United Kingdom. A molecular dynamics study of a two dimensional system of particles interacting through a Lennard-Jones pairwise potential is performed at fixed temperature and vanishing external pressure. As the temperature is increased, a solid-to-liquid transition occurs. When the melting temperature Tc is approached from below, there is a proliferation of dislocation pairs and the elastic constant approaches the value predicted by the KTHNY theory. In addition, as Tc is approached from above, the relaxation time increases, consistent with an approach to criticality. However, simulations fail to produce a stable hexatic phase using systems with up to 90,000 particles. A significant jump in enthalpy at Tc is observed, consistent with either a first order or a continuous transition. The role of external pressure is discussed. I. INTRODUCTION On the numerical side, molecular dynamics and Monte- Carlo simulations19,20 of systems with a small number of particles (N) broadly detected a transition where the Melting of an infinite solid in two dimensions has number of dislocations proliferates, but failed to pro- been described as a process driven by a proliferation vide clear evidence for the nature of the observed tran- of thermally excited dislocation pairs in the Kosterlitz- sition.
    [Show full text]
  • Defects in Two Dimensional Colloidal Crystals
    Defects in Two Dimensional Colloidal Crystals by Lichao Yu B.Sc., University of Science and Technology of China; Hefei, China, 2010 M.Sc., Brown University; Providence, RI, 2013 A dissertation submitted in partial fulfillment of the requirements for the degree of Doctor of Philosophy in Department of Physics at Brown University PROVIDENCE, RHODE ISLAND May 2015 c Copyright 2015 by Lichao Yu This dissertation by Lichao Yu is accepted in its present form by Department of Physics as satisfying the dissertation requirement for the degree of Doctor of Philosophy. Date Xinsheng Sean Ling, Ph.D., Advisor Recommended to the Graduate Council Date John Michael Kosterlitz, Ph.D., Reader Date Robert Pelcovits, Ph.D., Reader Approved by the Graduate Council Date Peter M. Weber, Dean of the Graduate School iii Vitae Lichao Yu was born in the city of Nanchang, Jiangxi, P. R. China, on July 12th 1990. He obtained his Bachelor of Science from University of Science and Technology of China in 2010, and a Master's degree in Physics from Brown University in 2013. iv Acknowledgements Time flies. Five years went really fast. I still have a vivid recollection of the day I stepped into the campus of Brown. It's sunny, warm breeze carasses my face. At that moment, I know I would, with no regret, spend the best five years of my life, here at Brown, dedicating to Physics research, the great journey of exploration. This is meant to be a wonderful experience throughout my life. First of all, I would like to give my thanks to my advisor Professor Xinsheng Sean Ling for his professional advice and guidance on research.
    [Show full text]
  • Frank's Constant in the Hexatic Phase
    PHYSICAL REVIEW E 75, 031402 ͑2007͒ Frank’s constant in the hexatic phase P. Keim,1 G. Maret,2 and H. H. von Grünberg1 1Universität Graz, 8010 Graz, Austria 2Universität Konstanz, 78457 Konstanz, Germany ͑Received 1 September 2006; revised manuscript received 25 January 2007; published 22 March 2007͒ Using videomicroscopy data of a two-dimensional colloidal system the bond-order correlation function G6 is ␰ calculated and used to determine both the orientational correlation length 6 in the liquid phase and the modulus of orientational stiffness, Frank’s constant FA, in the hexatic phase. The latter is an anisotropic fluid phase between the crystalline and the isotropic liquid phase. FA is found to be finite within the hexatic phase, takes the value 72/␲ at the hexatic↔isotropic liquid phase transition, and diverges at the hexatic↔crystal transition as predicted by the Kosterlitz-Thouless-Halperin-Nelson-Young theory. This is a quantitative test of the mechanism of breaking the orientational symmetry by disclination unbinding. DOI: 10.1103/PhysRevE.75.031402 PACS number͑s͒: 82.70.Dd, 64.70.Dv, 68.35.Rh I. INTRODUCTION type. Defect dissociation is completed at a temperature where the thermally averaged pair distance The theory of melting in two dimensions ͑2D͒, developed ␤ ͐ 2 2 − Hd by Kosterlitz, Thouless, Halperin, Nelson, and Young 2 d rr e 2−cd 2 ͗r ͘ = ␤ = r ͑2͒ ͑KTHNY͒ has been a matter of debate over decades. In a 2D ͐ 2 − Hd c d re 4−cd crystal, the density-density correlation function is an algebra- → ically decaying function and is not given by a set of ␦ peaks diverges which is obviously the case if cd 4.
    [Show full text]
  • Berezinskii-Kosterlitz-Thouless Transition
    Melting scenarios and unusual crystal structures in two-dimensional soft core systems Valentin N. Ryzhov, Yury D. Fomin, Elena E. Tareyeva, Elena N. Tsiok Institute for High Pressure Physics, Russian Academy of Sciences, 108840 Troitsk, Moscow, Russia Motivation and Outline • Dependence of structural properties and melting scenarios on the shape of the core softened and bound potentials in 2D • Influence of random pinning on the melting scenario of core-softened and bound potential systems • Theoretical background: Berezinskii-Kosterlitz-Thouless transition • Core softened and bound potentials • Theoretical background: Melting scenarios in 2D • Phase diagrams of core-softened and bound potential systems and influence of random pinning on the melting of these systems Computer simulations and experimental study of two-dimensional (2D) systems For simple potentials (hard disks, soft disks, Lennard-Jones, etc.) ground state - closed packed triangle crystal structure: Computer simulations and experimental study of water in slit pores Monolayer ice: simulation results for the TIP5P model of water in a quasi-two-dimensional hydrophobic slit nanopore (Ronen Zangi* and Alan E. Mark, Phys. Rev. Lett. 91, 025502 (2003); P. Kumar, S. V. Buldyrev, F. W. Starr, N. Giovambattista, and H. Eugene Stanley, Phys. Rev. E 72, 051503 (2005)) . First-order transition into square phase. Computer simulations and experimental study of water in slit pores The phase diagram of two layers of (TIP4P and mW) water confined between parallel non hydrogen bonding walls (Jessica C. Johnston, Noah Kastelowitz, and Valeria Molinero, THE JOURNAL OF CHEMICAL PHYSICS 133, 154516 (2010)). Computer simulations and experimental study of water in slit pores The nanoconfined between two graphene sheets water at room temperature forms ‘square ice’- a phase having symmetry qualitatively different from the conventional tetrahedral geometry of hydrogen bonding between water molecules.
    [Show full text]
  • Melting of Two-Dimensional Colloidal Crystals: a Simulation Study of The
    Melting of two-dimensional coliloidal crystals: A simulation study of the Yukawa system Kevin J. Naidoo and Jurgen Schnitker Department of Chemistry, University of Michigan, Ann Arbor, Michigan 48109-1055 (Received 13 July 1993;accepted 3 November 1993) The two-dimensional melting transition of charged polystyrene spheres in aqueous colloidal suspensionhas been studied by molecular dynamics simulation of a screenedCoulomb system. Some central predictions of the Kosterhtz-Thouless-Halperin-Nelson-Young theory of defect-mediatedmelting are confirmed, such as an apparent divergenceof the correlation lengths for translational and bond-orientational order at different thermodynamic state points, but there are also predictions of the theory that are violated. The defect topology is very complex, with oscillation periods of the defect density of many million time steps duration. The need for extensive sampling and, to a lesser degree,the choice of potential function continue to be the crucial issuesfor any attempt to generatea hexatic structure by meansof computer simulation. 1. INTRODUCTlON KTHNY theory, no consensushas emergedconcerning its applicability to real systems.Nevertheless, it seemsthat at Monodispersecolloidal particles in aqueoussuspension least some experimental systems, such as certain smectic provide a model system of unique versatility for the study liquid crystals,lo have provided good indications in support of classical condensedphase phenomena. “’ Thus such sus- of the theory. Probably the most compelling evidence for pensionshave
    [Show full text]
  • Experimental Test of Two-Dimensional Melting Through Disclination Unbinding
    PHYSICAL REVIEW E, VOLUME 64, 051404 Experimental test of two-dimensional melting through disclination unbinding R. A. Quinn* and J. Goree† Department of Physics and Astronomy, The University of Iowa, Iowa City, Iowa 52242 ͑Received 8 November 2000; revised manuscript received 30 May 2001; published 29 October 2001͒ A two-dimensional ͑2D͒ melting transition has been studied in a nonequilibrium experimental model system. The system used was a complex or dusty plasma consisting of microspheres suspended in a glow-discharge plasma, where we have mapped the topological defects during the transition. The role of the defects in the melting transition is evaluated and the arrangement of the defects in the lattice is quantified in a new way. It is found that defect density increases dramatically during the melting; at all stages the defects tend to be clustered together rather than widely dispersed; the clustering tends to take the form of chain or string-like structures. We compare these results for the defect structure with the assumptions of the popular 2D melting theory of Halperin and Nelson, rather than the predictions, as is more common. DOI: 10.1103/PhysRevE.64.051404 PACS number͑s͒: 82.70.Dd, 64.60.Ϫi, 52.27.Lw, 68.35.Rh I. INTRODUCTION rections, and the lattice microstructure is easily detected by Experimental model systems have played an important direct imaging. However, complex plasmas differ from col- role in understanding the nature of two-dimensional ͑2D͒ loidal suspensions in their volume fraction and equilibration melting for more than a decade. Much of the current interest time, which are both smaller by a factor as large as 105.
    [Show full text]
  • Two-Dimensional Colloidal Systems in Time-Dependent Magnetic Fields
    Two-dimensional colloidal systems in time-dependent magnetic fields How to define crystallinity in 2D on a local scale Patrick Dillmann, Georg Maret, and Peter Keima Universit¨atKonstanz, Fachbereich Physik, 78467 Konstanz, Germany Abstract. We use super-paramagnetic colloidal particles confined by gravitation to a flat water-air interface as a model system to study the non-equilibrium liquid-solid phase transition in two dimensions. The system temperature is adjustable by changing the strength of an exter- nal magnetic field perpendicular to the water-air interface. Increasing the magnetic field on a timescale of milliseconds quenches the liquid to a strongly super-cooled state. If the system is cooled down out of equilib- rium the solidification differs drastically from the equilibrium melting and freezing scenario as no hexatic phase is observable. The system solidifies to a polycrystalline structure with many grains of different orientations. Since the local closed packed order in two dimensions is sixfold, in both the fluid and the crystalline state, sensitive measures have to be developed. In the present manuscript we compare different methods to identify crystalline cluster locally and motivate the thresh- old values. Those are chosen in comparison with the isotropic fluid on one hand and large mono-crystals in thermal equilibrium on the other hand. With the given criteria for crystalline cluster the cluster are found not to be circular and fractal dimensions of the grains are given. 1 Introduction Since the work of Peierls [1] and Mermin and Wagner [2,3] it is known that strictly speaking no crystals exist in systems with dimension d<3 at finite temperature.
    [Show full text]