Hemiptera: Blissidae), a Herbivore of West Indian Marsh Grass

Total Page:16

File Type:pdf, Size:1020Kb

Hemiptera: Blissidae), a Herbivore of West Indian Marsh Grass PHYSIOLOGICAL,BIOCHEMISTRY, AND TOXICOLOGY Temperature-Dependent Development, Survival, and Potential Distribution of Ischnodemus variegatus (Hemiptera: Blissidae), a Herbivore of West Indian Marsh Grass 1,2 1 3 4 5 RODRIGO DIAZ, WILLIAM A. OVERHOLT, J. P. CUDA, PAUL D. PRATT, AND ALISON FOX Ann. Entomol. Soc. Am. 101(3): 604Ð612 (2008) ABSTRACT The bug Ischnodemus variegatus (Signoret) (Hemiptera: Blissidae) is an adventive herbivore, native to South America that feeds in the invasive grass Hymenachne amplexicaulis (Rudge) Nees (Poaceae). This grass is a problematic weed in Florida and Australia, but it is a highly valued forage in Mexico, Cuba, and Venezuela. We studied the inßuence of nine constant temperatures (8Ð38ЊC) on the developmental time and survival of I. variegatus. Complete egg and nymphal mortality occurred at temperatures Յ20.5ЊC and at 38ЊC. Developmental time decreased linearly with tem- perature until 28Ð30ЊC and then increased at 33ЊC. Mortality of Þrst, second, and third instars was high across all temperatures. Developmental time across all temperatures was greatest for eggs, Þrst and Þfth instars compared with other stages. Linear and Brie`re-1 nonlinear models were used to determine the lower temperature threshold at which the developmental rate (1/D) approached zero. The lower thresholds to complete development (egg to adult) estimated with the linear and nonlinear model were 14.6 and 17.4ЊC, respectively. The total degree-days required to complete development estimated by the linear model was 588. Using temperature data from Florida, a map was generated to project a prediction grid of I. variegatus generations per yr. Based on these predictions, the insect can complete three to Þve generations per year in areas currently invaded in Florida. Results of this study will be used to understand the potential distribution and population growth of I. variegatus in H. amplexicaulis infested regions. KEY WORDS Blissidae, Poaceae, developmental rate, degree-days, biological control Hymenachne amplexicaulis (Rudge) Nees (Poaceae) high production of stolons and perhaps the absence of (West Indian marsh grass) is a robust, stoloniferous, effective natural enemies. Once the grass invades a semiaquatic, perennial grass, native to the Neotropics. wetland, it forms monotypic stands 2Ð3 m in height, The timing and pathway of introduction of this plant with complete canopy cover. At the end of the grow- into Florida are unknown, but its quality as forage ing season, this results in a massive accumulation of suggests that the introduction may not have been biomass. The grass disperses by seeds, which are pro- accidental. The grass also is established in Indonesia duced in large quantities, and broken stolons, both of (Holm et al. 1979) and in Australia (Csurches et al. which can travel great distances during ßooding 1999) where it is considered a weed of national sig- events. Negative impacts of the grass in Australia affect niÞcance. The Florida Exotic Pest Plant Council listed the sugarcane industry, water resources, Þsheries, and the grass as a category I species, which are invasive ecotourism (Csurches et al. 1999). Plant managers in exotics that are altering native plant communities by Florida and Australia Þnd it challenging to control this displacing native species, changing community struc- grass with herbicides due to regrowth from below tures or ecological functions, or hybridizing with na- ground stolons (Csurches et al. 1999). tives (FLEPPC 2005). The aggressive growth of H. H. amplexicaulis is considered a valuable forage amplexicaulis is due in part to rapid adaptation to grass in the Neotropics, particularly in Mexico, Cuba, changes in water levels (Kibbler and Bahnisch 1999), and Venezuela. Important forage characteristics of this grass include high digestibility, high nitrogen con- tent, and adaptation to changes in water levels (Antel 1 Biological Control Research and Containment Laboratory, Uni- et al. 1998, Kibbler and Bahnisch 1999). In the Bra- versity of Florida, Fort Pierce, FL 34945. 2 Corresponding author, e-mail, rrdg@uß.edu. zilian pantanal, H. amplexicaulis occurs within four 3 Department of Entomology and Nematology, University of Flor- habitats: marsh ponds, waterlogged basins, tall grass- ida, Gainesville, FL 32611. lands, and forest edges (Pinder and Ross 1998). Ob- 4 USDAÐARS, Invasive Plant Research Laboratory, Ft. Lauderdale, servations in marshes at Myakka River State Park, FL 33314. Њ Њ 5 Department of Agronomy, University of Florida, Gainesville, FL Sarasota Co., FL (27.2 N, 82.2 W) suggest that when 32611. subject to inundation, H. amplexicaulis is capable of 0013-8746/08/0604Ð0612$04.00/0 ᭧ 2008 Entomological Society of America May 2008 DIAZ ET AL.: DEVELOPMENT OF I. variegatus 605 rapid stem elongation, increase in foliage volume and of the plant and the insect were deposited in the rapid nodal adventitious root production (R.D., per- Florida herbarium (accession no. 208823) and the sonal observation). Kibbler and Bahnisch (1999) dem- Florida State Collection of Arthropods (accession no. onstrated that rapid elongation of the stem maintains E2002-6139), respectively. the leaves above the water allowing emergent leaves Laboratory Studies. The lengths of eggs, nymphs, to function at full photosynthetic capacity. In Vene- and adults were measured from randomly collected zuela, Tejos (1978) found a positive relationship be- individuals from the insect colony. Pictures of indi- tween H. amplexicaulis growth and depth of ßooding viduals placed in a sealed petri dish were taken and that biomass production ranged from 5,911 to through a microscope using a digital camera Þtted with 18,162 t/ha/yr during the ßood period and from 5,553 Automontage software (Synchroscopy, Frederick, to 7,836 t/ha/yr during the dry season. MD) and measured with National Institutes of Health In 2000, the Neotropical bug Ischnodemus variegatus ImageJ software (http://rsb.info.nih.gov/ij/). Length (Signoret) (Hemiptera: Blissidae) was discovered of eggs was measured along the longest axis. Nymphs feeding and causing severe damage to H. amplexicaulis and adults were measured from the tip of the rostrum at Myakka River State Park. Scientists from the Florida to the most distal point of the abdomen. Behavioral Department of Agriculture and Consumer Services observations were described from insect colonies and (FDACS) identiÞed I. variegatus as a new record for in Þeld settings. Observations were performed only the continental United States (Halbert 2000). The during the day at least once every 2 wk for a 2-yr native distribution of I. variegatus includes Central period. and South America and collection records indicate H. Developmental Time and Survival. Temperature amplexicaulis as the only host (Baranowski 1979, Slater development studies of I. variegatus were conducted 1987). Like other species in the Blissidae family in environmental chambers at 10 constant tempera- (Hemiptera classiÞcation follows Henry 1997), Isch- tures (8 Ϯ 0.5, 13 Ϯ 0.5, 18 Ϯ 0.5, 20.5 Ϯ 0.5, 23 Ϯ 0.5, nodemus feeds on the sap of monocotyledonous plants 25.5 Ϯ 0.5, 28 Ϯ 0.5, 30.5 Ϯ 0.5, 33 Ϯ 0.5, and 38 Ϯ (Slater 1976). Population outbreaks of this insect in 0.5ЊC). Relative humidity and photoperiod were kept central and south Florida occur from August to No- constant at 80% and 14:10 (L:D) h, respectively. En- vember. Feeding effects of I. variegatus diminish car- vironmental variables were conÞrmed with HOBO bon dioxide assimilation, growth rate and biomass of data loggers (Onset Computer, Bourne, MA) placed in H. amplexicaulis (Overholt et al. 2004). Despite its each chamber. Ten adult couples were placed in a potential as a fortuitous biological control agent of H. small cage (0.3 by 0.3 by 0.3 m) and given stems of H. amplexicaulis, there are no studies that address the amplexicaulis for feeding and oviposition. Fresh eggs basic biology of I. variegatus or its host range. The (Ϸ1 d old) were collected from the stems and trans- purpose of this study was to determine temperature- ferred individually to small (5-cm) petri dishes con- dependent developmental times and survival, and taining moist Þlter paper. Fifty eggs were placed at with this information generate a map depicting the each temperature treatment. Egg development was predicted number of generations per yr of I. variegatus monitored daily and hatching dates recorded. across Florida. This study is an initial step toward Eggs collected from the adult colony were moni- understanding the thermal requirements for I. varie- tored daily and newly hatched nymphs were used for gatus establishment and population growth. the nymphal development study. First instars were placed singly in 250-cm3 vials containing a small sec- tion of H. amplexicaulis whorl that was placed upright Materials and Methods in wet sand. The center of the vial lid was removed in Source of I. variegatus and H. amplexicaulis. I. var- a circular shape and replaced by Þne mesh to allow gas iegatus and H. amplexicaulis were collected in Myakka exchange. Nymphs were transferred to fresh plant River State Park, and Fisheating Creek, Glades Co., FL material every2dbyusing a Þne brush. Fifty indi- (26.5Њ N, 81.7Њ W) and maintained at the Biological viduals were exposed to each temperature treatment. Control Research and Containment Laboratory Nymphal molts, conÞrmed by the presence of exuviae, (BCRCL), Fort Pierce, FL. Stolons of H. amplexicaulis and survival were recorded between 8 and 11 a.m. were planted in two
Recommended publications
  • Het News Issue 22 (Spring 2015)
    Circulation : An informal newsletter circulated periodically to those interested in Heteroptera Copyright : Text & drawings © 2015 Authors. Photographs © 2015 Photographers Citation : Het News, 3 rd series, 22, Spring 2015 Editor : Tristan Bantock: 101 Crouch Hill, London N8 9RD [email protected] britishbugs.org.uk , twitter.com/BritishBugs CONTENTS ANNOUNCEMENTS Scutelleridae A tribute – Ashley Wood…………………………………………….. 1 Odonotoscelis fuliginosa ……………………………………………... 5 Updated keys to Terrestrial Heteroptera exc. Miridae…………… 2 Stenocephalidae County Recorder News……………………………………………… 2 Dicranocephalus medius feeding on Euphorbia x pseudovirgata 5 IUCN status reviews for Heteroptera………………………………. 2 Lygaeidae New RES Handbook to Shieldbugs & Allies of Britain and Ireland 2 Nysius huttoni ………………………………………………………… 5 Request for photographs of Peribalus spp…………………………. 2 Ortholomus punctipennis …………………….……………………… 5 Ischnodemus sabuleti ……………..………….……………………… 5 SPECIES NEW TO BRITAIN Rhyparochromus vulgaris ……………………………………………. 6 Centrocoris variegatus (Coreidae)………………………………….. 2 Drymus pumilio…………………………………………………….…. 6 Orius horvathi (Anthocoridae)……………………………………….. 2 Miridae Nabis capsiformis (Nabidae)………………………………………… 3 Globiceps fulvicollis cruciatus…………………….………………… 6 Psallus anaemicus (Miridae)………………………………………… 3 Hallodapus montandoni………………………………………………. 6 Psallus helenae (Miridae)……………………………………………. 3 Pachytomella parallela……………………………………………….. 6 Hoplomachus thunbergii……………………………………………… 6 SPECIES NOTES Chlamydatus evanescens……………………… …………………….
    [Show full text]
  • 2004Jointannualmeetingwi
    We sincerely thank our sponsors and exhibitors for their support here in Pensacola Beach and added thanks for all of their ongoing help back home: Sponsors ExhibitorsNendors Dow AgroSciences Aquatic Vegetation Control, Inc. NPS, SE Exotic Plant Mgmt. Team Arbor Tree and Land Syngenta BASF Pro Source One Brewer International BASF Callahan's Kudzu Management LLC DuPont Cerexagri, Inc. Brewer International Cbemical Containers, Inc. Cerexagri, Inc. Dow AgroSciences Callahan's Kudzu Management LLC Habitat Restoration Resources, Inc. UAP Timberland LLC Helena Chemical Co. U. S. Forest Service Monsanto SAMAB (Southern Appalachian Man Natural Resource Planning Svcs., Inc. and Biosphere) NaturCbem, Inc. SAK Specialty Sales LLC SePro Corporation Syngenta UAP Timberland LLC TAME (The Area Wide Mgmt. and Evaluation of Melaleuca) University of Florida IFAS Bookstore Southeast Exotic Pest Plant Council 6th Annual Symposium and Florida Exotic Pest Plant Council 19th Annual Symposium "West of Eden: Where Research, Policy and Practice Meet" April 28-30, 2004 Clarion Suites and Convention Center Pensacola Beach, Florida Agenda Wednesday, April 28th 2004 Moderator: Mike Bodle 0900 - 0910 Welcome Mike Bodle, Brian Bowen 0910 - 0945 Keynote Speaker Phyllis Windle Nine hundred experts and groups call for action! 0945 - 1005 National invasive species issues Randall Stocker 1005 -1020 Break Moderator: Brian Bowen 1020 - 1100 Exotic plant management teams: meeting the National Park Service natural resources challenge Nancy Fraley 1100 - 1120 South Florida and Caribbean parks exotic plant management plan and EIS Sandy Hamilton 1120 - 1140 Industry influence on exotic plant pest policies Barbara Lucas 1140 -1200 IFAS Assessment Alison Fox 1200 - 1300 Lunch (On your own) Moderator: Alison Fox 1300 - 1320 Fla.
    [Show full text]
  • BSES Limited
    BSES Limited FINAL REPORT – SRDC PROJECT BSS280 OVERSEAS SUGARCANE QUARANTINE AND EMERGENCY RESPONSE PLANNING by MN SALLAM SD05017 Contact: Dr Mohamed Sallam Research Officer BSES Limited PO Box 122 Gordonvale Q 4865 Telephone: 07 4056 1255 Facsimile: 07 4056 2405 Email: [email protected] BSES is not a partner, joint venturer, employee or agent of SRDC and has no authority to legally bind SRDC, in any publication of substantive details or results of this Project. BSES Limited Publication SRDC Final report SD05017 November 2005 Copyright © 2005 by BSES Limited All rights reserved. No part of this publication may be reproduced, stored in a retrieval system, or transmitted in any form or by any means, electronic, mechanical, photocopying, recording, or otherwise, without the prior permission of BSES Limited. Warning: Our tests, inspections and recommendations should not be relied on without further, independent inquiries. They may not be accurate, complete or applicable for your particular needs for many reasons, including (for example) BSES Limited being unaware of other matters relevant to individual crops, the analysis of unrepresentative samples or the influence of environmental, managerial or other factors on production. Disclaimer: Except as required by law and only to the extent so required, none of BSES Limited, its directors, officers or agents makes any representation or warranty, express or implied, as to, or shall in any way be liable (including liability in negligence) directly or indirectly for any loss, damages, costs, expenses or reliance arising out of or in connection with, the accuracy, currency, completeness or balance of (or otherwise), or any errors in or omissions from, any test results, recommendations statements or other information provided to you.
    [Show full text]
  • Influence of Plant Parameters on Occurrence and Abundance Of
    HORTICULTURAL ENTOMOLOGY Influence of Plant Parameters on Occurrence and Abundance of Arthropods in Residential Turfgrass 1 S. V. JOSEPH AND S. K. BRAMAN Department of Entomology, College of Agricultural and Environmental Sciences, University of Georgia, 1109 Experiment Street, GrifÞn, GA 30223-1797 J. Econ. Entomol. 102(3): 1116Ð1122 (2009) ABSTRACT The effect of taxa [common Bermuda grass, Cynodon dactylon (L.); centipedegrass, Eremochloa ophiuroides Munro Hack; St. Augustinegrass, Stenotaphrum secundatum [Walt.] Kuntze; and zoysiagrass, Zoysia spp.], density, height, and weed density on abundance of natural enemies, and their potential prey were evaluated in residential turf. Total predatory Heteroptera were most abundant in St. Augustinegrass and zoysiagrass and included Anthocoridae, Lasiochilidae, Geocoridae, and Miridae. Anthocoridae and Lasiochilidae were most common in St. Augustinegrass, and their abundance correlated positively with species of Blissidae and Delphacidae. Chinch bugs were present in all turf taxa, but were 23Ð47 times more abundant in St. Augustinegrass. Anthocorids/lasiochilids were more numerous on taller grasses, as were Blissidae, Delphacidae, Cicadellidae, and Cercopidae. Geocoridae and Miridae were most common in zoysiagrass and were collected in higher numbers with increasing weed density. However, no predatory Heteroptera were affected by grass density. Other beneÞcial insects such as staphylinids and parasitic Hymenoptera were captured most often in St. Augustinegrass and zoysiagrass. These differences in abundance could be in response to primary or alternate prey, or reßect the inßuence of turf microenvironmental characteristics. In this study, SimpsonÕs diversity index for predatory Heteroptera showed the greatest diversity and evenness in centipedegrass, whereas the herbivores and detritivores were most diverse in St. Augustinegrass lawns. These results demonstrate the complex role of plant taxa in structuring arthropod communities in turf.
    [Show full text]
  • Insects in Kansas Book: 2016 Revised Taxonomy
    Insects in Kansas Book: 2016 Revised Taxonomy TAXONOMIC CHANGES TO INSECT ORDERS 1. Order Collembola, Springtails, are no longer classified as insects (pg. 38‐39) but were elevated to Class status 2. Order Thysanura, Bristletails and Silverfish are now split into their own Orders and Thysanura no longer exists as an Order name. a. Bristletails=Order Microcoryphia (pg. 40‐41) b. Silverfish=Order Zygentoma (pg. 40‐41) 3. Order Phasmatodea, walkingsticks, are sometimes referred to as Phasmida (pg. 55) 4. Order Blattodea now includes both cockroaches and termites (Order Isoptera is now a suborder) (pg. 84‐85) 5. Order Pscoptera, barklice, are now called Psocodea(pg. 86) 6. Orders Mallophaga and Anoplura (pg. 87‐92) are now in Psocodea as suborders 7. Order Hemiptera now includes the Order Homoptera (Homoptera is now a suborder) (pg. 121‐ 418) 8. Order Neuroptera now includes lacewings, owlflies, and antlions but NOT dobsonflies (see #9) (pg. 153‐159) 9. Order Megaloptera now includes dobsonflies, alderflies, and fishflies (pg. 153‐159) TAXONOMIC CHANGES TO INSECT FAMILIES 1. Cave and camel crickets are now in the Family Rhapidophoridae not Gryllacrididae (pg. 73) 2. Ant crickets have been put into their own Family now called Myrmecophilidae (pg. 74‐75) 3. Red‐legged Earwigs are now in the Family Anisolabididae (pg. 78) 4. German and wood cockroaches are now in the Family Ectobiidae, F. Blattellidae is no longer valid (pg. 82‐83) 5. Family Liposcelidae is now called Liposcelididae (pg. 86) 6. Pubic lice are now in their own Family Phthiridae (pg. 92) 7. Family Pentatomidae no longer includes the Shield bugs or shield‐backed bugs (pg.
    [Show full text]
  • Habitat Restoration and Management Plan Buck Island Ranch Reserve Program Highlands County, Florida
    Habitat Restoration and Management Plan Buck Island Ranch Reserve Program Highlands County, Florida LG2ES Project Number 2016-049 Prepared for: United States Army Corps of Engineers Jacksonville District Prepared by: LG2 Environmental Solutions, Inc. 10475 Fortune Parkway, Suite 201 Jacksonville, Florida 32258 (904) 363-1686 www.lg2es.com December 15, 2017 Habitat Restoration and Management Plan Buck Island Ranch Reserve Program December 15, 2017 TABLE OF CONTENTS 1.0 CONSERVATION PLANNING .................................................................................................. 1 2.0 Introduction ........................................................................................................................ 2 2.1 General Location .............................................................................................................. 2 2.2 Site Description ................................................................................................................ 2 2.3 Restoration Goals and Objectives ....................................................................................... 3 2.4 Historical and Proposed Ecological Communities ................................................................. 4 2.5 Current Site Conditions ..................................................................................................... 4 2.6 Regional Conservation Perspective ..................................................................................... 5 3.0 Soils ..................................................................................................................................
    [Show full text]
  • Insect Classification Standards 2020
    RECOMMENDED INSECT CLASSIFICATION FOR UGA ENTOMOLOGY CLASSES (2020) In an effort to standardize the hexapod classification systems being taught to our students by our faculty in multiple courses across three UGA campuses, I recommend that the Entomology Department adopts the basic system presented in the following textbook: Triplehorn, C.A. and N.F. Johnson. 2005. Borror and DeLong’s Introduction to the Study of Insects. 7th ed. Thomson Brooks/Cole, Belmont CA, 864 pp. This book was chosen for a variety of reasons. It is widely used in the U.S. as the textbook for Insect Taxonomy classes, including our class at UGA. It focuses on North American taxa. The authors were cautious, presenting changes only after they have been widely accepted by the taxonomic community. Below is an annotated summary of the T&J (2005) classification. Some of the more familiar taxa above the ordinal level are given in caps. Some of the more important and familiar suborders and families are indented and listed beneath each order. Note that this is neither an exhaustive nor representative list of suborders and families. It was provided simply to clarify which taxa are impacted by some of more important classification changes. Please consult T&J (2005) for information about taxa that are not listed below. Unfortunately, T&J (2005) is now badly outdated with respect to some significant classification changes. Therefore, in the classification standard provided below, some well corroborated and broadly accepted updates have been made to their classification scheme. Feel free to contact me if you have any questions about this classification.
    [Show full text]
  • Insectts Intestinal Organ for Symbiont Sorting
    Insect’s intestinal organ for symbiont sorting PNAS PLUS Tsubasa Ohbayashia, Kazutaka Takeshitaa,b, Wataru Kitagawaa,b, Naruo Nikohc, Ryuichi Kogad, Xian-Ying Mengd, Kanako Tagoe, Tomoyuki Horif, Masahito Hayatsue, Kozo Asanoa, Yoichi Kamagataa,b, Bok Luel Leeg, Takema Fukatsud, and Yoshitomo Kikuchia,b,1 aGraduate School of Agriculture, Hokkaido University, Sapporo 060-8589, Japan; bBioproduction Research Institute, Hokkaido Center, National Institute of Advanced Industrial Science and Technology, Sapporo 062-8517, Japan; cDepartment of Liberal Arts, The Open University of Japan, Chiba 261-8586, Japan; dBioproduction Research Institute, National Institute of Advanced Industrial Science and Technology, Tsukuba 305-8566, Japan; eEnvironmental Biofunction Division, National Institute for Agro-Environmental Sciences, Tsukuba 305-8604, Japan; fEnvironmental Management Research Institute, National Institute of Advanced Industrial Science and Technology, Tsukuba 305-8569, Japan; and gGlobal Research Laboratory, College of Pharmacy, Pusan National University, Pusan 609-735, Korea Edited by Nancy A. Moran, University of Texas at Austin, Austin, TX, and approved August 11, 2015 (received for review June 11, 2015) Symbiosis has significantly contributed to organismal adaptation Those controlling mechanisms are of general importance for and diversification. For establishment and maintenance of such host– understanding symbiosis (6, 10). symbiont associations, host organisms must have evolved mecha- Stinkbugs, belonging to the insect order Hemiptera, consist of nisms for selective incorporation, accommodation, and maintenance over 40,000 described species in the world (15). The majority of of their specific microbial partners. Here we report the discovery of a the stinkbugs suck plant sap or tissues, and some of them are previously unrecognized type of animal organ for symbiont sorting.
    [Show full text]
  • Great Lakes Entomologist the Grea T Lakes E N Omo L O G Is T Published by the Michigan Entomological Society Vol
    The Great Lakes Entomologist THE GREA Published by the Michigan Entomological Society Vol. 45, Nos. 3 & 4 Fall/Winter 2012 Volume 45 Nos. 3 & 4 ISSN 0090-0222 T LAKES Table of Contents THE Scholar, Teacher, and Mentor: A Tribute to Dr. J. E. McPherson ..............................................i E N GREAT LAKES Dr. J. E. McPherson, Educator and Researcher Extraordinaire: Biographical Sketch and T List of Publications OMO Thomas J. Henry ..................................................................................................111 J.E. McPherson – A Career of Exemplary Service and Contributions to the Entomological ENTOMOLOGIST Society of America L O George G. Kennedy .............................................................................................124 G Mcphersonarcys, a New Genus for Pentatoma aequalis Say (Heteroptera: Pentatomidae) IS Donald B. Thomas ................................................................................................127 T The Stink Bugs (Hemiptera: Heteroptera: Pentatomidae) of Missouri Robert W. Sites, Kristin B. Simpson, and Diane L. Wood ............................................134 Tymbal Morphology and Co-occurrence of Spartina Sap-feeding Insects (Hemiptera: Auchenorrhyncha) Stephen W. Wilson ...............................................................................................164 Pentatomoidea (Hemiptera: Pentatomidae, Scutelleridae) Associated with the Dioecious Shrub Florida Rosemary, Ceratiola ericoides (Ericaceae) A. G. Wheeler, Jr. .................................................................................................183
    [Show full text]
  • Host Specificity of Ischnodemus Variegatus, an Herbivore of West
    BioControl DOI 10.1007/s10526-008-9188-3 Host specificity of Ischnodemus variegatus, an herbivore of West Indian marsh grass (Hymenachne amplexicaulis) Rodrigo Diaz Æ William A. Overholt Æ James P. Cuda Æ Paul D. Pratt Æ Alison Fox Received: 31 January 2008 / Accepted: 17 July 2008 Ó International Organization for Biological Control (IOBC) 2008 Abstract West Indian marsh grass, Hymenachne to suboptimal hosts occurred in an area where amplexicaulis Rudge (Nees) (Poaceae), is an emer- H. amplexicaulis was growing in poor conditions gent wetland plant that is native to South and Central and there was a high density of I. variegatus. Thus, America as well as portions of the Caribbean, but is laboratory and field studies demonstrate that considered invasive in Florida USA. The neotropical I. variegatus had higher performance on H. amplexi- bug, Ischnodemus variegatus (Signoret) (Hemiptera: caulis compared to any other host, and that suboptimal Lygaeoidea: Blissidae) was observed feeding on hosts could be colonized temporarily. H. amplexicaulis in Florida in 2000. To assess whether this insect could be considered as a specialist Keywords Blissidae Á Hemiptera Á Herbivore biological control agent or potential threat to native performance Á Host quality Á Poaceae and cultivated grasses, the host specificity of I. variegatus was studied under laboratory and field conditions. Developmental host range was examined Introduction on 57 plant species across seven plant families. Complete development was obtained on H. amplexi- West Indian marsh grass, Hymenachne amplexicaulis caulis (23.4% survivorship), Paspalum repens (0.4%), Rudge (Nees) (Poaceae), is a perennial emergent Panicum anceps (2.2%) and Thalia geniculata weed in wetlands of Florida USA and northeastern (0.3%).
    [Show full text]
  • S131A Insects in Kansas 2016 Revised Taxonomy
    Insects in Kansas 2016 Revised Taxonomy Taxonomic Changes to Insect Orders 9. Chinch bugs are now in the family Blissidae. (102) 1. Order Collembola, springtails, are no longer classified as 10. Big-eyed bugs are now in the family Geocoridae. (103) insects (38-39) but were elevated to class status. 11. Long-necked seed bugs are in the family 2. Order Thysanura, bristletails and silverfish are now in Rhyparochromidae. (103) different orders. Thysanura is no longer an order name. 12. The ambush bug is now in the family Reduviidae. (107) a. Bristletails=Order Microcoryphia (40-41) 13. Tiger beetles are in the family Carabidae. (160-164) b. Silverfish=Order Zygentoma (40-41) 14. Skin beetles are now in the family Trogidae. (181) 3. Order Phasmatodea, walkingsticks, are sometimes referred to as Phasmida (55) 15. Family Trogositidae is now Trogossitidae. (201) 4. Order Blattodea now includes both cockroaches and 16. Lizard beetles are now in the family Erotylidae. (206) termites. Order Isoptera is now a suborder. (84-85) 17. Seed beetles are now in the family Chrysomelidae. (239) 5. Order Pscoptera, barklice, are now called Psocodea (86) 18. Bark beetles are now in the family Curculionidae. (240- 6. Orders Mallophaga and Anoplura (87-92) are now in 241) Psocodea as suborders. 19. Thief weevils are now in the family Attelabidae. (242) 7. Order Hemiptera now includes the Order Homoptera. 20. Aphid parasite is now in the family Braconidae. (257) Homoptera is now a suborder. (121-148) 21. Genus Myzinum is now in the family Thynnidae. (263) 8. Order Neuroptera now includes lacewings, owlflies, and 22.
    [Show full text]
  • Changes of Cuticular Structures of Ischnodemus Caspius (Heteroptera: Lygaeoidea: Blissidae) from the Fifth Instar to the Adult
    © Entomologica Fennica. 5 December 2007 Changes of cuticular structures of Ischnodemus caspius (Heteroptera: Lygaeoidea: Blissidae) from the fifth instar to the adult Huai-jun Xue and Wen-jun Bu Xue, H. & Bu, W. 2007: Changes of cuticular structures of Ischnodemus caspius (Heteroptera: Lygaeoidea: Blissidae) from the fifth instar to the adult. — Ento- mol. Fennica 18: 218–225. The fine cuticular structures of adult and 5th instar nymph of Ischnodemus caspius Jakovlev 1871 (Heteroptera: Lygaeoidea: Blissidae) are described, com- pared and illustrated using 32 SEM photos. The cuticular structures of I. caspius go through great changes during the metamorphosis from the 5th-instar nymph to the adult. The cuticular morphology of the nymph is much more complicated than that of the adult, especially the abdomen, but the long hairs on body of nymph are much more sparse and simple than those of the adult. This study will stimulate further investigations on the development and systematics of Blissidae. Huai-jun Xue, Institute of Entomology, College of Life Sciences, Nankai Univer- sity, Tianjin 300071, China; Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China; E-mail: [email protected] Wen-jun Bu (corresponding author), Institute of Entomology, College of Life Sci- ences, Nankai University, Tianjin 300071, China; E-mail: wenjunbu @nankai.edu.cn Received 28 July 2006, accepted 16 March 2007 1. Introduction or otherwise treated the nymphs of Blissidae. However, most taxonomic work focuses on The family Blissidae is an economically impor- adults; Slater & Harrington (1970) illustrated the tant group, collectively called chinch bugs. It has fine pruinose area on pronotum of adult Ischno- been previously treated as a subfamily of Ly- demus ocbripes (Stål) and discussed its possible gaeidae (sensu lato), with about 50 genera and function.
    [Show full text]