Table S1 (Goes with Figure 1)

Total Page:16

File Type:pdf, Size:1020Kb

Table S1 (Goes with Figure 1) Table S1 (Goes with Figure 1) Table S1. SigClust classification of 56 Trp53 null mouse mammary tumors. GSE# SigClust Result Host-IR Status Genotype GSM691237.CEL Basal-like IR-host WT GSM691250.CEL Basal-like IR-host WT GSM691236.CEL Claudin-low IR-host WT GSM691241.CEL Claudin-low IR-host WT GSM691256.CEL Claudin-low IR-host WT GSM691257.CEL Claudin-low IR-host WT GSM691247.CEL p53 null IR-host WT GSM691254.CEL p53 null IR-host WT GSM691246. CEL UlUnclass ifidified-1 IR-hthost WT GSM691249.CEL Unclassified-1 IR-host WT GSM691251.CEL Unclassified-1 IR-host WT GSM691253.CEL Unclassified-1 IR-host WT GSM691255.CEL Unclassified-1 IR-host WT GSM691235.CEL Luminal IR-host WT GSM691238.CEL Luminal IR-host WT GSM691239.CEL Luminal IR-host WT GSM691242.CEL Luminal IR-host WT GSM691243. CEL Luminal IR-host WT GSM691244.CEL Luminal IR-host WT GSM691245.CEL Luminal IR-host WT GSM691248.CEL Luminal IR-host WT GSM691252.CEL Luminal IR-host WT GSM691240.CEL Unclassified-2 IR-host WT GSM691228.CEL Basal-like Sham WT GSM691229.CEL Claudin-low Sham WT GSM691230.CEL Claudin-low Sham WT GSM691231.CEL Claudin-low Sham WT GSM691226.CEL Luminal Sham WT GSM691227.CEL Luminal Sham WT GSM691233.CEL Luminal Sham WT GSM691234.CEL Luminal Sham WT GSM691232.CEL Unclassified-2 Sham WT David.N.4.Het.122110.CEL Claudin-low IR-host TGFb +/- GSM691272.CEL Claudin-low IR-host TGFb +/- GSM691274.CEL Claudin-low IR-host TGFb +/- GSM691275.CEL Claudin-low IR-host TGFb +/- GSM691276.CEL Claudin-low IR-host TGFb +/- David.N.1.Het.122110.CEL p53 null IR-host TGFb +/- David.N.49.Het.122110.CEL p53 null IR-host TGFb +/- David.N.50.Het.122110.CEL p53 null IR-host TGFb +/- David.N.47.Het.122110.CEL Unclassified-1 IR-host TGFb +/- David.N.55.Het.122110.CEL Unclassified-1 IR-host TGFb +/- GSM691279.CEL Unclassified-1 IR-host TGFb +/- David.N.26.Het.122110.CEL Luminal IR-host TGFb +/- David.N.35.Het.122110.CEL Luminal IR-host TGFb +/- GSM691273.CEL Luminal IR-host TGFb +/- GSM691278.CEL Luminal IR-host TGFb +/- GSM691280.CEL Luminal IR-host TGFb +/- GSM691277.CEL Unclassified-2 IR-host TGFb +/- GSM691281.CEL Unclassified-2 IR-host TGFb +/- GSM691258.CEL Basal-like Sham TGFb +/- GSM691262.CEL Basal-like Sham TGFb +/- GSM691259.CEL Claudin-low Sham TGFb +/- GSM691263.CEL Claudin-low Sham TGFb +/- GSM691261. CEL p53 nu ll Sham TGFb + /- GSM691260.CEL Luminal Sham TGFb +/- Table S2 (Goes with Figure 2). Genes in the 323-irradiated host signature Affy Probe Symbol Direction Affy Probe Symbol Direction Affy Probe Symbol Direction Affy Probe Symbol Direction Affy Probe Symbol Direction 1456878_at AI646023 UP 1427285_s_at Malat1 UP 1423523_at Aass DOWN 1456741_s_at Gpm6a DOWN 1454934_at Ppm1f DOWN 1453239_a_at Ankrd22 UP 1431385_a_at Mbtps1 UP 1425032_at Abpb DOWN 1455466_at Gpr133 DOWN 1457029_at Ppp4r1l DOWN 1432344_a_at Aplp2 UP 1419504_at Mogat1 UP 1418754_at Adcy8 DOWN 1424613_at Gprc5b DOWN 1429463_at Prkaa2 DOWN 1417561_at Apoc1 UP 1451858_at Mrgpra2 UP 1424393_s_at Adhfe1 DOWN 1416411_at Gstm2 DOWN 1418666_at Ptx3 DOWN 1418687_at Arc UP 1426941_at Muc15 UP 1447839_x_at Adm DOWN 1417883_at Gstt2 DOWN 1417741_at Pygl DOWN AU02009 1455172_at 4 UP 1438730_at Nav1 UP 1419706_a_at Akap12 DOWN 1420872_at Gucy1b3 DOWN 1434914_at Rab6b DOWN 1423456_at Bzw2 UP 1435981_at Nav2 UP 1451675_a_at Alas2 DOWN 1440145_at H60a DOWN 1420603_s_at Raet1a DOWN 1443227_at Bzw2 UP 1447885_x_at Nedd9 UP 1438967_x_at Amhr2 DOWN 1452145_at H6pd DOWN 1455840_at Rapgef5 DOWN 1426043_a_at Capn3 UP 1453614_a_at Nfe2l3 UP 1453287_at Ankrd33b DOWN 1418645_at Hal DOWN 1437902_s_at Rarres2 DOWN 1421952_at Capn6 UP 1435486_at Pak3 UP 1432006_at Ap2a2 DOWN 1420589_at Has3 DOWN 1449461_at Rbp7 DOWN 1428735_at Cd69 UP 1437318_at Pak3 UP 1416371_at Apod DOWN 1417714_x_at Hba-a1 DOWN 1424382_at Rcn3 DOWN 1455435_s_at Chdh UP 1436124_at Pcyt1b UP 1435050_at Arfgef3 DOWN 1417184_s_at Hbb-b1 DOWN 1415905_at Reg1 DOWN 1437578_at Clca2 UP 1418210_at Pfn2 UP 1441618_at Arhgap29 DOWN 1451229_at Hdac11 DOWN 1418003_at Rgc32 DOWN 1419463_at Clca2 UP 1449374_at Pipox UP 1452303_at Arhgef10 DOWN 1448239_at Hmox1 DOWN 1450693_at Rgs17 DOWN 1435504_at Clip4 UP 1449586_at Pkp1 UP 1460346_at Arsa DOWN 1424367_a_at Homer2 DOWN 1452899_at Rian DOWN 1425476_at Col4a5 UP 1448558_a_at Pla2g4a UP 1452308_a_at Atp1a2 DOWN 1457671_at Homer2 DOWN 1436044_at Scn7a DOWN 1417497_at Cp UP 1430700_a_at Pla2g7 UP 1448211_at Atp6v0e2 DOWN 1452388_at Hspa1a DOWN 1417580_s_at Selenbp1 DOWN 1455579_at Csn1s2a UP 1418203_at Pmaip1 UP 1440293_at C230081A13Rik DOWN 1422196_at Htr5b DOWN 1420558_at Selp DOWN 1420369_a_at Csn2 UP 1447623_s_at Prkd1 UP 1427355_at Calca DOWN 1425324_x_at Igh DOWN 1429459_at Sema3d DOWN 1419697_at Cxcl11 UP 1420352_at Prss22 UP 1422639_at Calcb DOWN 1437876_at Il20rb DOWN 1439768_x_at Sema4f DOWN 1418652_at Cxcl9 UP 1419669_at Prtn3 UP 1424770_at Cald1 DOWN 1450297_at Il6 DOWN 1419100_at Serpina3n DOWN 1454106_a_at Cxxc1 UP 1449310_at Ptger2 UP 1418509_at Cbr2 DOWN 1436755_at Itih5 DOWN 1419082_at Serpinb2 DOWN 1436345_at D1Mgi54 UP 1421073_a_at Ptger4 UP 1420380_at Ccl2 DOWN 1423180_at Kcnb1 DOWN 1419149_at Serpine1 DOWN 1435940_at Dclk1 UP 1419229_at Rhox4a UP 1417266_at Ccl6 DOWN 1454701_at Lars DOWN 1416702_at Serpini1 DOWN 1426005_at Dmp1 UP 1455347_at Rtel1 UP 1419684_at Ccl8 DOWN 1456156_at Lepr DOWN 1438042_at Shox2 DOWN 1458000_at Dsg1a UP 1424704_at Runx2 UP 1419144_at Cd163 DOWN 1425644_at Lepr DOWN 1426550_at Sidt1 DOWN 1415857_at Emb UP 1417719_at Sap30 UP 1449918_at Cd209g DOWN 1440147_at Lgi2 DOWN 1419437_at Sim2 DOWN 1425272_at Emp2 UP 1459897_a_at Sbsn UP 1423166_at Cd36 DOWN 1435321_at Limch1 DOWN 1417623_at Slc12a2 DOWN 1433670_at Emp2 UP 1420764_at Scrg1 UP 1450884_at Cd36 DOWN 1435106_at Limch1 DOWN 1448780_at Slc12a2 DOWN 1442542_at Eya4 UP 1450734_at Sec16b UP 1432022_at Cdgap DOWN 1424596_s_at Lmcd1 DOWN 1420334_at Slc12a8 DOWN 1419490_at Fam19a5 UP 1425002_at Sectm1a UP 1450140_a_at Cdkn2a DOWN 1456909_at LOC676974 DOWN 1418395_at Slc47a1 DOWN 1436576_at Fam26f UP 1419478_at Sectm1b UP 1452309_at Cgnl1 DOWN 1433536_at Lrp11 DOWN 1420504_at Slc6a14 DOWN 1429682_at Fam46c UP 1441941_x_at Serpinb5 UP 1433720_s_at Chchd10 DOWN 1418061_at Ltbp2 DOWN 1433933_s_at Slco2b1 DOWN 1418596_at Fgfr4 UP 1420378_at Sftpd UP 1454866_s_at Clic6 DOWN 1429379_at Lyve1 DOWN 1418493_a_at Snca DOWN 1438558_x_at Foxq1 UP 1423024_at Sh2d1b1 UP 1449456_a_at Cma1 DOWN 1449283_a_at Mapk12 DOWN 1416967_at Sox2 DOWN 1422735_at Foxq1 UP 1422856_at Slc12a3 UP 1448730_at Cpa3 DOWN 1434140_at Mcf2l DOWN 1458203_at Spire1 DOWN G530011 1440342_at O06Rik UP 1427339_at Slc30a2 UP 1416194_at Cyp4b1 DOWN 1449989_at Mcpt2 DOWN 1452604_at Stard13 DOWN 1418776_at Gbp8 UP 1460541_at Slc7a6 UP 1458934_at D5Ertd505e DOWN 1427040_at Mdfic DOWN 1430165_at Stk17b DOWN 1439015_at Gfra1 UP 1449340_at Sostdc1 UP 1418174_at Dbp DOWN 1452905_at Meg3 DOWN 1423280_at Stmn2 DOWN 1448485_at Ggt1 UP 1435438_at Sox8 UP 1429298_at Ddah1 DOWN 1455531_at Mfsd4 DOWN 1455610_at Synm DOWN 1416715_at Gjb3 UP 1423323_at Tacstd2 UP 1436661_at Dpp10 DOWN 1436021_at Mfsd4 DOWN 1418107_at Tcea2 DOWN 1422179_at Gjb4 UP 1422188_s_at Tcrg-V2 UP 1436479_a_at Dpp7 DOWN 1424123_at Mfsd7c DOWN 1423340_at Tcfap2b DOWN 1424927_at Glipr1 UP 1448069_at Tm4sf1 UP 1421276_a_at Dst DOWN 1419605_at Mgl1 DOWN 1419537_at Tcfec DOWN 1424825_a_at Glycam1 UP 1449033_at Tnfrsf11b UP 1422411_s_at Ear1 DOWN 1421977_at Mmp19 DOWN 1420191_s_at Tmem191c DOWN 1457227_at Gm11266 UP 1418309_at Tnfrsf11b UP 1425295_at Ear11 DOWN 1450430_at Mrc1 DOWN 1435261_at Tmtc1 DOWN 1449009_at Gm12185 UP 1422740_at Tnfrsf21 UP 1417236_at Ehd3 DOWN 1432205_a_at Mtus2 DOWN 1450798_at Tnxb DOWN 1447870_x_at Gm2292 UP 1439680_at Tnfsf10 UP 1427484_at Eml5 DOWN 1424933_at Myo5c DOWN 1426175_a_at Tpsab1 DOWN 1452353_at Gpr155 UP 1418158_at Trp63 UP 1418829_a_at Eno2 DOWN 1421385_a_at Myo7a DOWN 1420772_a_at Tsc22d3 DOWN 1430332_a_at Gusb UP 1455377_at Ttll7 UP 1449324_at Ero1l DOWN 1447271_at Nck1 DOWN 1424649_a_at Tspan8 DOWN 1443783_x_at H2-Aa UP 1429946_at Ttn UP 1455267_at Esrrg DOWN 1422520_at Nefm DOWN 1419584_at Ttc28 DOWN 1418536_at H2-Q7 UP 1423719_at U46068 UP 1433514_at Etnk1 DOWN 1446990_at Nfia DOWN 1448260_at Uchl1 DOWN 1442130_at Hsh2d UP 1421694_a_at Vcan UP 1448876_at Evc DOWN 1456087_at Nfia DOWN 1451651_at Vsig4 DOWN 1438441_at Id4 UP 1418175_at Vdr UP 1448929_at F13a1 DOWN 1432517_a_at Nnmt DOWN 1437556_at Zfhx4 DOWN 1423260_at Id4 UP 1460657_at Wnt10a UP 1443904_at Fads6 DOWN 1435184_at Npr3 DOWN 1455786_at Zfp820 DOWN 1454159_a_at Igfbp2 UP 1457499_at Wwp2 UP 1438402_at Fam171a1 DOWN 1418157_at Nr2f1 DOWN 1449314_at Zfpm2 DOWN 1455048_at Igsf3 UP 1436365_at Zbtb7c UP 1416978_at Fcgrt DOWN 1438448_at Otop1 DOWN 1428812_at 1700040L02Rik DOWN 1421628_at Il18r1 UP 1430674_at 1700016C15Rik UP 1418243_at Fcna DOWN 1426259_at Pank3 DOWN 1429203_at 2410076I21Rik DOWN 1421304_at Klra2 UP 1436431_at 1700025G04Rik UP 1449555_a_at Fetub DOWN 1417273_at Pdk4 DOWN 1430823_at 2700029L08Rik DOWN 1427352_at Krt79 UP 1425233_at 2210407C18Rik UP 1420086_x_at Fgf4 DOWN 1435553_at Pdzd2 DOWN 1433320_at 4930519N06Rik DOWN 1417812_a_at Lamb3 UP 1419643_s_at 2310057J18Rik UP 1435459_at Fmo2 DOWN 1448995_at Pf4 DOWN 1442113_at 5330417C22Rik DOWN 1433783_at Ldb3 UP 1453261_at 2610035D17Rik UP 1451648_a_at Folr2 DOWN 1418471_at Pgf DOWN 1441799_at 6030422H21Rik DOWN 1430551_s_at Lipm UP 1430162_at 3830417A13Rik UP 1438232_at Foxp2 DOWN 1438774_s_at Pgm2l1 DOWN 1433837_at 8430408G22Rik DOWN 1418723_at Lpar3 UP 1431577_at 5430437J10Rik UP 1426594_at Frmd4b DOWN 1435771_at Plcb4 DOWN 1459344_at 9630019E01Rik DOWN
Recommended publications
  • Itcs) in the Mouse Amygdala of Tshz1 Mutants Correlates with Fear, Depression, and Social Interaction Phenotypes
    1160 • The Journal of Neuroscience, January 31, 2018 • 38(5):1160–1177 Development/Plasticity/Repair Loss of Intercalated Cells (ITCs) in the Mouse Amygdala of Tshz1 Mutants Correlates with Fear, Depression, and Social Interaction Phenotypes X Jeffrey Kuerbitz,1 Melinda Arnett,5 Sarah Ehrman,1 XMichael T. Williams,3 XCharles V. Vorhees,3 X Simon E. Fisher,6,7 Alistair N. Garratt,8 XLouis J. Muglia,5 Ronald R. Waclaw,1,4 and XKenneth Campbell1,2 Divisions of 1Developmental Biology, 2Neurosurgery, 3Neurology, 4Experimental Hematology and Cancer Biology, 5Center for Prevention of Preterm Birth, Perinatal Institute, Cincinnati Children’s Hospital Medical Center, University of Cincinnati College of Medicine, Cincinnati, OH 45229, 6Language and Genetics Department, Max Planck Institute for Psycholinguistics, 6500 AH Nijmegen, The Netherlands, 7Donders Institute for Brain, Cognition and Behaviour, Radboud University, Nijmegen, The Netherlands, and 8Institute of Cell Biology and Neurobiology, Center for Anatomy, Charite´ University Hospital Berlin, 10117 Berlin, Germany The intercalated cells (ITCs) of the amygdala have been shown to be critical regulatory components of amygdalar circuits, which control appropriate fear responses. Despite this, the molecular processes guiding ITC development remain poorly understood. Here we establish the zinc finger transcription factor Tshz1 as a marker of ITCs during their migration from the dorsal lateral ganglionic eminence through maturity. Using germline and conditional knock-out (cKO) mouse models, we show that Tshz1 is required for the proper migration and differentiation of ITCs. In the absence of Tshz1, migrating ITC precursors fail to settle in their stereotypical locations encapsulating the lateral amygdala and BLA. Furthermore, they display reductions in the ITC marker Foxp2 and ectopic persistence of the dorsal lateral ganglionic eminence marker Sp8.
    [Show full text]
  • Mediator of DNA Damage Checkpoint 1 (MDC1) Is a Novel Estrogen Receptor Co-Regulator in Invasive 6 Lobular Carcinoma of the Breast 7 8 Evelyn K
    bioRxiv preprint doi: https://doi.org/10.1101/2020.12.16.423142; this version posted December 16, 2020. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY-NC 4.0 International license. 1 Running Title: MDC1 co-regulates ER in ILC 2 3 Research article 4 5 Mediator of DNA damage checkpoint 1 (MDC1) is a novel estrogen receptor co-regulator in invasive 6 lobular carcinoma of the breast 7 8 Evelyn K. Bordeaux1+, Joseph L. Sottnik1+, Sanjana Mehrotra1, Sarah E. Ferrara2, Andrew E. Goodspeed2,3, James 9 C. Costello2,3, Matthew J. Sikora1 10 11 +EKB and JLS contributed equally to this project. 12 13 Affiliations 14 1Dept. of Pathology, University of Colorado Anschutz Medical Campus 15 2Biostatistics and Bioinformatics Shared Resource, University of Colorado Comprehensive Cancer Center 16 3Dept. of Pharmacology, University of Colorado Anschutz Medical Campus 17 18 Corresponding author 19 Matthew J. Sikora, PhD.; Mail Stop 8104, Research Complex 1 South, Room 5117, 12801 E. 17th Ave.; Aurora, 20 CO 80045. Tel: (303)724-4301; Fax: (303)724-3712; email: [email protected]. Twitter: 21 @mjsikora 22 23 Authors' contributions 24 MJS conceived of the project. MJS, EKB, and JLS designed and performed experiments. JLS developed models 25 for the project. EKB, JLS, SM, and AEG contributed to data analysis and interpretation. SEF, AEG, and JCC 26 developed and performed informatics analyses. MJS wrote the draft manuscript; all authors read and revised the 27 manuscript and have read and approved of this version of the manuscript.
    [Show full text]
  • Variations in Microrna-25 Expression Influence the Severity of Diabetic
    BASIC RESEARCH www.jasn.org Variations in MicroRNA-25 Expression Influence the Severity of Diabetic Kidney Disease † † † Yunshuang Liu,* Hongzhi Li,* Jieting Liu,* Pengfei Han, Xuefeng Li, He Bai,* Chunlei Zhang,* Xuelian Sun,* Yanjie Teng,* Yufei Zhang,* Xiaohuan Yuan,* Yanhui Chu,* and Binghai Zhao* *Heilongjiang Key Laboratory of Anti-Fibrosis Biotherapy, Medical Research Center, Heilongjiang, People’s Republic of China; and †Clinical Laboratory of Hong Qi Hospital, Mudanjiang Medical University, Heilongjiang, People’s Republic of China ABSTRACT Diabetic nephropathy is characterized by persistent albuminuria, progressive decline in GFR, and second- ary hypertension. MicroRNAs are dysregulated in diabetic nephropathy, but identification of the specific microRNAs involved remains incomplete. Here, we show that the peripheral blood from patients with diabetes and the kidneys of animals with type 1 or 2 diabetes have low levels of microRNA-25 (miR-25) compared with those of their nondiabetic counterparts. Furthermore, treatment with high glucose decreased the expression of miR-25 in cultured kidney cells. In db/db mice, systemic administration of an miR-25 agomir repressed glomerular fibrosis and reduced high BP. Notably, knockdown of miR-25 in normal mice by systemic administration of an miR-25 antagomir resulted in increased proteinuria, extracellular matrix accumulation, podocyte foot process effacement, and hypertension with renin-angiotensin system activation. However, excessive miR-25 did not cause kidney dysfunction in wild-type mice. RNA sequencing showed the alteration of miR-25 target genes in antagomir-treated mice, including the Ras-related gene CDC42. In vitro,cotrans- fection with the miR-25 antagomir repressed luciferase activity from a reporter construct containing the CDC42 39 untranslated region.
    [Show full text]
  • Open Dogan Phdthesis Final.Pdf
    The Pennsylvania State University The Graduate School Eberly College of Science ELUCIDATING BIOLOGICAL FUNCTION OF GENOMIC DNA WITH ROBUST SIGNALS OF BIOCHEMICAL ACTIVITY: INTEGRATIVE GENOME-WIDE STUDIES OF ENHANCERS A Dissertation in Biochemistry, Microbiology and Molecular Biology by Nergiz Dogan © 2014 Nergiz Dogan Submitted in Partial Fulfillment of the Requirements for the Degree of Doctor of Philosophy August 2014 ii The dissertation of Nergiz Dogan was reviewed and approved* by the following: Ross C. Hardison T. Ming Chu Professor of Biochemistry and Molecular Biology Dissertation Advisor Chair of Committee David S. Gilmour Professor of Molecular and Cell Biology Anton Nekrutenko Professor of Biochemistry and Molecular Biology Robert F. Paulson Professor of Veterinary and Biomedical Sciences Philip Reno Assistant Professor of Antropology Scott B. Selleck Professor and Head of the Department of Biochemistry and Molecular Biology *Signatures are on file in the Graduate School iii ABSTRACT Genome-wide measurements of epigenetic features such as histone modifications, occupancy by transcription factors and coactivators provide the opportunity to understand more globally how genes are regulated. While much effort is being put into integrating the marks from various combinations of features, the contribution of each feature to accuracy of enhancer prediction is not known. We began with predictions of 4,915 candidate erythroid enhancers based on genomic occupancy by TAL1, a key hematopoietic transcription factor that is strongly associated with gene induction in erythroid cells. Seventy of these DNA segments occupied by TAL1 (TAL1 OSs) were tested by transient transfections of cultured hematopoietic cells, and 56% of these were active as enhancers. Sixty-six TAL1 OSs were evaluated in transgenic mouse embryos, and 65% of these were active enhancers in various tissues.
    [Show full text]
  • Transcriptomic Analysis of Native Versus Cultured Human and Mouse Dorsal Root Ganglia Focused on Pharmacological Targets Short
    bioRxiv preprint doi: https://doi.org/10.1101/766865; this version posted September 12, 2019. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY-ND 4.0 International license. Transcriptomic analysis of native versus cultured human and mouse dorsal root ganglia focused on pharmacological targets Short title: Comparative transcriptomics of acutely dissected versus cultured DRGs Andi Wangzhou1, Lisa A. McIlvried2, Candler Paige1, Paulino Barragan-Iglesias1, Carolyn A. Guzman1, Gregory Dussor1, Pradipta R. Ray1,#, Robert W. Gereau IV2, # and Theodore J. Price1, # 1The University of Texas at Dallas, School of Behavioral and Brain Sciences and Center for Advanced Pain Studies, 800 W Campbell Rd. Richardson, TX, 75080, USA 2Washington University Pain Center and Department of Anesthesiology, Washington University School of Medicine # corresponding authors [email protected], [email protected] and [email protected] Funding: NIH grants T32DA007261 (LM); NS065926 and NS102161 (TJP); NS106953 and NS042595 (RWG). The authors declare no conflicts of interest Author Contributions Conceived of the Project: PRR, RWG IV and TJP Performed Experiments: AW, LAM, CP, PB-I Supervised Experiments: GD, RWG IV, TJP Analyzed Data: AW, LAM, CP, CAG, PRR Supervised Bioinformatics Analysis: PRR Drew Figures: AW, PRR Wrote and Edited Manuscript: AW, LAM, CP, GD, PRR, RWG IV, TJP All authors approved the final version of the manuscript. 1 bioRxiv preprint doi: https://doi.org/10.1101/766865; this version posted September 12, 2019. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity.
    [Show full text]
  • An Unbiased Reconstruction of the T Helper Cell Type 2 Differentiation Network
    bioRxiv preprint doi: https://doi.org/10.1101/196022; this version posted October 4, 2017. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY 4.0 International license. An unbiased reconstruction of the T ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ helper cell type 2 differentiation network ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ 1,3 1 1 1 1 Authors: Johan Henriksson ,​ Xi Chen ,​ Tomás Gomes ,​ Kerstin Meyer ,​ Ricardo Miragaia ,​ ​ ​​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ 4 1 4 1 1,2,* Ubaid Ullah ,​ Jhuma Pramanik ,​ Riita Lahesmaa ,​ Kosuke Yusa ,​ Sarah A Teichmann ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ Affiliations: 1 Wellcome​ Trust Sanger Institute, Wellcome Trust Genome Campus, Hinxton, Cambridge, ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ CB10 1SA, United Kingdom ​ ​ ​ ​ ​ ​ 2 EMBL-European​ Bioinformatics Institute, Wellcome Trust Genome Campus, Hinxton, ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ Cambridge, CB10 1SD, United Kingdom ​ ​ ​ ​ ​ ​ ​ ​ 3 Karolinska​ Institutet, Department. of Biosciences and Nutrition, Hälsovägen 7, Novum, SE-141 ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ 83, Huddinge, Sweden ​ ​ ​ ​ 4 Turku​ Centre for Biotechnology, Tykistokatu 6 FI-20520, Turku, Finland ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ *To whom correspondence should be addressed: [email protected] ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​​ Tomas: [email protected] ​ ​​ Ricardo: [email protected] ​ ​​ Ubaid Ullah: [email protected] ​ ​ ​ ​​ Jhuma: [email protected]
    [Show full text]
  • Association of Gene Ontology Categories with Decay Rate for Hepg2 Experiments These Tables Show Details for All Gene Ontology Categories
    Supplementary Table 1: Association of Gene Ontology Categories with Decay Rate for HepG2 Experiments These tables show details for all Gene Ontology categories. Inferences for manual classification scheme shown at the bottom. Those categories used in Figure 1A are highlighted in bold. Standard Deviations are shown in parentheses. P-values less than 1E-20 are indicated with a "0". Rate r (hour^-1) Half-life < 2hr. Decay % GO Number Category Name Probe Sets Group Non-Group Distribution p-value In-Group Non-Group Representation p-value GO:0006350 transcription 1523 0.221 (0.009) 0.127 (0.002) FASTER 0 13.1 (0.4) 4.5 (0.1) OVER 0 GO:0006351 transcription, DNA-dependent 1498 0.220 (0.009) 0.127 (0.002) FASTER 0 13.0 (0.4) 4.5 (0.1) OVER 0 GO:0006355 regulation of transcription, DNA-dependent 1163 0.230 (0.011) 0.128 (0.002) FASTER 5.00E-21 14.2 (0.5) 4.6 (0.1) OVER 0 GO:0006366 transcription from Pol II promoter 845 0.225 (0.012) 0.130 (0.002) FASTER 1.88E-14 13.0 (0.5) 4.8 (0.1) OVER 0 GO:0006139 nucleobase, nucleoside, nucleotide and nucleic acid metabolism3004 0.173 (0.006) 0.127 (0.002) FASTER 1.28E-12 8.4 (0.2) 4.5 (0.1) OVER 0 GO:0006357 regulation of transcription from Pol II promoter 487 0.231 (0.016) 0.132 (0.002) FASTER 6.05E-10 13.5 (0.6) 4.9 (0.1) OVER 0 GO:0008283 cell proliferation 625 0.189 (0.014) 0.132 (0.002) FASTER 1.95E-05 10.1 (0.6) 5.0 (0.1) OVER 1.50E-20 GO:0006513 monoubiquitination 36 0.305 (0.049) 0.134 (0.002) FASTER 2.69E-04 25.4 (4.4) 5.1 (0.1) OVER 2.04E-06 GO:0007050 cell cycle arrest 57 0.311 (0.054) 0.133 (0.002)
    [Show full text]
  • The Oestrogen Receptor Alpha-Regulated Lncrna NEAT1 Is a Critical Modulator of Prostate Cancer
    ARTICLE Received 5 Dec 2013 | Accepted 26 Sep 2014 | Published 21 Nov 2014 DOI: 10.1038/ncomms6383 OPEN The oestrogen receptor alpha-regulated lncRNA NEAT1 is a critical modulator of prostate cancer Dimple Chakravarty1,2, Andrea Sboner1,2,3, Sujit S. Nair4, Eugenia Giannopoulou5,6, Ruohan Li7, Sven Hennig8, Juan Miguel Mosquera1,2, Jonathan Pauwels1, Kyung Park1, Myriam Kossai1,2, Theresa Y. MacDonald1, Jacqueline Fontugne1,2, Nicholas Erho9, Ismael A. Vergara9, Mercedeh Ghadessi9, Elai Davicioni9, Robert B. Jenkins10, Nallasivam Palanisamy11,12, Zhengming Chen13, Shinichi Nakagawa14, Tetsuro Hirose15, Neil H. Bander16, Himisha Beltran1,2, Archa H. Fox7, Olivier Elemento2,3 & Mark A. Rubin1,2 The androgen receptor (AR) plays a central role in establishing an oncogenic cascade that drives prostate cancer progression. Some prostate cancers escape androgen dependence and are often associated with an aggressive phenotype. The oestrogen receptor alpha (ERa)is expressed in prostate cancers, independent of AR status. However, the role of ERa remains elusive. Using a combination of chromatin immunoprecipitation (ChIP) and RNA-sequencing data, we identified an ERa-specific non-coding transcriptome signature. Among putatively ERa-regulated intergenic long non-coding RNAs (lncRNAs), we identified nuclear enriched abundant transcript 1 (NEAT1) as the most significantly overexpressed lncRNA in prostate cancer. Analysis of two large clinical cohorts also revealed that NEAT1 expression is asso- ciated with prostate cancer progression. Prostate cancer cells expressing high levels of NEAT1 were recalcitrant to androgen or AR antagonists. Finally, we provide evidence that NEAT1 drives oncogenic growth by altering the epigenetic landscape of target gene promoters to favour transcription. 1 Department of Pathology and Laboratory Medicine, Weill Medical College of Cornell University, 413 East 69th Street, Room 1402, New York, New York 10021, USA.
    [Show full text]
  • Cldn19 Clic2 Clmp Cln3
    NewbornDx™ Advanced Sequencing Evaluation When time to diagnosis matters, the NewbornDx™ Advanced Sequencing Evaluation from Athena Diagnostics delivers rapid, 5- to 7-day results on a targeted 1,722-genes. A2ML1 ALAD ATM CAV1 CLDN19 CTNS DOCK7 ETFB FOXC2 GLUL HOXC13 JAK3 AAAS ALAS2 ATP1A2 CBL CLIC2 CTRC DOCK8 ETFDH FOXE1 GLYCTK HOXD13 JUP AARS2 ALDH18A1 ATP1A3 CBS CLMP CTSA DOK7 ETHE1 FOXE3 GM2A HPD KANK1 AASS ALDH1A2 ATP2B3 CC2D2A CLN3 CTSD DOLK EVC FOXF1 GMPPA HPGD K ANSL1 ABAT ALDH3A2 ATP5A1 CCDC103 CLN5 CTSK DPAGT1 EVC2 FOXG1 GMPPB HPRT1 KAT6B ABCA12 ALDH4A1 ATP5E CCDC114 CLN6 CUBN DPM1 EXOC4 FOXH1 GNA11 HPSE2 KCNA2 ABCA3 ALDH5A1 ATP6AP2 CCDC151 CLN8 CUL4B DPM2 EXOSC3 FOXI1 GNAI3 HRAS KCNB1 ABCA4 ALDH7A1 ATP6V0A2 CCDC22 CLP1 CUL7 DPM3 EXPH5 FOXL2 GNAO1 HSD17B10 KCND2 ABCB11 ALDOA ATP6V1B1 CCDC39 CLPB CXCR4 DPP6 EYA1 FOXP1 GNAS HSD17B4 KCNE1 ABCB4 ALDOB ATP7A CCDC40 CLPP CYB5R3 DPYD EZH2 FOXP2 GNE HSD3B2 KCNE2 ABCB6 ALG1 ATP8A2 CCDC65 CNNM2 CYC1 DPYS F10 FOXP3 GNMT HSD3B7 KCNH2 ABCB7 ALG11 ATP8B1 CCDC78 CNTN1 CYP11B1 DRC1 F11 FOXRED1 GNPAT HSPD1 KCNH5 ABCC2 ALG12 ATPAF2 CCDC8 CNTNAP1 CYP11B2 DSC2 F13A1 FRAS1 GNPTAB HSPG2 KCNJ10 ABCC8 ALG13 ATR CCDC88C CNTNAP2 CYP17A1 DSG1 F13B FREM1 GNPTG HUWE1 KCNJ11 ABCC9 ALG14 ATRX CCND2 COA5 CYP1B1 DSP F2 FREM2 GNS HYDIN KCNJ13 ABCD3 ALG2 AUH CCNO COG1 CYP24A1 DST F5 FRMD7 GORAB HYLS1 KCNJ2 ABCD4 ALG3 B3GALNT2 CCS COG4 CYP26C1 DSTYK F7 FTCD GP1BA IBA57 KCNJ5 ABHD5 ALG6 B3GAT3 CCT5 COG5 CYP27A1 DTNA F8 FTO GP1BB ICK KCNJ8 ACAD8 ALG8 B3GLCT CD151 COG6 CYP27B1 DUOX2 F9 FUCA1 GP6 ICOS KCNK3 ACAD9 ALG9
    [Show full text]
  • Inhibition of Single Minded 2 Gene Expression Mediates Tumor-Selective Apoptosis and Differentiation in Human Colon Cancer Cells
    Inhibition of Single Minded 2 gene expression mediates tumor-selective apoptosis and differentiation in human colon cancer cells Mireille J. Aleman*†‡§, Maurice Phil DeYoung*†§¶, Matthew Tress*†, Patricia Keating*†, Gary W. Perryʈ, and Ramaswamy Narayanan*†** *Center for Molecular Biology and Biotechnology, Departments of †Biology and ‡Chemistry, and ¶Center for Complex System and Brain Sciences, Florida Atlantic University, 777 Glades Road, Boca Raton, FL 33431 Communicated by Herbert Weissbach, Florida Atlantic University, Boca Raton, FL, July 21, 2005 (received for review April 4, 2005) A Down’s syndrome associated gene, Single Minded 2 gene short bound AhR͞ARNT complex (12) and hence prevent carcinogen form (SIM2-s), is specifically expressed in colon tumors but not in metabolism, leading to cumulative DNA damage and cancer. the normal colon. Antisense inhibition of SIM2-s in a RKO-derived The growth arrest and DNA damage (GADD) family of genes colon carcinoma cell line causes growth inhibition, apoptosis, and was originally isolated from UV radiation-treated cells and subse- inhibition of tumor growth in a nude mouse tumoriginicity model. quently grouped according to their coordinate regulation by growth The mechanism of cell death in tumor cells is unclear. In the present arrest and DNA damage (13). The GADD family members include study, we investigated the pathways underlying apoptosis. Apo- GADD34,-45␣,-45␤,-45␥, and -153 (14, 15). These are stress- ptosis was seen in a tumor cell-specific manner in RKO cells but not response genes induced by both genotoxic and nongenotoxic in normal renal epithelial cells, despite inhibition of SIM2-s expres- stresses (16–18). GADD45␣ is the most extensively studied mem- sion in both of these cells by the antisense.
    [Show full text]
  • GJB4 (NM 153212) Human Tagged ORF Clone Product Data
    OriGene Technologies, Inc. 9620 Medical Center Drive, Ste 200 Rockville, MD 20850, US Phone: +1-888-267-4436 [email protected] EU: [email protected] CN: [email protected] Product datasheet for RC204406 GJB4 (NM_153212) Human Tagged ORF Clone Product data: Product Type: Expression Plasmids Product Name: GJB4 (NM_153212) Human Tagged ORF Clone Tag: Myc-DDK Symbol: GJB4 Synonyms: CX30.3; EKV; EKVP2 Vector: pCMV6-Entry (PS100001) E. coli Selection: Kanamycin (25 ug/mL) Cell Selection: Neomycin ORF Nucleotide >RC204406 ORF sequence Sequence: Red=Cloning site Blue=ORF Green=Tags(s) TTTTGTAATACGACTCACTATAGGGCGGCCGGGAATTCGTCGACTGGATCCGGTACCGAGGAGATCTGCC GCCGCGATCGCC ATGAACTGGGCATTTCTGCAGGGCCTGCTGAGTGGCGTGAACAAGTACTCCACAGTGCTGAGCCGCATCT GGCTGTCTGTGGTGTTCATCTTTCGTGTGCTGGTGTACGTGGTGGCAGCGGAGGAGGTGTGGGACGATGA GCAGAAGGACTTTGTCTGCAACACCAAGCAGCCCGGCTGCCCCAACGTCTGCTATGACGAGTTCTTCCCC GTGTCCCACGTGCGCCTCTGGGCCCTACAGCTCATCCTGGTCACGTGCCCCTCACTGCTCGTGGTCATGC ACGTGGCCTACCGCGAGGAACGCGAGCGCAAGCACCACCTGAAACACGGGCCCAATGCCCCGTCCCTGTA CGACAACCTGAGCAAGAAGCGGGGCGGACTGTGGTGGACGTACTTGCTGAGCCTCATCTTCAAGGCCGCC GTGGATGCTGGCTTCCTCTATATCTTCCACCGCCTCTACAAGGATTATGACATGCCCCGCGTGGTGGCCT GCTCCGTGGAGCCTTGCCCCCACACTGTGGACTGTTACATCTCCCGGCCCACGGAGAAGAAGGTCTTCAC CTACTTCATGGTGACCACAGCTGCCATCTGCATCCTGCTCAACCTCAGTGAAGTCTTCTACCTGGTGGGC AAGAGGTGCATGGAGATCTTCGGCCCCAGGCACCGGCGGCCTCGGTGCCGGGAATGCCTACCCGATACGT GCCCACCATATGTCCTCTCCCAGGGAGGGCACCCTGAGGATGGGAACTCTGTCCTAATGAAGGCTGGGTC GGCCCCAGTGGATGCAGGTGGGTATCCA ACGCGTACGCGGCCGCTCGAGCAGAAACTCATCTCAGAAGAGGATCTGGCAGCAAATGATATCCTGGATT
    [Show full text]
  • Ion Channels
    UC Davis UC Davis Previously Published Works Title THE CONCISE GUIDE TO PHARMACOLOGY 2019/20: Ion channels. Permalink https://escholarship.org/uc/item/1442g5hg Journal British journal of pharmacology, 176 Suppl 1(S1) ISSN 0007-1188 Authors Alexander, Stephen PH Mathie, Alistair Peters, John A et al. Publication Date 2019-12-01 DOI 10.1111/bph.14749 License https://creativecommons.org/licenses/by/4.0/ 4.0 Peer reviewed eScholarship.org Powered by the California Digital Library University of California S.P.H. Alexander et al. The Concise Guide to PHARMACOLOGY 2019/20: Ion channels. British Journal of Pharmacology (2019) 176, S142–S228 THE CONCISE GUIDE TO PHARMACOLOGY 2019/20: Ion channels Stephen PH Alexander1 , Alistair Mathie2 ,JohnAPeters3 , Emma L Veale2 , Jörg Striessnig4 , Eamonn Kelly5, Jane F Armstrong6 , Elena Faccenda6 ,SimonDHarding6 ,AdamJPawson6 , Joanna L Sharman6 , Christopher Southan6 , Jamie A Davies6 and CGTP Collaborators 1School of Life Sciences, University of Nottingham Medical School, Nottingham, NG7 2UH, UK 2Medway School of Pharmacy, The Universities of Greenwich and Kent at Medway, Anson Building, Central Avenue, Chatham Maritime, Chatham, Kent, ME4 4TB, UK 3Neuroscience Division, Medical Education Institute, Ninewells Hospital and Medical School, University of Dundee, Dundee, DD1 9SY, UK 4Pharmacology and Toxicology, Institute of Pharmacy, University of Innsbruck, A-6020 Innsbruck, Austria 5School of Physiology, Pharmacology and Neuroscience, University of Bristol, Bristol, BS8 1TD, UK 6Centre for Discovery Brain Science, University of Edinburgh, Edinburgh, EH8 9XD, UK Abstract The Concise Guide to PHARMACOLOGY 2019/20 is the fourth in this series of biennial publications. The Concise Guide provides concise overviews of the key properties of nearly 1800 human drug targets with an emphasis on selective pharmacology (where available), plus links to the open access knowledgebase source of drug targets and their ligands (www.guidetopharmacology.org), which provides more detailed views of target and ligand properties.
    [Show full text]