Living Large in the Cretaceous Anne Weil

Total Page:16

File Type:pdf, Size:1020Kb

Living Large in the Cretaceous Anne Weil 13.1 n&v113 MH 7/1/05 5:15 pm Page 116 news and views Mammalian palaeobiology Living large in the Cretaceous Anne Weil Discoveries of large, carnivorous mammals from the Cretaceous 100 YEARS AGO challenge the long-held view that primitive mammals were small and “Average Number of Kinsfolk in Each Degree.” uninteresting. Have palaeontologists been asking the wrong questions? May I ask you to insert yet another brief communication on the above subject, lthough more than two-thirds of has no living descendants. Repenomamus because private correspondence shows mammalian evolution occurred is closely related to Gobiconodon,another that paradoxical opinions are not yet wholly A between about 180 million and mammal discovered in the Lujiatun beds4, dispelled? The clearest way of expressing 65.5 million years ago, many people think and perhaps more distantly to the much statistical problems is the familiar method of that these early mammals were not very smaller Jeholodens that was discovered higher black and white balls, which I will now adopt. exciting. Mesozoic mammals are usually in the Yixian Formation1,5. Plunge both hands into a dark bag partly portrayed as rat-sized, nocturnal prey ani- If R.robustussupped on young dinosaurs, filled with black and white balls, equal in mals, ecologically marginalized and con- did R. giganticus go after the adults? None number, and well mixed. Grasp a handful in strained from evolving diverse body types of the dinosaurs described so far from the the right hand, to represent a family of boys and sizes until the extinction event at the Lujiatun beds2 is very big; most published and girls. Out of this unseen handful extract end of the Cretaceous removed non-avian specimens have skull lengths near or less one ball, still unseen, with the left hand. dinosaurs from the scene. Two fascinating than 10 cm. Repenomamus giganticus was There will be on the average of many similar discoveries of near-complete fossil skeletons, longer and heavier than adults of Sinovenator experiments, as many white as black balls, described by Hu et al. on page 149 of this changii,a dinosaur species found in the same both in the original and in the residual issue1,overturn this outdated view. Neither deposits6,for instance. However, modern- handful, because the extracted ball will be is of a small mammal. One is more than a day mammalian carnivores that weigh less as often white as black. Using my previous metre long. The other appears to have a dis- than 21.5 kg prey mostly on animals of less notation, let the number of balls in the membered juvenile dinosaur in its stomach. than half their weight7.IfR. giganticus original handful be 2d. Consequently, the Both skeletons were found in the Lujiatun behaved like living mammals, it might have number in the residual handful will be 2dǁ1, fossil beds at the base of the Yixian Forma- preyed on dinosaurs weighing less than 7 kg. and the average number in it either of white tion in northeastern China. They are at Indeed, although the new R. robustus speci- —1 or of black balls will be half as many, or dǁ2 . least 128 million years old, dating from the men provides evidence that it ate young It makes no difference to the average result Early Cretaceous period. The diversity and dinosaurs, how much of its diet was com- whether the hitherto unseen ball in the astounding preservation of fossils from the posed of dinosaurs — or even of meat — is left hand proves to be white or black. In Yixian is well established; from feathered open to speculation. Many living mammal- other words, it makes no difference in the dinosaurs to insects, it continues to produce ian carnivores, particularly those under the estimate of the average number of sisters scientific riches2.These latest finds should 21.5-kg threshold, also eat invertebrates and or of brothers whether the individual from trigger another avalanche of questions and plants7, and their diets can vary considerably whom they are reckoned be a boy or a girl; speculation among palaeontologists. with season. Small mammals related to —1 it is in both cases dǁ2 . The reckoning may The dinosaur-eater belongs to a species Repenomamus,such as Jeholodens,have been proceed from one member of each family of large mammal, Repenomamus robustus, reconstructed as insectivores5. taken at random, or from all its members which was described first from a skull3.The Despite the frequently made generaliza- taken in turn. Francis Galton new specimen is more complete — and on its tion that Mesozoic mammals were rat-sized, From Nature 12 January 1905. left side, under its ribs where a mammal’s palaeontologists have known for some time stomach might well have been,lies a fragmen- that this was not the case. Larger mammals 50 YEARS AGO tary and disarticulated skeleton of a young include Kollikodon from the Early Cretaceous The “Proceedings” for 1954 of the Croydon Psittacosaurus, estimated to have been about of Australia8, and Schowalteria9 and Bubo- Natural History and Scientific Society 14 cm long. The devourer of this little dino- dens10 from the Late Cretaceous of North contains interesting articles on deneholes… saur was more than half a metre long, and is America.But exactly how large those animals Deneholes are excavations in underlying estimated1 to have weighed 4–6 kg. were is a mystery, because Schowalteria is chalk reached by vertical shafts through the Repenomamus robustus is a runt,however, known only from the front end of a fragmen- overload… The age of the deneholes seems next to its newly discovered relative, Repeno- tary skull,Kollikodon from a partial lower jaw to be pre-Roman, and they are probably of mamus giganticus.Hu et al.1 provide the with three teeth, and Bubodens from a single the Iron Age. Many explanations have been first description of this Mesozoic mammal. tooth. These mammals were at least as large given as to why they were made; but none Curled on one side, the skeleton looks like as R. robustus, and may have been as large as is satisfactory. Underground granaries or nothing so much as that of a sleeping dog. R. giganticus,but because their remains are stores have been suggested, or pits for Uncurled, R. giganticus would have been so incomplete it is hard to tell. The fossil of obtaining chalk for agriculture; but, if the about 105 cm long, and the authors estimate R. giganticus,however, is nearly complete, latter explanation be the correct one, why that it would have weighed about 12–14 kg. and its height and length are indisputable. have they been so carefully made?… It Both Repenomamus species had proportion- Hypotheses developed to explain the would seem clear… that some connexion ately shorter legs than living mammals, but evolution of mammalian size often focus must exist between these artificial caves their posture may have been similar to that of on dinosaurs. The most frequently repeated and the earth-houses of northern Scotland. living quadrupeds of the same size.They were speculation is that Mesozoic mammals were But unfortunately we do not really know squat, toothy, heavily built animals, in some forced to remain small by a combination of why these latter were made, either. respects reminiscent of the Tasmanian devil heavy predation pressure from dinosaurs and From Nature 15 January 1955. (Sarcophilus) or of the ratel (Mellivora).They the saturation of ecological niches by large belong to an early mammalian lineage that reptiles. Are the mammals from the Lujiatun 116 NATURE | VOL 433 | 13 JANUARY 2005 | www.nature.com/nature © 2005 Nature Publishing Group 13.1 n&v113 MH 7/1/05 5:15 pm Page 117 news and views beds large because the dinosaurs are small? Anne Weil is in the Department of Biological purely theoretical grounds, but was soon This question may be premature, as the fossil Anthropology and Anatomy, Duke University, verified experimentally6 and represents one deposits are under active excavation and 08 Biological Sciences Building, Box 90383, of the triumphs of astrophysics. description of the fauna is not complete. Yet Durham, North Carolina 27708-0383, USA. Once carbon is formed, the other ele- the two new specimens of Repenomamus e-mail: [email protected] ments — especially those,such as oxygen and prompt a reversal of the question, if only 1. Hu, Y., Meng, J., Wang, Y. & Li, C. Nature 433, 149–152 (2005). neon,that can be created simply by adding yet in speculation: how might mammals have 2. Zhou, Z., Barrett, P. M. & Hilton, J. Nature 421, 807–814 more Ȋ-particles — are readily made without influenced dinosaur evolution? It seems likely (2003). effective destruction of 12C.Moreover,under- 3. Li, J., Wang, Y., Wang, Y. & Li, C. Chin. Sci. Bull. 46, 782–785 Ȋ that small dinosaurs experienced predation (2001). standing the rate at which the triple- process pressure from mammals. Indeed, in describ- 4. Li, C., Wang, Y., Hu, Y. & Meng, J. Chin. Sci. Bull. 48, 1129–1134 proceeds is fundamental to understanding ing the diminutive S. changii,which lies (2003). many mechanisms in astrophysics beyond evolutionarily at the base of a lineage closely 5. Ji, Q., Luo, Z.-X. & Ji, S.-A. Nature 398, 326–330 (1999). the production of elements. It is important 6 6. Xu, X., Norell, M. A., Wang, X.-L., Makovicky, P. J. & Wu, X.-C. related to that of birds, Xu et al. express Nature 415, 780–784 (2002). for the generation of energy inside stars more surprise that, although the avian lineage 7. Carbone, C., Mace, G. M., Roberts, S. C. & Macdonald, D.
Recommended publications
  • Miocene Mammal Reveals a Mesozoic Ghost Lineage on Insular New Zealand, Southwest Pacific
    Miocene mammal reveals a Mesozoic ghost lineage on insular New Zealand, southwest Pacific Trevor H. Worthy*†, Alan J. D. Tennyson‡, Michael Archer§, Anne M. Musser¶, Suzanne J. Hand§, Craig Jonesʈ, Barry J. Douglas**, James A. McNamara††, and Robin M. D. Beck§ *School of Earth and Environmental Sciences, Darling Building DP 418, Adelaide University, North Terrace, Adelaide 5005, South Australia, Australia; ‡Museum of New Zealand Te Papa Tongarewa, P.O. Box 467, Wellington 6015, New Zealand; §School of Biological, Earth and Environmental Sciences, University of New South Wales, New South Wales 2052, Australia; ¶Australian Museum, 6-8 College Street, Sydney, New South Wales 2010, Australia; ʈInstitute of Geological and Nuclear Sciences, P.O. Box 30368, Lower Hutt 5040, New Zealand; **Douglas Geological Consultants, 14 Jubilee Street, Dunedin 9011, New Zealand; and ††South Australian Museum, Adelaide, South Australia 5000, Australia Edited by James P. Kennett, University of California, Santa Barbara, CA, and approved October 11, 2006 (sent for review July 8, 2006) New Zealand (NZ) has long been upheld as the archetypical Ma) dinosaur material (13) and isolated moa bones from marine example of a land where the biota evolved without nonvolant sediments up to 2.5 Ma (1, 14), the terrestrial record older than terrestrial mammals. Their absence before human arrival is mys- 1 Ma is extremely limited. Until now, there has been no direct terious, because NZ was still attached to East Antarctica in the Early evidence for the pre-Pleistocene presence in NZ of any of its Cretaceous when a variety of terrestrial mammals occupied the endemic vertebrate lineages, particularly any group of terrestrial adjacent Australian portion of Gondwana.
    [Show full text]
  • Recent Advances in Studies on Mesozoic and Paleogene Mammals in China
    Vol.24 No.2 2010 Paleomammalogy Recent Advances in Studies on Mesozoic and Paleogene Mammals in China WANG Yuanqing* and NI Xijun Institute of Vertebrate Paleontology and Paleoanthropology, CAS, Beijing 10004, China ike in other fields of paleontology, research in from the articular of the lower jaw and the quadrate of the paleomammalogy mainly falls into two aspects. cranium following the process of reduction and detachment LOne is related to the biological nature of fossil from the reptilian mandible, are new elements of the bony mammals, such as their systematics, origin, evolution, chain in the mammalian middle ear. The appearance of phylogenetic relationships, transformation of key features mammalian middle ear allows mammals to hear the sound and paleobiogeography, and the other is related to the of higher frequencies than reptiles do. Generally speaking, geological context, involving biostratigraphy, biochronology, a widely accepted hypothesis is that mammals originated faunal turnover and its relations to the global and regional from a certain extinct reptilian group. The formation and environmental changes. In the last decade, a number of development of the definitive mammalian middle ear well-preserved mammalian specimens were collected from (DMME) has thus become one of the key issues in the study different localities around the country. Such discoveries have of mammalian evolution and has drawn the attention from provided significant information for understanding the early many researchers for many years. evolution of mammals and reconstructing the phylogeny of Developmental biological studies have proven the early mammals. function of the Meckel’s cartilage and its relationship to Studies of Chinese Mesozoic mammals achieved the ear ossicles during the development of mammalian remarkable progress in the past several years.
    [Show full text]
  • Femur of a Morganucodontid Mammal from the Middle Jurassic of Central Russia
    Femur of a morganucodontid mammal from the Middle Jurassic of Central Russia PETR P. GAMBARYAN and ALEXANDER 0.AVERIANOV Gambaryan, P.P. & Averianov, A.O. 2001. Femur of a morganucodontid mammal from the Middle Jurassic of Central Russia. -Acta Palaeontologica Polonica 46,1,99-112. We describe a nearly complete mammalian femur from the Middle Jurassic (upper Bathonian) from Peski quarry, situated some 100 km south east of Moscow, central Rus- sia. It is similar to the femora of Morganucodontidae in having a globular femoral head, separated from the greater trochanter and reflected dorsally, fovea capitis present, both trochanters triangular and located on the same plane, distal end flat, mediolaterally expanded, and somewhat bent ventrally, and in the shape and proportions of distal condyles. It is referred to as Morganucodontidae gen. et sp. indet. It is the first representa- tive of this group of mammals in Eastern Europe from the third Mesozoic mammal local- ity discovered in Russia. Exquisite preservation of the bone surface allowed us to recon- struct partial hind limb musculature. We reconstruct m. iliopsoas as inserting on the ridge, which starts at the lesser trochanter and extends along the medial femoral margin for more than half of the femur length. On this basis we conclude that the mode of loco- motion of the Peski morganucodontid was similar to that of modern echidnas. During the propulsive phase the femur did not retract and the step elongation was provided by pronation of the femur. Key words : Mammalia, Morganucodontidae, femur, anatomy, locomotion, Jurassic, Russia. Petr P. Gambaryan [[email protected]] and Alexander 0.
    [Show full text]
  • Mammal Evolution
    Mammal Evolution Geology 331 Paleontology Triassic synapsid reptiles: Therapsids or mammal-like reptiles. Note the sprawling posture. Mammal with Upright Posture From Synapsids to Mammals, a well documented transition series Carl Buell Prothero, 2007 Synapsid Teeth, less specialized Mammal Teeth, more specialized Prothero, 2007 Yanoconodon, Lower Cretaceous of China Yanoconodon, Lower Cretaceous of China, retains ear bones attached to the inside lower jaw Morganucodon Yanoconodon = articular of = quadrate of Human Ear Bones, or lower reptile upper reptile Auditory Ossicles jaw jaw Cochlea Mammals have a bony secondary palate Primary Palate Reptiles have a soft Secondary Palate secondary palate Reduction of digit bones from Hand and Foot of Permian Synapsid 2-3-4-5-3 in synapsid Seymouria ancestors to 2-3-3-3-3 in mammals Human Hand and Foot Class Mammalia - Late Triassic to Recent Superorder Tricodonta - Late Triassic to Late Cretaceous Superorder Multituberculata - Late Jurassic to Early Oligocene Superorder Monotremata - Early Cretaceous to Recent Superorder Metatheria (Marsupials) - Late Cretaceous to Recent Superorder Eutheria (Placentals) - Late Cretaceous to Recent Evolution of Mammalian Superorders Multituberculates Metatheria Eutheria (Marsupials) (Placentals) Tricodonts Monotremes . Live Birth Extinct: . .. Mammary Glands? Mammals in the Age of Dinosaurs – a nocturnal life style Hadrocodium, a lower Jurassic mammal with a “large” brain (6 mm brain case in an 8 mm skull) Were larger brains adaptive for a greater sense of smell? Big Brains and Early Mammals July 14, 2011 The Academic Minute http://www.insidehighered.com/audio/academic_pulse/big_brains_and_early_mammals Lower Cretaceous mammal from China Jawbones of a Cretaceous marsupial from Mongolia Mammal fossil from the Cretaceous of Mongolia Reconstructed Cretaceous Mammal Early Cretaceous mammal ate small dinosaurs Repenomamus robustus fed on psittacosaurs.
    [Show full text]
  • Paleontological Discoveries in the Chorrillo Formation (Upper Campanian-Lower Maastrichtian, Upper Cretaceous), Santa Cruz Province, Patagonia, Argentina
    Rev. Mus. Argentino Cienc. Nat., n.s. 21(2): 217-293, 2019 ISSN 1514-5158 (impresa) ISSN 1853-0400 (en línea) Paleontological discoveries in the Chorrillo Formation (upper Campanian-lower Maastrichtian, Upper Cretaceous), Santa Cruz Province, Patagonia, Argentina Fernando. E. NOVAS1,2, Federico. L. AGNOLIN1,2,3, Sebastián ROZADILLA1,2, Alexis M. ARANCIAGA-ROLANDO1,2, Federico BRISSON-EGLI1,2, Matias J. MOTTA1,2, Mauricio CERRONI1,2, Martín D. EZCURRA2,5, Agustín G. MARTINELLI2,5, Julia S. D´ANGELO1,2, Gerardo ALVAREZ-HERRERA1, Adriel R. GENTIL1,2, Sergio BOGAN3, Nicolás R. CHIMENTO1,2, Jordi A. GARCÍA-MARSÀ1,2, Gastón LO COCO1,2, Sergio E. MIQUEL2,4, Fátima F. BRITO4, Ezequiel I. VERA2,6, 7, Valeria S. PEREZ LOINAZE2,6 , Mariela S. FERNÁNDEZ8 & Leonardo SALGADO2,9 1 Laboratorio de Anatomía Comparada y Evolución de los Vertebrados. Museo Argentino de Ciencias Naturales “Bernardino Rivadavia”, Avenida Ángel Gallardo 470, Buenos Aires C1405DJR, Argentina - fernovas@yahoo. com.ar. 2 Consejo Nacional de Investigaciones Científicas y Técnicas, Argentina. 3 Fundación de Historia Natural “Felix de Azara”, Universidad Maimonides, Hidalgo 775, C1405BDB Buenos Aires, Argentina. 4 Laboratorio de Malacología terrestre. División Invertebrados Museo Argentino de Ciencias Naturales “Bernardino Rivadavia”, Avenida Ángel Gallardo 470, Buenos Aires C1405DJR, Argentina. 5 Sección Paleontología de Vertebrados. Museo Argentino de Ciencias Naturales “Bernardino Rivadavia”, Avenida Ángel Gallardo 470, Buenos Aires C1405DJR, Argentina. 6 División Paleobotánica. Museo Argentino de Ciencias Naturales “Bernardino Rivadavia”, Avenida Ángel Gallardo 470, Buenos Aires C1405DJR, Argentina. 7 Área de Paleontología. Departamento de Geología, Universidad de Buenos Aires, Pabellón 2, Ciudad Universitaria (C1428EGA) Buenos Aires, Argentina. 8 Instituto de Investigaciones en Biodiversidad y Medioambiente (CONICET-INIBIOMA), Quintral 1250, 8400 San Carlos de Bariloche, Río Negro, Argentina.
    [Show full text]
  • SUPPLEMENTARY INFORMATION: Tables, Figures and References
    Samuels, Regnault & Hutchinson, PeerJ Evolution of the patellar sesamoid bone in mammals SUPPLEMENTARY INFORMATION: Tables, Figures and References Supplementary Table S1: Mammaliaform patellar status$ Inclusive clades Genus and Stratigraphic age of Patellar Comments# (partial) species (and taxon, and location(s) state reference(s) used for 0/1/2 patellar status) (absent/ ‘patelloid’/ present) Sinoconodonta Sinoconodon Jurassic, China 0 Patellar groove absent, suggests no rigneyi (Kielan- patella Jaworowska et al., 2004) Sinoconodon is included on our phylogeny within tritylodontids. Morganucodonta Megazostrodon Late Triassic, southern 0 rudnerae (Jenkins Africa & Parrington, 1976) Morganucodonta Eozostrodon sp. Late Triassic, Wales 0 Asymmetric patellar groove, (Jenkins et al., specimens disarticulated so it is hard 1976) to assess the patella but appears absent Docodonta Castorocauda 164 Mya, mid-Jurassic, 0 Semi-aquatic adaptations lutrasimilis (Ji et China al., 2006) Docodonta Agilodocodon 164 Mya, mid-Jurassic, 0 scansorius (Meng China et al., 2015) Docodonta Docofossor 160 Mya, China 0 brachydactylus (Luo et al., 2015b) Docodonta Haldanodon 150-155 Mya, Late 0 Shallow patellar groove exspectatus Jurassic, Portugal (Martin, 2005b) Australosphenida Asfaltomylos Mid-Jurassic, South ? Postcranial material absent patagonicus America (Martin, 2005a) Australosphenida Ornithorhynchus Extant 2 Platypus, genome sequenced Monotremata anatinus (Warren, Hillier, Marshall Graves et (Herzmark, 1938; al., 2008) Rowe, 1988) Australosphenida Tachyglossus
    [Show full text]
  • FROM the EARLY CRETACEOUS (BARREMIAN) WESSEX FORMATION OFTHEISLEOFWIGHT,SOUTHERNBRITAIN by STEVEN C
    [Palaeontology, Vol. 49, Part 4, 2006, pp. 889–897] A GOBICONODONTID (MAMMALIA, EUTRICONODONTA) FROM THE EARLY CRETACEOUS (BARREMIAN) WESSEX FORMATION OFTHEISLEOFWIGHT,SOUTHERNBRITAIN by STEVEN C. SWEETMAN School of Earth and Environmental Sciences, University of Portsmouth, Burnaby Building, Burnaby Road, Portsmouth PO1 3QL, UK; e-mail: [email protected] Typescript received 16 June 2004; accepted in revised form 20 June 2005 Abstract: Bulk screening of Early Cretaceous (Barremian) gobiconodontid mammal in Early Cretaceous deposits of strata of the Wessex Formation, exposed in sections on Britain sheds further light on the palaeogeographical distri- the south-west and south-east coasts of the Isle of Wight, bution of an apparently successful clade of Early Creta- southern England, has resulted in the recovery of mammal ceous mammals and together with the occurrence of a remains, the first to be obtained from Wealden Group gobiconodontid in the earliest Cretaceous of North Africa strata since the early 1970s. The fauna comprises at least calls into question recent hypotheses concerning the area six taxa represented by isolated teeth and in addition, in of origin of the Gobiconodontidae and mechanisms of dis- the case of an as yet undescribed spalacotheriid, a partial persal therefrom. dentary. One of the teeth, a distal premolar, is of unique tricuspid, single-rooted morphology and represents the first Key words: Britain, Cretaceous, Gobiconodontidae, Mam- British record of the Gobiconodontidae. Discovery of a malia, palaeogeography, premolar. The Early Cretaceous (Barremian, Wealden Group) which may or may not be of mammalian origin (pers. Wessex Formation of the Isle of Wight, southern England obs.
    [Show full text]
  • Two New Species of Gobiconodon (Mammalia, Eutriconodonta, Gobiconodontidae) from the Lower Cretaceous Shahai and Fuxin Formations, Northeastern China
    Historical Biology An International Journal of Paleobiology ISSN: 0891-2963 (Print) 1029-2381 (Online) Journal homepage: http://www.tandfonline.com/loi/ghbi20 Two new species of Gobiconodon (Mammalia, Eutriconodonta, Gobiconodontidae) from the Lower Cretaceous Shahai and Fuxin formations, northeastern China Nao Kusuhashi, Yuan-Qing Wang, Chuan-Kui Li & Xun Jin To cite this article: Nao Kusuhashi, Yuan-Qing Wang, Chuan-Kui Li & Xun Jin (2016) Two new species of Gobiconodon (Mammalia, Eutriconodonta, Gobiconodontidae) from the Lower Cretaceous Shahai and Fuxin formations, northeastern China, Historical Biology, 28:1-2, 14-26 To link to this article: http://dx.doi.org/10.1080/08912963.2014.977881 Published online: 01 Oct 2015. Submit your article to this journal View related articles View Crossmark data Full Terms & Conditions of access and use can be found at http://www.tandfonline.com/action/journalInformation?journalCode=ghbi20 Download by: [University of Sussex Library] Date: 01 October 2015, At: 18:24 Historical Biology, 2016 Vol. 28, Nos. 1–2, 14–26, http://dx.doi.org/10.1080/08912963.2014.977881 Two new species of Gobiconodon (Mammalia, Eutriconodonta, Gobiconodontidae) from the Lower Cretaceous Shahai and Fuxin formations, northeastern China Nao Kusuhashia*, Yuan-Qing Wangb, Chuan-Kui Lib and Xun Jinb aDepartment of Earth’s Evolution and Environment, Graduate School of Science and Engineering, Ehime University, Ehime 790-8577, Japan; bKey Laboratory of Vertebrate Evolution and Human Origins of Chinese Academy of Sciences, Institute of Vertebrate Paleontology and Paleoanthropology, Chinese Academy of Sciences, Beijing 100044, P.R. China (Received 29 July 2014; accepted 14 October 2014) Two new gobiconodontid mammals, Gobiconodon tomidai sp.
    [Show full text]
  • The Mesozoic Mesozoic Things to Think About
    The Mesozoic Mesozoic Things to think about • Breakup of Pangea and its relationship to sealevel and climate • Dominance of reptiles • Origin of birds • Origin of mammals • Origin of flowers (angiosperms) • Expansion of insects • Life in the seas assumes an (almost) modern form 1 2 3 4 5 Triassic Period 248 to 206 Million Years Ago 6 The Connecticut River Valley 7 Dinosaur Footprints of the Connecticut Valley Edward Hitchcock Fossil Fish of the Connecticut Valley 8 Jurassic Period 206 to 144 Million Years Ago 9 Cretaceous Period 144 to 65 Million Years Ago 10 11 Mesozoic Ammonites 12 Cretaceous Heteromorph Ammonites Nipponites mirabilis Kamchatka, Russia Macroscaphites sp. Baculites sp. Didymoceras stevensoni Rudistid Bivalves: Jurassic- Cretaceous 13 Durania cornupastoris at Abu Roash, Western Desert near Gizah, Egypt Fringing Upper Cretaceous rudist reef reservoirs flanking basement highs, Augila oil field, eastern Libya Reef-forming rudist (Radiolites) from Sarvak Formation, Cenomanian, south Iran. 14 Biostrome of hippuritid rudists at Montagne des Cornes; Santonian, Pyrenees, France Rudistid Buildups 15 Biostrome of Vaccinites vesiculosus (Woodward, 1855); Campanian of Saiwan, Oman Monopleura marcida Albian, Viotía, Greece 16 Chalk 17 Pterosaurs Mosasaurs 18 Plesiosaurs Ichthyosaurs 19 A Dinosaur Family Tree (aka Phylogeny) 20 Sauropods Theropods 21 Dilong paradoxus Early Cretaceous, China A feathered tyrannosaurid? 22 A Dinosaur Family Tree (aka Phylogeny) Ornithopods (aka Hadrosaurs) 23 Thyreophorans (aka Ankylosaurs, etc) Margincephalians (aka Ceratopsians) 24 A Dinosaur Family Tree (aka Phylogeny) The Liaoning Fauna: An early Cretaceous Lagerstatten Some highlights: -- feathered dinosaurs -- preserved internal organs -- oldest placental mammal 25 The Liaoning Fauna The Liaoning Fauna Caudipteryx. Microraptor gui MICRORAPTOR zhaoianus.
    [Show full text]
  • Dino Times! How Dinosaurs Lived What Did a Dinosaur’S World Look Like? Step Back in Time—About Eco-Quest 130 Million Years—To a Part of Eastern Asia Now Known As 1
    Dino Times! How Dinosaurs Lived What did a dinosaur’s world look like? Step back in time—about Eco-Quest 130 million years—to a part of eastern Asia now known as 1. What similarities can you find Liaoning (“lee-ow-NING”), China. Here, in fossilized lakebeds, between the bird (Confuciusornis scientists have uncovered thousands of fossil remains, including sanctus) and Sinosauropteryx plants, insects, frogs, fish, small mammals, and even feathered prima or Dilong paradoxus dinosaurs! Together this collection creates a more complete pic- dinosaurs? Are you surprised by ture of what a dinosaur ecosystem (its community of plants, the similarities? Why or why not? animals, landscape, and weather) probably looked like. 2. Scientists believe that Dilong How did these animals and plants live together? Check out the paradoxus had a thin coat of feathers, but like its featherless illustrations below of Liaoning species discovered. Then answer cousin, the T. rex, it couldn’t fly. the questions in “Eco-Quest” to the right. What function do you think its feathers served? Think about what modern animals use feath- ers for. 3. Repenomamus giganticus was a carnivorous mammal about the B. Sinosauropteryx prima (“SIGN- size of a cat. From the plants and no-sore-AHP-ter-ix PREE-ma”), A. Eomaia scansoria (“ee- animals pictured here, what do feathered dinosaur oh-MY-ah SCAN-sor-ee- you suppose it ate? (Hint: It was- ah”), ancient mammal D. Dilong paradoxus n’t insects.) (“dee-LONG pair- 4. Scientists studied plant fossils uh-DOX-us”), feathered cousin and determined that the Liaoning of T.
    [Show full text]
  • New Gobiconodontid (Eutriconodonta, Mammalia) from the Lower
    第58卷 第1期 古 脊 椎 动 物 学 报 pp. 45–66 2020年1月 VERTEBRATA PALASIATICA figs. 1–5 DOI: 10.19615/j.cnki.1000-3118.190724 New gobiconodontid (Eutriconodonta, Mammalia) from the Lower Cretaceous Shahai and Fuxin formations, Liaoning, China KUSUHASHI Nao1 WANG Yuan-Qing2,3,4* LI Chuan-Kui2 JIN Xun2 (1 Department of Earth’s Evolution and Environment, Graduate School of Science and Engineering, Ehime University Matsuyama, Ehime 790-8577, Japan [email protected]) (2 Key Laboratory of Vertebrate Evolution and Human Origins of Chinese Academy of Sciences, Institute of Vertebrate Paleontology and Paleoanthropology, Chinese Academy of Sciences Beijing 100044, China * Corresponding author: [email protected]) (3 CAS Center for Excellence in Life and Paleoenvironment Beijing 100044, China) (4 College of Earth and Planetary Sciences, University of Chinese Academy of Sciences Beijing 100049, China) Abstract Eutriconodontans are one of the key members of mammals to our understanding of the evolution and transition of mammalian fauna in Asia during the Cretaceous. Two gobiconodontid and two triconodontid species have previously been reported from the upper Lower Cretaceous Shahai and Fuxin formations. Here we describe two additional eutriconodontans from the formations, Fuxinoconodon changi gen. et sp. nov. and ?Gobiconodontidae gen. et sp. indet. This new species is attributed to the Gobiconodontidae, characterized by having an enlarged first lower incisor, reduction in the number of incisors and premolariforms, proportionally large cusps b and c being well distant from cusp a on the molariforms, presence of a labial cingulid, and a unique mixed combination of molariform characters seen on either the first or the second, but not both, generations of molariforms in Gobiconodon.
    [Show full text]
  • Dual Origin of Tribosphenic Mammals
    articles Dual origin of tribosphenic mammals Zhe-Xi Luo*, Richard L. Cifelli² & Zo®a Kielan-Jaworowska³ *Section of Vertebrate Paleontology, Carnegie Museum of Natural History, Pittsburgh, Pennsylvania 15213, USA ² Oklahoma Museum of Natural History, 2401 Chautauqua, Norman, Oklahoma 73072, USA ³ Institute of Paleobiology, Polish Academy of Sciences, ulica Twarda 51/55, PL-00-818 Warszawa, Poland ............................................................................................................................................................................................................................................................................ Marsupials, placentals and their close therian relatives possess complex (tribosphenic) molars that are capable of versatile occlusal functions. This functional complex is widely thought to be a key to the early diversi®cation and evolutionary success of extant therians and their close relatives (tribosphenidans). Long thought to have arisen on northern continents, tribosphenic mammals have recently been reported from southern landmasses. The great age and advanced morphology of these new mammals has led to the alternative suggestion of a Gondwanan origin for the group. Implicit in both biogeographic hypotheses is the assumption that tribosphenic molars evolved only once in mammalian evolutionary history. Phylogenetic and morphometric analyses including these newly discovered taxa suggest a different interpretation: that mammals with tribosphenic molars are not monophyletic. Tribosphenic
    [Show full text]