Outpatient Oral Anticancer Agents in Manitoba
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
PI3K Inhibitors in Cancer: Clinical Implications and Adverse Effects
International Journal of Molecular Sciences Review PI3K Inhibitors in Cancer: Clinical Implications and Adverse Effects Rosalin Mishra , Hima Patel, Samar Alanazi , Mary Kate Kilroy and Joan T. Garrett * Department of Pharmaceutical Sciences, College of Pharmacy, University of Cincinnati, Cincinnati, OH 45267-0514, USA; [email protected] (R.M.); [email protected] (H.P.); [email protected] (S.A.); [email protected] (M.K.K.) * Correspondence: [email protected]; Tel.: +1-513-558-0741; Fax: +1-513-558-4372 Abstract: The phospatidylinositol-3 kinase (PI3K) pathway is a crucial intracellular signaling pathway which is mutated or amplified in a wide variety of cancers including breast, gastric, ovarian, colorectal, prostate, glioblastoma and endometrial cancers. PI3K signaling plays an important role in cancer cell survival, angiogenesis and metastasis, making it a promising therapeutic target. There are several ongoing and completed clinical trials involving PI3K inhibitors (pan, isoform-specific and dual PI3K/mTOR) with the goal to find efficient PI3K inhibitors that could overcome resistance to current therapies. This review focuses on the current landscape of various PI3K inhibitors either as monotherapy or in combination therapies and the treatment outcomes involved in various phases of clinical trials in different cancer types. There is a discussion of the drug-related toxicities, challenges associated with these PI3K inhibitors and the adverse events leading to treatment failure. In addition, novel PI3K drugs that have potential to be translated in the clinic are highlighted. Keywords: cancer; PIK3CA; resistance; PI3K inhibitors Citation: Mishra, R.; Patel, H.; Alanazi, S.; Kilroy, M.K.; Garrett, J.T. -
Signal Transduction Guide
Signal Transduction Product Guide | 2007 NEW! Selective T-type Ca2+ channel blockers, NNC 55-0396 and Mibefradil ZM 447439 – Novel Aurora Kinase Inhibitor NEW! Antibodies for Cancer Research EGFR-Kinase Selective Inhibitors – BIBX 1382 and BIBU 1361 DRIVING RESEARCH FURTHER Calcium Signaling Agents ...................................2 G Protein Reagents ...........................................12 Cell Cycle and Apoptosis Reagents .....................3 Ion Channel Modulators ...................................13 Cyclic Nucleotide Related Tools ...........................7 Lipid Signaling Agents ......................................17 Cytokine Signaling Agents ..................................9 Nitric Oxide Tools .............................................19 Enzyme Inhibitors/Substrates/Activators ..............9 Protein Kinase Reagents....................................22 Glycobiology Agents .........................................12 Protein Phosphatase Reagents ..........................33 Neurochemicals | Signal Transduction Agents | Peptides | Biochemicals Signal Transduction Product Guide Calcium Signaling Agents ......................................................................................................................2 Calcium Binding Protein Modulators ...................................................................................................2 Calcium ATPase Modulators .................................................................................................................2 Calcium Sensitive Protease -
Identification of Candidate Repurposable Drugs to Combat COVID-19 Using a Signature-Based Approach
www.nature.com/scientificreports OPEN Identifcation of candidate repurposable drugs to combat COVID‑19 using a signature‑based approach Sinead M. O’Donovan1,10, Ali Imami1,10, Hunter Eby1, Nicholas D. Henkel1, Justin Fortune Creeden1, Sophie Asah1, Xiaolu Zhang1, Xiaojun Wu1, Rawan Alnafsah1, R. Travis Taylor2, James Reigle3,4, Alexander Thorman6, Behrouz Shamsaei4, Jarek Meller4,5,6,7,8 & Robert E. McCullumsmith1,9* The COVID‑19 pandemic caused by the novel SARS‑CoV‑2 is more contagious than other coronaviruses and has higher rates of mortality than infuenza. Identifcation of efective therapeutics is a crucial tool to treat those infected with SARS‑CoV‑2 and limit the spread of this novel disease globally. We deployed a bioinformatics workfow to identify candidate drugs for the treatment of COVID‑19. Using an “omics” repository, the Library of Integrated Network‑Based Cellular Signatures (LINCS), we simultaneously probed transcriptomic signatures of putative COVID‑19 drugs and publicly available SARS‑CoV‑2 infected cell lines to identify novel therapeutics. We identifed a shortlist of 20 candidate drugs: 8 are already under trial for the treatment of COVID‑19, the remaining 12 have antiviral properties and 6 have antiviral efcacy against coronaviruses specifcally, in vitro. All candidate drugs are either FDA approved or are under investigation. Our candidate drug fndings are discordant with (i.e., reverse) SARS‑CoV‑2 transcriptome signatures generated in vitro, and a subset are also identifed in transcriptome signatures generated from COVID‑19 patient samples, like the MEK inhibitor selumetinib. Overall, our fndings provide additional support for drugs that are already being explored as therapeutic agents for the treatment of COVID‑19 and identify promising novel targets that are worthy of further investigation. -
THE STRUCTURED STORAGE of ONCOLOGICAL CHEMOTERAPEUTIC REGIMENS Contribution to Standardization of Therapeutic Procedures in Current Oncology
THE STRUCTURED STORAGE OF ONCOLOGICAL CHEMOTERAPEUTIC REGIMENS Contribution to Standardization of Therapeutic Procedures in Current Oncology D. Klimes1, L. Dusek1, M. Kubasek1, J. Novotny2, J. Finek3 and R. Vyzula4 1 Institute of Biostatistics and Analyzes, Masaryk University, Kamenice 126/3, Brno, Czech Republik 2 Department of Oncology, General Teaching Hospital, Prague, Czech Republic 3 Charles University Prague, Medical Faculty Pilsen, Pilsen, Czech Republic 4 Masaryk Memorial Cancer Institute, Brno, Czech Republic Keywords: Cancer Chemotherapy Protocols, Antineoplastic Combined Chemotherapy Regimens, XML, Clinical Database. Abstract: The aim of the chemotherapeutic regimens (CHR) digitalization project is the proposal of a universal structure and creation of a publicly accessible database of contemporary CHR as a universal utility for the communication and evaluation of contemporary and newly defined clinical schedules in anti-tumor chemotherapy. After analysis of contemporary anti tumor CHR a standard XML structure was proposed, which enables the recording of simple CHR from the field of chemotherapy in solid adult tumors, and also has the potential of recording the complex treatment protocols in the field of paediatric oncology. The resulting XML documents were saved on a web server. A publicly accessible CHR database was constructed. There were a total of 130 XML documents with definitions of individual CHR in the first phase. Linked to this data store, three examples of web applications were added to demonstrate the potential uses of this newly created database. 1 INTRODUCTION clinical studies and are published in the oncological journals (Goldberg et al., 2004) (Henderson et al., Chemotherapy, along with surgery and radiotherapy 2003) (Citron et al., 2003) and subsequently in is an irreplaceable part of the clinical treatment of national or international guidelines (NCCN, 2006) oncological illnesses across nearly all diagnoses. -
A Phase II Trial of the Src-Kinase Inhibitor AZD0530 in Patients with Advanced Castration-Resistant Prostate Cancer: a California Cancer Consortium Study Primo N
Clinical report 179 A phase II trial of the Src-kinase inhibitor AZD0530 in patients with advanced castration-resistant prostate cancer: a California Cancer Consortium study Primo N. Lara Jra,b, Jeff Longmatec, Christopher P. Evansa, David I. Quinnd, Przemyslaw Twardowskic, Gurkamal Chattae, Edwin Posadasf, Walter Stadlerf and David R. Gandaraa Prostate cancer cells undergo neuroendocrine AZD0530, a potent oral Src kinase inhibitor, is feasible differentiation during androgen deprivation and secrete and tolerable in this pretreated patient population neuropeptides, hence activating androgen receptor- but possessed little clinical efficacy as monotherapy. regulated genes. Src-family protein kinases are involved in Strong preclinical evidence warrants further neuropeptide-induced prostate cancer growth and investigation of AZD0530 in earlier-stage prostate migration. A phase II trial of AZD0530, an oral Src-family cancer or as combination therapy. Anti-Cancer Drugs kinase inhibitor, in patients with advanced castration 20:179–184 c 2009 Wolters Kluwer Health | Lippincott resistant prostate cancer was conducted. The primary Williams & Wilkins. endpoint was prostate cancer-specific antigen (PSA) response rate, defined as a 30% or greater decrease. Anti-Cancer Drugs 2009, 20:179–184 A two-stage Simon design was used. Eligibility criteria Keywords: castration-resistant, prostate cancer, Src inhibitor included documentation of castration resistance (including antiandrogen withdrawal), adequate end-organ aUniversity of California Davis Cancer Center, Sacramento, bVeterans’ function, and performance status, and not more than one Administration of Northern California, Mather, cCity of Hope Comprehensive Cancer Center, Duarte, dUniversity of Southern California Norris Cancer Center, prior taxane-based chemotherapy regimen. AZD0530 was Los Angeles, California, eUniversity of Pittsburgh Cancer Center, Pittsburgh, given at 175 mg orally once daily continuously. -
Protein Kinase Inhibitors
Protein Kinase Inhibitors Protein kinases are key regulators in cell signaling pathways in eukaryotes. They act by chemically modifying other proteins with phosphate groups, a process called phosphorylation. These enzymes are known to regulate the majority of cellular pathways, especially those involved in signal transduction. The human genome codes for more than 500 protein kinases. Misregulation of these proteins has been linked to several diseases, including cancer, psoriasis and chronic inflammation. For this reason, small molecule protein kinase inhibitors have become important research tools for the elucidation of the varied roles of kinases and their mechanisms of action. These molecules have been key developments in drug pipelines of the pharmaceutical and biotechnology industries and also in the growing need to treat cancer and inflammation. Item Description Application Sizes J63983 Wortmannin, Penicillium A specific and irreversible inhibitor of phosphatidyl inositol 10mg, 25mg, 50mg funiculosum, 99+% 3-kinase (IC 2-5nM) 50 J63525 Fasudil, 98+% A potent rho-kinase inhibitor with antivasospastic properties 10mg, 50mg J60594 Fasudil dihydrochloride, A potent rho-kinase inhibitor with antivasospastic properties 250mg, 500mg, 1g 99+% J60751 Fasudil monohydrochloride A potent rho-kinase inhibitor with antivasospastic properties 100mg, 200mg, 1g 99+% J60308 Tyrphostin A23, 99% An inhibitor of EGF receptor kinase with an IC50 value of 35 5mg, 10mg, 25mg µM in the human epidermoid carcinoma cell line A431 J63090 K252c Inhibits protein kinase c with IC50 of 214 nM. Inhibits CaM 1mg, 5mg kinase with IC50 of 297 µM for the brain enzyme. J61687 Protein Kinase inhibitor Also called K252a. An alkaloid isolated from Nocardiopisis sp. 1mg, 5mg, 25mg soil fungi. -
Is Combined Chemotherapy with Cisplatin, Etoposide and Irinotecan the New Standard Treatment for Patients with Sensitive Relapsed Small Cell Lung Cancer?
Editorial Is combined chemotherapy with cisplatin, etoposide and irinotecan the new standard treatment for patients with sensitive relapsed small cell lung cancer? Alessandro Morabito Oncologia Medica Toraco-Polmonare, IRCCS Istituto Nazionale dei Tumori, Fondazione Pascale, Napoli, Italy Correspondence to: Alessandro Morabito, MD. Director of Thoracic Medical Oncology, National Cancer Institute, Via Mariano Semola, 80131 Naples, Italy. Email: [email protected]; [email protected]. Comment on: Goto K, Ohe Y, Shibata T, et al. Combined chemotherapy with cisplatin, etoposide, and irinotecan versus topotecan alone as second-line treatment for patients with sensitive relapsed small-cell lung cancer (JCOG0605): a multicentre, open-label, randomised phase 3 trial. Lancet Oncol 2016;17:1147-57. Submitted Nov 20, 2016. Accepted for publication Dec 01, 2016. doi: 10.21037/tcr.2016.12.37 View this article at: http://dx.doi.org/10.21037/tcr.2016.12.37 Treatment of small cell lung cancer (SCLC) remains a best supportive care (BSC), combined chemotherapy with significant challenge for the oncologists. Attempts to cyclophosphamide, doxorubicin and vincristine (CAV), improve the results of first- and second-line treatment oral topotecan and amrubicin: topotecan improved OS have all failed so far and no real progress has been made and quality of life compared with BSC, while CAV and in last years, emphasizing the need for novel strategies amrubicin did not show any survival benefit compared with of treatment. Patients with relapsed SCLC are usually topotecan (6-9). Although the efficacy of topotecan was low, classified into different categories, according to the time with response rates from 7% to 24% and OS from 5.8 to elapsed from the end of previous treatment: sensitive, if 9.9 months, no regimen showed superiority over topotecan tumor progression is documented at least 3 months after that continues to be considered as the standard second-line the completion of initial treatment, or resistant if tumor chemotherapy for patients with relapsed SCLC. -
Taxotere (Docetaxel) Label
Patient Information Leaflet Detach and give to Patient Rev.May 2004 Patient Information Leaflet Questions and Answers About Taxotere® Injection Concentrate (generic name = docetaxel) (pronounced as TAX-O-TEER) What is Taxotere? Taxotere is a medication to treat breast cancer, non-small cell lung cancer and prostate cancer. It has severe side effects in some patients. This leaflet is designed to help you understand how to use Taxotere and avoid its side effects to the fullest extent possible. The more you understand your treatment, the better you will be able to participate in your care. If you have questions or concerns, be sure to ask your doctor or nurse. They are always your best source of information about your condition and treatment. What is the most important information about Taxotere? • Since this drug, like many other cancer drugs, affects your blood cells, your doctor will ask for routine blood tests. These will include regular checks of your white blood cell counts. People with low blood counts can develop life-threatening infections. The earliest sign of infection may be fever, so if you experience a fever, tell your doctor right away. • Occasionally, serious allergic reactions have occurred with this medicine. If you have any allergies, tell your doctor before receiving this medicine. • A small number of people who take Taxotere have severe fluid retention, which can be life- threatening. To help avoid this problem, you must take another medication such as dexamethasone (DECKS-A-METH-A-SONE) prior to each Taxotere treatment. You must follow the schedule and take the exact dose of dexamethasone prescribed (see schedule at end of brochure). -
Access to Cancer Medicines in Australia
Access to cancer medicines in Australia Medicines Australia Oncology Industry Taskforce July 2013 Contents Glossary ..................................................................................................................................... i Executive summary .................................................................................................................... i 1 Background ..................................................................................................................... 1 1.1 Purpose of this report ....................................................................................................... 2 1.2 Methods ........................................................................................................................... 3 1.3 Report structure ............................................................................................................... 9 2 Cancer in Australia and other countries ......................................................................... 10 2.1 Population statistics on cancer ........................................................................................ 10 2.2 Population impacts of cancer in Australia ........................................................................ 24 2.3 Summary ........................................................................................................................ 33 3 Current and future cancer medicines ............................................................................ 34 3.1 Current -
Characterization of the Small Molecule Kinase Inhibitor SU11248 (Sunitinib/ SUTENT in Vitro and in Vivo
TECHNISCHE UNIVERSITÄT MÜNCHEN Lehrstuhl für Genetik Characterization of the Small Molecule Kinase Inhibitor SU11248 (Sunitinib/ SUTENT in vitro and in vivo - Towards Response Prediction in Cancer Therapy with Kinase Inhibitors Michaela Bairlein Vollständiger Abdruck der von der Fakultät Wissenschaftszentrum Weihenstephan für Ernährung, Landnutzung und Umwelt der Technischen Universität München zur Erlangung des akademischen Grades eines Doktors der Naturwissenschaften genehmigten Dissertation. Vorsitzender: Univ. -Prof. Dr. K. Schneitz Prüfer der Dissertation: 1. Univ.-Prof. Dr. A. Gierl 2. Hon.-Prof. Dr. h.c. A. Ullrich (Eberhard-Karls-Universität Tübingen) 3. Univ.-Prof. A. Schnieke, Ph.D. Die Dissertation wurde am 07.01.2010 bei der Technischen Universität München eingereicht und durch die Fakultät Wissenschaftszentrum Weihenstephan für Ernährung, Landnutzung und Umwelt am 19.04.2010 angenommen. FOR MY PARENTS 1 Contents 2 Summary ................................................................................................................................................................... 5 3 Zusammenfassung .................................................................................................................................................... 6 4 Introduction .............................................................................................................................................................. 8 4.1 Cancer .............................................................................................................................................................. -
1477-1502 Page 1477 Vijay
Vijay. K * et al. /International Journal Of Pharmacy&Technology ISSN: 0975-766X CODEN: IJPTFI Available Online through Review Article www.ijptonline.com PROTEIN KINASES: TARGETS FOR DRUG DISCOVERY Sri Harika. K, Rama lakshmi. K, Vijay. K* University College of Pharmaceutical Sciences, Acharya Nagarjuna University, Guntur. Email:[email protected] Received on 25-08-2011 Accepted on 14-09-2011 Abstract Protein kinases are enzymes that covalently modify proteins by attaching phosphate groups (from ATP) to serine, threonine, and/or tyrosine residues. In so doing, the functional properties of the protein kinase’s substrates are modified. Protein kinases transduce signals from the cell membrane into the interior of the cell. Such signals include not only those arising from ligand-receptor interactions but also environmental perturbations (ie, cell stretch or shear stress). Ultimately, the activation of signaling pathways results in the reprogramming of gene expression through the direct regulation of transcription factors or protein translation. Protein kinases regulate most aspects of normal cellular function. The pathophysiological dysfunction of protein kinase signaling pathways underlies the molecular basis of many cancers and of several manifestations of cardiovascular disease, such as hypertrophy, ischemia/reperfusion injury, angiogenesis. Given their roles in such a wide variety of disease states, protein kinases are rapidly becoming extremely attractive targets for drug discovery. The development of selective protein kinase inhibitors that can block or modulate diseases caused by abnormalities in these signaling pathways is widely considered a promising approach for drug development. Key words: protein kinase, signaling pathway, cell function. Introduction: Targets: Generally, the "target" is the naturally existing cellular or molecular structure involved in the pathology of interest that the drug-in-development is meant to act on. -
Kinase-Targeted Cancer Therapies: Progress, Challenges and Future Directions Khushwant S
Bhullar et al. Molecular Cancer (2018) 17:48 https://doi.org/10.1186/s12943-018-0804-2 REVIEW Open Access Kinase-targeted cancer therapies: progress, challenges and future directions Khushwant S. Bhullar1, Naiara Orrego Lagarón2, Eileen M. McGowan3, Indu Parmar4, Amitabh Jha5, Basil P. Hubbard1 and H. P. Vasantha Rupasinghe6,7* Abstract The human genome encodes 538 protein kinases that transfer a γ-phosphate group from ATP to serine, threonine, or tyrosine residues. Many of these kinases are associated with human cancer initiation and progression. The recent development of small-molecule kinase inhibitors for the treatment of diverse types of cancer has proven successful in clinical therapy. Significantly, protein kinases are the second most targeted group of drug targets, after the G-protein- coupled receptors. Since the development of the first protein kinase inhibitor, in the early 1980s, 37 kinase inhibitors have received FDA approval for treatment of malignancies such as breast and lung cancer. Furthermore, about 150 kinase-targeted drugs are in clinical phase trials, and many kinase-specific inhibitors are in the preclinical stage of drug development. Nevertheless, many factors confound the clinical efficacy of these molecules. Specific tumor genetics, tumor microenvironment, drug resistance, and pharmacogenomics determine how useful a compound will be in the treatment of a given cancer. This review provides an overview of kinase-targeted drug discovery and development in relation to oncology and highlights the challenges and future potential for kinase-targeted cancer therapies. Keywords: Kinases, Kinase inhibition, Small-molecule drugs, Cancer, Oncology Background Recent advances in our understanding of the fundamen- Kinases are enzymes that transfer a phosphate group to a tal molecular mechanisms underlying cancer cell signaling protein while phosphatases remove a phosphate group have elucidated a crucial role for kinases in the carcino- from protein.