Spatio-Temporal Heterogeneity of Larch Budmoth Outbreaks in the French Alps Over the Last 500 Years
Total Page:16
File Type:pdf, Size:1020Kb
Canadian Journal of Forest Research Spatio-temporal heterogeneity of larch budmoth outbreaks in the French Alps over the last 500 years Journal: Canadian Journal of Forest Research Manuscript ID cjfr-2016-0211.R2 Manuscript Type: Article Date Submitted by the Author: 15-Dec-2016 Complete List of Authors: Saulnier, Mélanie; Institut Méditerranéen de Biodiversité et d’Ecologie marine et continentale , Aix-Marseille Université, UMR CNRS IRD Avignon Université Roques, Alain;Draft INRA - Zoologie Forestiere Guibal, Frédéric; Institut Méditerranéen de Biodiversité, Europôle Méditerranéen de l’Arbois Rozenberg, Philippe; Institut National de la Recherche Agronomique (INRA),, UR0588 Amélioration, Génétique et Physiologie Forestières Saracco, Ginette; Centre de Recherche et d’Enseignement des Géosciences de l’Environnement , CNRS-UMR 7330, AMU Corona, Christophe; GEOLAB CNRS / Université Blaise Pascal / Université de Limoges UMR 6042 , Edouard, Jean-Louis; Aix Marseille Université, CNRS, Ministère de la Culture et de la Communication, CCJ UMR Larch budmoth, insect outbreak, French Alps, spatio-temporal Keyword: heterogeneity, climate change impact Please Select from this Special Issues list if applicable: Note: The following files were submitted by the author for peer review, but cannot be converted to PDF. You must view these files (e.g. movies) online. cjfr-2016-0211suppl.wmv https://mc06.manuscriptcentral.com/cjfr-pubs Page 1 of 51 Canadian Journal of Forest Research 1 Spatio-temporal heterogeneity of larch budmoth outbreaks in the 2 French Alps over the last 500 years 3 Saulnier M.a, Roques A.b, Guibal F.a, Rozenberg P.c, Saracco G.d, Corona C.e, Edouard J-L.f 4 5 a Institut Méditerranéen de Biodiversité et d’Ecologie marine et continentale (IMBE), 6 Aix-Marseille Université, UMR CNRS IRD Avignon Université, Technopôle Arbois- 7 Méditerranée, Bât. Villemin –BP 80, 13545 Aix-en-Provence cedex 04, France 8 mail: [email protected], [email protected] 9 b Institut National de la Recherche Agronomique (INRA), UR633 Zoologie Forestière, 2163 10 Avenue de la Pomme de Pin CS 40001 ARDON, 45075 Orléans Cedex 2, France 11 mail: [email protected], Draft 12 c Institut National de la Recherche Agronomique (INRA), UR0588 Amélioration, Génétique 13 et Physiologie Forestières, 2163 Avenue de la Pomme de Pin CS 40001 ARDON, 45075 14 Orléans Cedex 2, France, 15 [email protected] 16 d Centre de Recherche et d’Enseignement des Géosciences de l’Environnement (CEREGE) 17 CNRS-UMR 7330, AMU, Europôle Méditerranée de l'Arbois, BP 80, Equipe Modelisation, 18 13545 Aix en Provence cedex 4, France 19 mail: [email protected] 20 e GEOLAB CNRS / Université Blaise Pascal / Université de Limoges UMR 6042 4 rue Ledru 21 , 63057 Clermont-Ferrand cedex 1, France 22 mail: [email protected] 23 f Aix Marseille Université, CNRS, Ministère de la Culture et de la Communication, CCJ UMR 24 7299, 13094, Aix en Provence, France 1 https://mc06.manuscriptcentral.com/cjfr-pubs Canadian Journal of Forest Research Page 2 of 51 25 mail: [email protected] 26 Corresponding Author: Mélanie Saulnier, temporary lecturer at IMBE 27 Institut Méditerranéen de Biologie et d'Ecologie continentale et marine (IMBE) 28 Europôle Méditerranéen de l'Arbois Bat. Villemin, BP 80 13545 Aix-en-Provence cedex 4 29 France 30 mail: [email protected] 31 phone: 33 (0)4 42 90 84 81 32 Draft 2 https://mc06.manuscriptcentral.com/cjfr-pubs Page 3 of 51 Canadian Journal of Forest Research 33 Abstract 34 In the subalpine forest ecosystems of the French Alps, European larch trees (Larix decidua) 35 are periodically affected by outbreaks of a defoliating insect, the larch budmoth, Zeiraphera 36 griseana (LBM). In order to assess the long-term dynamics of LBM populations, we propose 37 a spatio-temporal analysis of a long outbreak chronology reconstruction for the whole French 38 Alps covering the period 1414-2009. This chronology was obtained by analysing tree ring 39 width (TRW) chronologies collected from 44 larch populations. 40 The evidence of a latitudinal gradient in LBM is an original result that we have related to the 41 "travelling waves" and "epicenter" theory. Wavelet analyses revealed a strong explicit 42 continuous signal for 4-, 8- and 16- year periodicities throughout the entire 1500-2003 time 43 series, except for a loss of power from 1690 to 1790 and since the early 1980's. We 44 hypothesize that these abrupt changesDraft could reflect a physiological response of LBM to past 45 climatic variations. The spatial and temporal variability of LBM outbreaks and the 46 propagation phenomenon in the French Alps highlighted by this study raises questions 47 regarding its future dynamics in response to the expected climate change. 48 Key words: Larch budmoth, insect outbreak, French Alps, spatio-temporal heterogeneity, 49 climate change impact. 50 Résumé 51 Dans les écosystèmes forestiers subalpins des Alpes françaises, le mélèze (Larix decidua 52 Mill.) subit périodiquement les épidémies d’un insecte défoliateur, la tordeuse du mélèze 53 (Zeiraphera griseana ). Afin de mieux comprendre les dynamiques à long terme des 54 populations de tordeuse, nous proposons dans cet article une analyse spatio-temporelle d’une 55 très longue reconstruction des épidémies pour la période 1414-2009 sur l’ensemble des Alpes 56 françaises. Cette chronologie a pu être reconstruite à partir des cernes de croissance de 44 57 populations de mélèze. 3 https://mc06.manuscriptcentral.com/cjfr-pubs Canadian Journal of Forest Research Page 4 of 51 58 Les résultats ont permis de mettre en évidence le rôle d’un gradient latitudinal que nous avons 59 attribué au phénomène théorique des « épicentres » et « vagues de dissémination ». D’autre 60 part, les analyses temporelles, réalisées à l’aide de la méthode des ondelettes, ont révélé 61 l’existence d’un fort signal continu pour des fréquences périodiques de 4-, 8- et 16ans sur 62 l’ensemble de la chronologie à l’exception d’une perte d’énergie entre 1690 et 1790 et depuis 63 le début des années 1980. Ces changements pourraient refléter une réponse physiologique de 64 la tordeuse à des variations climatiques passées. La variabilité temporelle et spatiale des 65 épidémies de tordeuse ainsi que le mode de propagation à travers les Alpes françaises nous 66 ont conduits à nous interroger sur les dynamiques futures de l’insecte et de son hôte en 67 réponse au réchauffement climatique rapide dans les écosystèmes de haute altitude. 68 Mots clés : Tordeuse des bourgeons du mélèze, épidémies d’insecte, Alpes françaises, 69 hétérogénéité spatio-temporelle, impactDraft du changement climatique. 70 4 https://mc06.manuscriptcentral.com/cjfr-pubs Page 5 of 51 Canadian Journal of Forest Research 71 Introduction 72 Outbreaks of defoliator insects are major disturbance events in forests around the world, 73 especially in high latitude and high altitude ecosystems. Depending on their intensity, such 74 outbreaks may lead to complete tree defoliation and, sometimes, to tree mortality. Although 75 insect damage has been considered as less prevalent in forests of Eurasia compared to those of 76 North America (Kneeshaw et al. 2015), outbreaks of European insect species that exhibit 77 eruptive population dynamics may result in highly significant ecological and economic 78 consequences (Jepsen et al. 2008; Lindner et al. 2010). Currently, a large number of forest 79 defoliators, especially moths and sawflies, exhibit population cycles, with outbreaks occurring 80 at more or less regular intervals (Berryman 1988). The analysis of the dynamics of these 81 outbreaks had long been limited to the description of the population demographic trends 82 (Berryman 1988). With the developmentDraft of new technologies and analytical methods, several 83 studies have focused on the complex mechanisms that might explain outbreak parameters, 84 such as occurrence and recurrence, and their spatio-temporal dynamics (Bjørnstad et al. 2002; 85 Ranta et al. 2002; Esper et al. 2007; Delamaire 2009). The recent elevational range shift 86 mediated by climate change reported in plants (Sturm et al. 2001; Cleland et al. 2007; Lenoir 87 et al. 2008; Engler et al. 2011; Dullinger et al. 2012), tree-lines (Saulnier 2012) as well as in 88 insects (Parmesan 1996, 2006; Battisti et al. 2005, 2006; Robinet and Roques 2010; Battisti 89 and Larsson 2015) is also of growing concern because it could affect plant-insect 90 relationships. Climate change has been claimed to be responsible for the range expansion 91 northwards and upwards of several species of insect defoliators in temperate and boreal 92 forests in Europe (Battisti et al. 2005; Jepsen et al. 2008; Roques 2014). However, the effects 93 on population dynamics do not seem to be so unilateral, some insects respond by increasing 94 the level of leaf consumption and consequently the defoliation whereas others show higher 95 mortality and lower performance (Battisti 2008). Thus, in some defoliators, climate change 5 https://mc06.manuscriptcentral.com/cjfr-pubs Canadian Journal of Forest Research Page 6 of 51 96 may be expected to result in increased spatial expansion and in more severe outbreaks 97 (Fleming and Candau 1998; Logan et al. 2007; Volney and Fleming 2000; Williams and 98 Liebhold 1995). It is hypothesized that the regions that represent the northern or upper limits 99 of occurrence of such defoliator species, such as the Alps or the boreal zone, may face an 100 increase in population density of these insects (Linder et al. 2010; Netherer and Schopf 2010). 101 In contrast, it is hypothesized that warming may alter, and even lead to a collapse, of the 102 population cycles in certain other species, such as the larch budmoth Zeiraphera griseana 103 (Hübner 1799 = Z. diniana Guenée 1845, according to Fauna Europaea http://www.fauna- 104 eu.org., later abbreviated as LBM) (Esper et al.