Freshwater Snail Communities and Lake Classification. an Example

Total Page:16

File Type:pdf, Size:1020Kb

Freshwater Snail Communities and Lake Classification. an Example View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by Elsevier - Publisher Connector Limnologica 31 (2001) 129-138 LIMNOLOGICA http ://www.urbanfischer.de/j ournals/limno © by Urban & Fischer Verlag Hus6 Biological Station, Department of Biology, Abo Akademi University, Emkarby Aland, Finland Freshwater Snail Communities and Lake Classification. 0 An Example from the Aland Islands, Southwestern Finland RALF CARLSSON With 4 Figures and 6 Tables Key words: Freshwater snails, calcium, hardness, lake types, Aland Islands Abstract The freshwater snail fauna in 51 lakes on the A1and Islands was in- and vascular plants (CEDERCPmUTZ 1934, 1937, 1947), fol- vestigated. By means of cluster analysis it appears that lakes may be lowing the ideas of SAMUELSSON (1925) and ALMQVIST divided into four groups on the basis of snail species composition. (1929). CEDERCREUTZ classified lakes into "Weissmoor"- The lakes of the four groups show a spatial distribution which is re- lakes (dystrophic lakes), Lobelia-lakes (oligotrophic lakes) lated to topographical differences, terrestrial vegetation and land use. and Potamogeton-lakes (eutrophic lakes). The Potamogeton- Snails may be divided on the basis of water hardness into hard water species and calcium indifferent species or into demanding and mod- lakes were further subdivided into Chara-lakes (relatively est/indifferent species when clustering is based on presence/absence. shallow lakes, usually recently isolated from the sea), An- abaena-lakes (relatively deep and large lakes with open sur- faces), "Algengyttja"-lakes (shallow lakes, deteriorating be- Introduction cause of sedimentation, and therefore they often partly or completely dry up during summer) and "Braunmoor"-lakes MACAN (1977) summarised the work of BOYCOTT (1936) on (shallow lakes, overgrowing from the shores). "Zwischen"- British freshwater snails in the following way: "The optimum lakes (mixed lakes), do not fit well into any category but conditions in a habitat are much the same for all the species, show traits from two or more of them. with few exceptions. Good conditions are a large volume of Landscape ecology is an emerging discipline and the eco- moderately warm calcareous water, free from inorganic matter logical organisation of lake districts has recently paid much in suspension and from organic pollution, flowing not too attention (e.g. KRATZ et al. 2000; LEWIS & MA~NUSON 2000). rapidly over a shallow bottom, with a moderate but not exces- In a study of species-area relationships CARLSSON (2001a) sive growth of plants". Do different types of lakes offer differ- found that water hardness and aquatic vegetation were the two ent environments to which some species are adapted and some most import factors determining the number of snail species are not? Do particular snail communities develop in the differ- in lakes on the *land Islands, while lake area was of minor ent lake types or are the snail species distributed at random? (and not even statistically significant) importance. This lead Many earlier investigations have dealt with these problems to the belief that there was a general pattern with a higher (e.g. CALOW 1973; A~o et al. 1981; LODGE 1985; Pip 1986a, species richness in some lakes than in others and that this pat- 1986b, 1987, 1988; CosTm 1994). In this paper, the division of tern is perceivable in the landscape. This paper may be seen as lakes into lake types is based on the assumption that the pres- a continuation of the above mentioned paper. ence of a particular snail species reflects the environmental needs of that species, or its ecological niche. The Aland land uplift area with its many lakes (CEDERCREUTZ 1934, 1937; Study area LINDHOLM 1991) offers an excellent opportunity to study lakes of different age and thus different water chemistry properties. The Aland Islands are located in southwestern Finland, The Finnish botanist CARL CEDERCREUTZ classified lakes approximately at Lat. 60 ° N, Long. 20 ° E, about halfway on the Aland Islands on the basis of their planktonic algae between Sweden and the Finnish mainland (Fig. 1). Between 0075-9511/01/31/02-129 $15.00/0 129 Fig. 1. The Aland Islands with lines separat- ing different types of lakes. Dashed lines in- dicate uncertain limits. The 51 investigated lakes in black, other visited lakes, more ex- tensively surveyed, in white. One of the A l- lakes (M6ntrfisk) is in the A3-area, its location is depending on the south-westerly extension of the northern hill area. the central island of Aland and Finland is a vast archipelago Materials and Methods and the Sea of Aland separates the Aland Islands from Swe- den in the west. The bedrock of the main island of Aland is Snails were collected 2-15 times, depending on size and complexity composed of different kinds of acidic rapakivi granites while of the lakes, in 51 lakes by hand picking and with a rod sieve during the archipelago is built up of older bedrock consisting mainly I994-1996. The species have been identified according to HUBEN- of gneisses, migmatites and related kinds of rocks (BERGMAN DICK (1949), MANDAHL-BARTH(1970) and MACAN (1977). The two species Radix ovata (DRAPARNAUD)and R. peregra L. were treated as 1986). Despite the acidic bedrock, many lakes on the Aland one species together with Radix auricularia L. from which they with Islands are rich in calcium due to lime in the moraine, which certainty can be told only by examination of their internal genitalia covers the bedrock (HAusEN 1964). However, in the northern (MACAN 1977). Also Stagnicola palustris (MOLLER) [Syn. Lymnaea part of the province, in the municipalities of Geta, Saltvik and palustris (MIdLLER)] is treated as one species though it is nowadays Sund, there are bare rock outcrops and only a very thin regarded as a complex of several species (JACKIEWICZ ~% VON moraine cover. The hills gradually descend into a more flat PROSCHWITZ 1991; yon PROSCHWITZ, pers. comm.). landscape with till and clay deposits between residual rocky Water samples were taken at a depth of about 20 cm in the littoral hills. The lakes in the northern area are more oligotrophic and zone of each lake during one week in July 1994. Hardness (°dH) was poor in calcium than are the lakes in the lowland areas, which analysed by EDTA titration (Hath test kit), conductivity (~S em-j) also are affected by farming. The landscape is dissected by with a Metrohm 660 conductometer, pH with a Metrohm 691 pH meter and water colour with a Shimadzu UV 160 spectrophotometer. faults running in different directions, making a mosaic of bays Alkalinity was analysed by titration with 0.01 M HC1. and firths alternating with smaller and larger islands. New Areas of lakes and cultivated fields and circumferences of the lakes are still being formed in the area due to land uplift, the lakes were measured from 1:20000 topographical maps. rate of it is currently about 4-5 mm per year (LINDHOLM Statistical analysis was performed with a SYSTATby SPSS, Ver- 1991). sion 5.05 programme package and included Kolmogorov-Smirnov 130 Limnologica 31 (2001) 2 and Lilliefors test for testing of normality and average +_ standard de- Results viations. Cluster analyses on both lake and snail data (Euclidean dis- tance, average linkage) were performed with SYSTAT 9. The cluster analysis of the lakes was based solely on the occurrences of snails. The results from the water sampling are in agreement with ear- The status of a snail species in each lake was designated by the num- lier results from similar investigations (e.g. HELMINEN 1977; ber 1 (present) or 0 (absent). The presence of a snail species in a par- (~)STMAN1988; unpubl, data on Hus6 Biological Station), and ticular lake is assumed to reflect the total ecological niche of that may be regarded as representative (Table 1). Altogether, 18 particular species (AHo et al. 1981). Kruskal-Wallis one way species of snails were encountered in the 51 Aland lakes. As ANOVA was used to find out differences in the characters of the each lake was visited more than once, there is a large probabil- lakes. For comparison, the same clustering technique was also applied ity that most occurring species were encountered. Other inves- on data on Finnish lakes (AHo 1966) to show possible regional dif- tigations (e.g. OI~AND 1990) are based on sampling limited to ferences. For clustering of snails two methods were used; one based half an hour, and then some species may have been missed. on the presence/absence in lakes and one based on average _+ S.D. Some species were present in most lakes while others were values for water hardness of the lakes where the species occurred. found only in a few lakes (Table 2). In three lakes snails were so DANCrmAsK, 33 POTIONI 30 RUDDAMMEN| 32 SKOGSPOTTEN| 2111101rl~SKi 3t FAGIF.~'fT~SK I I I o~'ONoALS'rI~SK a SAGKVARNTWASl( Z7 VASTERGETA I.ANGTII~_ ~I $¥ARI"Ili~KI 13 *O/~INSJON I == U0Nnd~I~ I 3| TIMIWEIIn~K Is NORRA LN~.~JON tS S~UL ~ANGSJON 19 KVARNIIO 111A$K I 14 KVAImXllAI~ :0 SmONMA 34i OSTERGETA t,ANGT~IK 23 NORRI~I,SK. t eORGSJ~' ~o KvAm~-- 2 MORA~K, 14 HAMNSUND$ TRA6K ASKA~TleJ~SK 4 SYLL01~lltk~ =7 NORITI~I~' I sissy STORlI~SK, X 8ONRODA '~R~IKI I I llJOmw 111AI~' II LAVIIBOLE'nlAIIK t? ASGAImATnJIsK I I M04JON e lilly UL,L~K U MI!DALEN 40 BOLSTAHOLM| 'nl.ll~K HGC~L*' mASK $I HAMMARLANO|LAN{)'III~K 11 TOllIDLETRASK IS V&STAN~IASK 4= OLOFSNAS~AsK 47 LANOIJOH I 11 OSTRA KYRKBUNOET| 46 MARKU.~B~EFJJrLRDEN~ ~z vAs~ ~OIT • I m"mASK 41 ITORIRJL$K ,~ LANNm~K 41 ~ARS'mOWS~I, SK 41 SLUSSFJARDEN I I I I I I I I 0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 Distances Fig.
Recommended publications
  • Diversity of Echinostomes (Digenea: Echinostomatidae) in Their Snail Hosts at High Latitudes
    Parasite 28, 59 (2021) Ó C. Pantoja et al., published by EDP Sciences, 2021 https://doi.org/10.1051/parasite/2021054 urn:lsid:zoobank.org:pub:9816A6C3-D479-4E1D-9880-2A7E1DBD2097 Available online at: www.parasite-journal.org RESEARCH ARTICLE OPEN ACCESS Diversity of echinostomes (Digenea: Echinostomatidae) in their snail hosts at high latitudes Camila Pantoja1,2, Anna Faltýnková1,* , Katie O’Dwyer3, Damien Jouet4, Karl Skírnisson5, and Olena Kudlai1,2 1 Institute of Parasitology, Biology Centre of the Czech Academy of Sciences, Branišovská 31, 370 05 České Budějovice, Czech Republic 2 Institute of Ecology, Nature Research Centre, Akademijos 2, 08412 Vilnius, Lithuania 3 Marine and Freshwater Research Centre, Galway-Mayo Institute of Technology, H91 T8NW, Galway, Ireland 4 BioSpecT EA7506, Faculty of Pharmacy, University of Reims Champagne-Ardenne, 51 rue Cognacq-Jay, 51096 Reims Cedex, France 5 Laboratory of Parasitology, Institute for Experimental Pathology, Keldur, University of Iceland, IS-112 Reykjavík, Iceland Received 26 April 2021, Accepted 24 June 2021, Published online 28 July 2021 Abstract – The biodiversity of freshwater ecosystems globally still leaves much to be discovered, not least in the trematode parasite fauna they support. Echinostome trematode parasites have complex, multiple-host life-cycles, often involving migratory bird definitive hosts, thus leading to widespread distributions. Here, we examined the echinostome diversity in freshwater ecosystems at high latitude locations in Iceland, Finland, Ireland and Alaska (USA). We report 14 echinostome species identified morphologically and molecularly from analyses of nad1 and 28S rDNA sequence data. We found echinostomes parasitising snails of 11 species from the families Lymnaeidae, Planorbidae, Physidae and Valvatidae.
    [Show full text]
  • The Freshwater Snails (Gastropoda) of Iran, with Descriptions of Two New Genera and Eight New Species
    A peer-reviewed open-access journal ZooKeys 219: The11–61 freshwater (2012) snails (Gastropoda) of Iran, with descriptions of two new genera... 11 doi: 10.3897/zookeys.219.3406 RESEARCH articLE www.zookeys.org Launched to accelerate biodiversity research The freshwater snails (Gastropoda) of Iran, with descriptions of two new genera and eight new species Peter Glöer1,†, Vladimir Pešić2,‡ 1 Biodiversity Research Laboratory, Schulstraße 3, D-25491 Hetlingen, Germany 2 Department of Biology, Faculty of Sciences, University of Montenegro, Cetinjski put b.b., 81000 Podgorica, Montenegro † urn:lsid:zoobank.org:author:8CB6BA7C-D04E-4586-BA1D-72FAFF54C4C9 ‡ urn:lsid:zoobank.org:author:719843C2-B25C-4F8B-A063-946F53CB6327 Corresponding author: Vladimir Pešić ([email protected]) Academic editor: Eike Neubert | Received 18 May 2012 | Accepted 24 August 2012 | Published 4 September 2012 urn:lsid:zoobank.org:pub:35A0EBEF-8157-40B5-BE49-9DBD7B273918 Citation: Glöer P, Pešić V (2012) The freshwater snails (Gastropoda) of Iran, with descriptions of two new genera and eight new species. ZooKeys 219: 11–61. doi: 10.3897/zookeys.219.3406 Abstract Using published records and original data from recent field work and revision of Iranian material of cer- tain species deposited in the collections of the Natural History Museum Basel, the Zoological Museum Berlin, and Natural History Museum Vienna, a checklist of the freshwater gastropod fauna of Iran was compiled. This checklist contains 73 species from 34 genera and 14 families of freshwater snails; 27 of these species (37%) are endemic to Iran. Two new genera, Kaskakia and Sarkhia, and eight species, i.e., Bithynia forcarti, B. starmuehlneri, B.
    [Show full text]
  • December 2015
    Ellipsaria Vol. 17 - No. 4 December 2015 Newsletter of the Freshwater Mollusk Conservation Society Volume 17 – Number 4 December 2015 Cover Story . 1 Society News . 5 Regional Meetings . 9 Upcoming Meetings . 14 Contributed Articles . 15 Obituary . 28 Lyubov Burlakova, Knut Mehler, Alexander Karatayev, and Manuel Lopes-Lima FMCS Officers . 33 On October 4-8, 2015, the Great Lakes Center of Buffalo State College hosted the Second International Meeting on Biology and Conservation of Freshwater Committee Chairs Bivalves. This meeting brought together over 80 scientists from 19 countries on four continents (Europe, and Co-chairs . 34 North America, South America, and Australia). Representation from the United States was rather low, Parting Shot . 35 but that was expected, as several other meetings on freshwater molluscs were held in the USA earlier in the year. Ellipsaria Vol. 17 - No. 4 December 2015 The First International Meeting on Biology and Conservation of Freshwater Bivalves was held in Bragança, Portugal, in 2012. That meeting was organized by Manuel Lopes-Lima and his colleagues from several academic institutions in Portugal. In addition to being a research scientist with the University of Porto, Portugal, Manuel is the IUCN Coordinator of the Red List Authority on Freshwater Bivalves. The goal of the first meeting was to create a network of international experts in biology and conservation of freshwater bivalves to develop collaborative projects and global directives for their protection and conservation. The Bragança meeting was very productive in uniting freshwater mussel biologists from European countries with their colleagues in North and South America. The meeting format did not include concurrent sessions, which allowed everyone to attend to every talk and all of the plenary talks by leading scientists.
    [Show full text]
  • Molluscs, by Michael J
    Cambourne New Settlement Iron Age and Romano-British settlement on the clay uplands of west Cambridgeshire Volume 2: Specialist Appendices Web Report 15 Molluscs, by Michael J. Allen Cambourne New Settlement Iron Age and Romano-British Settlement on the Clay Uplands of West Cambridgeshire By James Wright, Matt Leivers, Rachael Seager Smith and Chris J. Stevens with contributions from Michael J. Allen, Phil Andrews, Catherine Barnett, Kayt Brown, Rowena Gale, Sheila Hamilton-Dyer, Kevin Hayward, Grace Perpetua Jones, Jacqueline I. McKinley, Robert Scaife, Nicholas A. Wells and Sarah F. Wyles Illustrations by S.E. James Volume 2: Specialist Appendices Part 1. Artefacts Part 2. Ecofacts Wessex Archaeology Report No. 23 Wessex Archaeology 2009 Published 2009 by Wessex Archaeology Ltd Portway House, Old Sarum Park, Salisbury, SP4 6EB http://www.wessexarch.co.uk Copyright © 2009 Wessex Archaeology Ltd All rights reserved ISBN 978-1-874350-49-1 Project website http://www.wessexarch.co.uk/projects/cambridgeshire/cambourne WA reports web pages http://www.wessexarch.co.uk/projects/cambridgeshire/cambourne/reports ii Contents Web pdf 1 Contents and Concordance of sites and summary details of archive ................................ iii Part 1. Artefacts 2 Prehistoric pottery, by Matt Leivers.....................................................................................1 2 Late Iron Age pottery, by Grace Perpetua Jones................................................................11 2 Romano-British pottery, by Rachael Seager Smith ...........................................................14
    [Show full text]
  • Anisus Vorticulus (Troschel 1834) (Gastropoda: Planorbidae) in Northeast Germany
    JOURNAL OF CONCHOLOGY (2013), VOL.41, NO.3 389 SOME ECOLOGICAL PECULIARITIES OF ANISUS VORTICULUS (TROSCHEL 1834) (GASTROPODA: PLANORBIDAE) IN NORTHEAST GERMANY MICHAEL L. ZETTLER Leibniz Institute for Baltic Sea Research Warnemünde, Seestr. 15, D-18119 Rostock, Germany Abstract During the EU Habitats Directive monitoring between 2008 and 2010 the ecological requirements of the gastropod species Anisus vorticulus (Troschel 1834) were investigated in 24 different waterbodies of northeast Germany. 117 sampling units were analyzed quantitatively. 45 of these units contained living individuals of the target species in abundances between 4 and 616 individuals m-2. More than 25.300 living individuals of accompanying freshwater mollusc species and about 9.400 empty shells were counted and determined to the species level. Altogether 47 species were identified. The benefit of enhanced knowledge on the ecological requirements was gained due to the wide range and high number of sampled habitats with both obviously convenient and inconvenient living conditions for A. vorticulus. In northeast Germany the amphibian zones of sheltered mesotrophic lake shores, swampy (lime) fens and peat holes which are sun exposed and have populations of any Chara species belong to the optimal, continuously and densely colonized biotopes. The cluster analysis emphasized that A. vorticulus was associated with a typical species composition, which can be named as “Anisus-vorticulus-community”. In compliance with that both the frequency of combined occurrence of species and their similarity in relative abundance are important. The following species belong to the “Anisus-vorticulus-community” in northeast Germany: Pisidium obtusale, Pisidium milium, Pisidium pseudosphaerium, Bithynia leachii, Stagnicola palustris, Valvata cristata, Bathyomphalus contortus, Bithynia tentaculata, Anisus vortex, Hippeutis complanatus, Gyraulus crista, Physa fontinalis, Segmentina nitida and Anisus vorticulus.
    [Show full text]
  • Invertebrate Animals (Metazoa: Invertebrata) of the Atanasovsko Lake, Bulgaria
    Historia naturalis bulgarica, 22: 45-71, 2015 Invertebrate Animals (Metazoa: Invertebrata) of the Atanasovsko Lake, Bulgaria Zdravko Hubenov, Lyubomir Kenderov, Ivan Pandourski Abstract: The role of the Atanasovsko Lake for storage and protection of the specific faunistic diversity, characteristic of the hyper-saline lakes of the Bulgarian seaside is presented. The fauna of the lake and surrounding waters is reviewed, the taxonomic diversity and some zoogeographical and ecological features of the invertebrates are analyzed. The lake system includes from freshwater to hyper-saline basins with fast changing environment. A total of 6 types, 10 classes, 35 orders, 82 families and 157 species are known from the Atanasovsko Lake and the surrounding basins. They include 56 species (35.7%) marine and marine-brackish forms and 101 species (64.3%) brackish-freshwater, freshwater and terrestrial forms, connected with water. For the first time, 23 species in this study are established (12 marine, 1 brackish and 10 freshwater). The marine and marine- brackish species have 4 types of ranges – Cosmopolitan, Atlantic-Indian, Atlantic-Pacific and Atlantic. The Atlantic (66.1%) and Cosmopolitan (23.2%) ranges that include 80% of the species, predominate. Most of the fauna (over 60%) has an Atlantic-Mediterranean origin and represents an impoverished Atlantic-Mediterranean fauna. The freshwater-brackish, freshwater and terrestrial forms, connected with water, that have been established from the Atanasovsko Lake, have 2 main types of ranges – species, distributed in the Palaearctic and beyond it and species, distributed only in the Palaearctic. The representatives of the first type (52.4%) predomi- nate. They are related to the typical marine coastal habitats, optimal for the development of certain species.
    [Show full text]
  • A Ma Aeolake in Alacologi N the Moe Cal Analy
    Faculty of Sciences Department of Geology and Soil Science Research Unit Palaeontology Academic year 2009‐2010 Changes in surface waters: a malacological analysis of a Late Glacial and early Holocene palaeolake in the Moervaartdepression (Belgium). by Lynn Serbruyns Thesis submitted to obtain the degree of Master in Biology. Promotor: Prof. Dr. Jacques Verniers Co‐promotor: Prof. Dr. Dirk Van Damme Faculty of Sciences Department of Geology and Soil Science Research Unit Palaeontology Academic year 2009‐2010 Changes in surface waters: a malacological analysis of a Late Glacial and early Holocene palaeolake in the Moervaartdepression (Belgium). by Lynn Serbruyns Thesis submitted to obtain the degree of Master in Biology. Promotor: Prof. Dr. Jacques Verniers Co‐promotor: Prof. Dr. Dirk Van Damme Acknowledgements0 First of all, I would like to thank my promoter Prof. Jacques Verniers and Prof. Philippe Crombé for providing me with this interesting subject and for giving me the freedom to further extend the analysis beyond the original boundaries. Thanks to my co-promoter Prof. Dirk Van Damme who I could always contact with questions and who provided me with many articles on the subject. I also want to thank Prof. Keppens for giving me the opportunity to perform the isotope analysis at the VUB, even though technology let us down in the end. I would like to thank Koen Verhoeven for sacrificing part of his office and for aiding me with the sampling from the trench. Thanks to Mona Court-Picon for the numerous ways in which she helped me during the making of this thesis and for the nice talks.
    [Show full text]
  • The Molluscs of the Dwelling Mound Gomolava, Yugoslavia
    THE MOLLUSCS OF THE DWELLING MOUND GOMOLAVA, YUGOSLAVIA AN ENVIRONMENTAL INVESTIGATION ON AND NEAR GOMOLAVA Jan Willem Eggink CONTENTS I. INTRODUCTION 2. THE HISTORY OF MOLLUSC RESEARCH IN ARCHAEOLOGY 3. MATERIAL AND METHODS 4. TABLES AND DIAGRAMS 5. DISCUSSION 6. CONCLUSIONS 7. ACKNOWLEDGEMENTS 8. REFERENCES 9. KEYWORDS 55 56 1. W. E GGINK 1. INTRODUCTION* Gomolava, in Yugoslavia, is a dwelling mound on the left bank of the river Sava near Hrtkovci, a small village about 60 km north­ west from Belgrade (fig.1). The mound shows eight periods of habitation, the oldest belon­ ging to the Vinca culture that, with the aid of C14, may be fixed at c. 4000-3800 B.C. f (Clason, 1977). The most recent traces, inclu­ \ ding a burial-ground, date from the early \', 1--__-<7 0 ,.,> Middle Ages (table 1). f-----�/ I > , After trial excavations during the fifties, it f--____-<7/' I"/"\.''''' \ -----\, was decided in 1970 to excavate the tell, as 1--_____/ C' 1 \ .... , '} ' \ systematically as possible, in its entirety. The � ) location of Gomolava along the outside bend ; ....._ ..- ...",--_ .. of the river Sava, has largely contributed to \- this decision. For, owing to erosion, portions of the tell disappear into the river every year. Fig. 1. The ge ograph ic location of Go molava, Yu go­ Its original surface area has no doubt been slavia. pigger than what now remains (about 230 x 45 metres) (fig. 2). In the earliest periods of its habitation, the tell may possibly have been under supervision of Dr. A.T. Clason, carried situated at some distance from the Sava.
    [Show full text]
  • Clitellata, Chironomidae and Gastropoda) from Lake Gölbaşı (Hatay-Turkey
    www.trjfas.org ISSN 1303-2712 Turkish Journal of Fisheries and Aquatic Sciences 13: 869-873 (2013) DOI: 10.4194/1303-2712-v13_5_11 SHORT PAPER Twelve New Records (Clitellata, Chironomidae and Gastropoda) from Lake Gölbaşı (Hatay-Turkey) Naime Arslan1,*, Deniz Kara1, Deniz Anıl Odabaşı2 1 Eskişehir Osmangazi University, Arts and Sciences Faculty, Biology Department, Eskişehir, Turkey. 2 Çanakkale Onsekiz Mart University, Faculty of Marine Science and Technology, Department of Basic Sciences, Çanakkale, Turkey. * Corresponding Author: Tel.: +90.532 3238672; Fax: +90.222 2393578; Received 12 July 2013 E-mail: [email protected], [email protected] Accepted 31 December 2013 Abstract Samples were collected from 3 different stations between October 2011 and June 2012 with a view to identifying the macrozoobenthic fauna (especially Gastropoda, Clitellata and Chironomidae) of Lake Gölbaşı, located in Southern Anatolia. A total of 14 species were determined, 12 of them (Valvata macrostoma, Theodoxus anatolicus, Physella acuta (Gastropoda); Potamothrix hammoniensis, Psammoryctides albicola (Clitellata); Harnischia fuscimana, Einfeldia pagana, Chironomus thummi, Polypedilum sordens, Polypedilum convictum, Polypedilum scalaenum and Cladotanytarsus mancus (Chironomidae)) are first published records for Lake Gölbaşı and two of them (Melanoides tuberculatus and Melanopsis costata (Gastropoda)) have previously been reported from the lake. Keywords: Macrozoobenthic, limnofauna. Gölbaşı (Hatay-Türkiye) Gölü’nden 12 Yeni Kayıt (Clitellata, Chironomidae
    [Show full text]
  • Guidelines for the Capture and Management of Digital Zoological Names Information Francisco W
    Guidelines for the Capture and Management of Digital Zoological Names Information Francisco W. Welter-Schultes Version 1.1 March 2013 Suggested citation: Welter-Schultes, F.W. (2012). Guidelines for the capture and management of digital zoological names information. Version 1.1 released on March 2013. Copenhagen: Global Biodiversity Information Facility, 126 pp, ISBN: 87-92020-44-5, accessible online at http://www.gbif.org/orc/?doc_id=2784. ISBN: 87-92020-44-5 (10 digits), 978-87-92020-44-4 (13 digits). Persistent URI: http://www.gbif.org/orc/?doc_id=2784. Language: English. Copyright © F. W. Welter-Schultes & Global Biodiversity Information Facility, 2012. Disclaimer: The information, ideas, and opinions presented in this publication are those of the author and do not represent those of GBIF. License: This document is licensed under Creative Commons Attribution 3.0. Document Control: Version Description Date of release Author(s) 0.1 First complete draft. January 2012 F. W. Welter- Schultes 0.2 Document re-structured to improve February 2012 F. W. Welter- usability. Available for public Schultes & A. review. González-Talaván 1.0 First public version of the June 2012 F. W. Welter- document. Schultes 1.1 Minor editions March 2013 F. W. Welter- Schultes Cover Credit: GBIF Secretariat, 2012. Image by Levi Szekeres (Romania), obtained by stock.xchng (http://www.sxc.hu/photo/1389360). March 2013 ii Guidelines for the management of digital zoological names information Version 1.1 Table of Contents How to use this book ......................................................................... 1 SECTION I 1. Introduction ................................................................................ 2 1.1. Identifiers and the role of Linnean names ......................................... 2 1.1.1 Identifiers ..................................................................................
    [Show full text]
  • Buglife Ditches Report Vol1
    The ecological status of ditch systems An investigation into the current status of the aquatic invertebrate and plant communities of grazing marsh ditch systems in England and Wales Technical Report Volume 1 Summary of methods and major findings C.M. Drake N.F Stewart M.A. Palmer V.L. Kindemba September 2010 Buglife – The Invertebrate Conservation Trust 1 Little whirlpool ram’s-horn snail ( Anisus vorticulus ) © Roger Key This report should be cited as: Drake, C.M, Stewart, N.F., Palmer, M.A. & Kindemba, V. L. (2010) The ecological status of ditch systems: an investigation into the current status of the aquatic invertebrate and plant communities of grazing marsh ditch systems in England and Wales. Technical Report. Buglife – The Invertebrate Conservation Trust, Peterborough. ISBN: 1-904878-98-8 2 Contents Volume 1 Acknowledgements 5 Executive summary 6 1 Introduction 8 1.1 The national context 8 1.2 Previous relevant studies 8 1.3 The core project 9 1.4 Companion projects 10 2 Overview of methods 12 2.1 Site selection 12 2.2 Survey coverage 14 2.3 Field survey methods 17 2.4 Data storage 17 2.5 Classification and evaluation techniques 19 2.6 Repeat sampling of ditches in Somerset 19 2.7 Investigation of change over time 20 3 Botanical classification of ditches 21 3.1 Methods 21 3.2 Results 22 3.3 Explanatory environmental variables and vegetation characteristics 26 3.4 Comparison with previous ditch vegetation classifications 30 3.5 Affinities with the National Vegetation Classification 32 Botanical classification of ditches: key points
    [Show full text]
  • Blötdjur Sidopalpssnäckor – Taggsäcksnäckor Mollusca: Cimidae –Asperspinidae
    Blötdjur Sidopalpssnäckor – taggsäcksnäckor Mollusca: Cimidae –Asperspinidae Denna volym omfattar samtliga svenska arter nationalnyckeln till sveriges flora och fauna Blötdjur Sidopalpssnäckor–taggsäcksnäckor Mollusca: Cimidae–Asperspinidae TEXT Kennet Lundin Klas Malmberg Fredrik Pleijel Bidrag har dessutom lämnats av Ted von Proschwitz BILD Fredrik Pleijel Klas Malmberg SLU Artdatabanken Sveriges lantbruksuniversitet • 19 Inledning et ligger ett skimmer av sagoväsen över nakensnäckor och deras havs- levande släkting ar. De befinner sig mellan poesi och verklighet. De är D osynliga ovan ytan men finns ändå och befolkar havets landskap som är lika verkligt och påtagligt som världen ovan. En av dem suddar ut gränsen mellan djur och växt. En är änglalik men har en djävulsk insida. Många är färgsprakande med utskott som innehåller apte- rade nässelkapslar, vilka de får från de nässeldjur de äter. Pussar du någon av dem så svider det rejält på läpparna. En är stor, vit och mjuk med ett skal dolt av tjocka mantelflikar och kom- mer bara upp ur den mjuka bottenleran för att lägga en äggmassa som liknar finska marmeladkulor. Ingen fisk äter dock den vita snäckan eftersom den har körtlar i huden som kan producera svavelsyra. Denna volym av Nationalnyckeln är den inledande volymen om under- klassen Hetrobranchia och omfattar marina bakgälade snäckor samt de lim- niska kamgälssnäckorna. Här finns övergripande presentationer av såväl un- derklassen Heterobranchia som av infraklasserna lägre Heterobranchia och Euthyneura med tillhörande arttexter och nycklar. Övriga taxa inom Hetero- branchia presenteras i en annan volym. Vetigastropoda PatellogastropodaVetigastropoda Gastropoda Neritimorpha Caenogastropoda Släktträd som visar evolution och släktskap mellan underklasser inom Gastropoda. Heterobranchia Källa: Cunha & Giribet 2019 ILLUSTRATION: JAN-ÅKE WINQVIST Draknuding Facelina bostoniensis.
    [Show full text]