Characterizing Retinal Stem Cell Proliferation and Differentiation Potentials

Total Page:16

File Type:pdf, Size:1020Kb

Characterizing Retinal Stem Cell Proliferation and Differentiation Potentials Characterizing Retinal Stem Cell Proliferation and Differentiation Potentials by Kenneth N. Grisé A thesis submitted in conformity with the requirements for the degree of Doctor of Philosophy Department of Molecular Genetics University of Toronto © Copyright by Kenneth N. Grisé 2021 Characterizing Retinal Stem Cell Proliferation and Differentiation Potentials Kenneth N. Grisé Doctor of Philosophy Department of Molecular Genetics University of Toronto 2021 Abstract A quiescent population of retinal stem cells (RSCs) in the adult mammalian eye retains the ability to proliferate and generate all retinal cell types when cultured in vitro. Thus, understanding the biological mechanisms that regulate RSC quiescence, proliferation and differentiation could lead to new possibilities for retinal endogenous repair or cell therapy. Previous in vitro experiments in our lab have implicated two proteins, BMP and sFRP2, as potential mediators of RSC quiescence. Herein, I show that antagonism of BMP or sFRP2 proteins in the adult eye can induce the proliferation and expansion of RSCs in vivo and potentiate the effects of exogenous growth factors. Using genetic lineage tracing, I found that RSCs express the gene Msx1. Moreover, in response to BMP/sFRP2 antagonism with growth factor stimulation, photoreceptor degeneration, or all combined, Msx1-lineage cells migrate from the RSC niche into the retina and express markers of mature retinal neurons, including photoreceptors. To identify novel regulators of RSC proliferation, I developed a phenotypic drug screening platform and tested a library of small molecules with well-characterized molecular targets. Screening identified synthetic glucocorticoid (GC) agonists as compounds that increase RSC ii self-renewal and retinal stem and progenitor cell (RSPC) proliferation. GC agonists did not affect the differentiation profile of RSPCs, suggesting proliferation and differentiation are dissociable processes. In addition, injection of GC agonist, dexamethasone, into the adult mouse eye resulted in proliferation in the RSC niche. Intrinsic and extrinsic signals can influence RSPC fate specification. Here we used a multifunctional antagonist of TGFβ, BMP and Wnt signaling – COCO -- to direct RSC progenitors to produce up to 100% cone photoreceptor progeny. Transcriptome profiling of endogenous cones and RSC-derived cones showed that both cell types are genetically similar and distinct from undifferentiated RSC progenitors. Also, we found COCO is required during the entire differentiation period to specify the cone fate. This suggests the cone fate is the default differentiation program of retinal progenitors, which is instructed via the absence of extrinsic cues. Together, these results provide novel insights into the mechanisms regulating RSC quiescence, proliferation and differentiation in vitro and in vivo. iii Acknowledgements I dedicate this thesis to the memory of my mom, Joan AKA Jzen, who I lost recently due to complications of ALS. I know she would have been very proud to see me complete this journey, during which she has been a limitless source of comfort and resolve. My mom radiated a profound and doting love for me and my brother that always has, and always will, suffuse my life with an unfaltering sense of gratitude. Her parting wisdom to us was to “always be true to yourself” and those were truly words she lived by. She had an unapologetically unique and indominable spirit, yet an extraordinarily gentle and kind heart. She also instilled in me an open mind, an understanding that not everything has an answer but to always keep asking questions. Thank you, mom. I will forever hold dear the love and light you brought to my life. My PhD has been as much about learning from the trial and error of experimentation and reading literature, as it has been about learning from my exceptionally inspiring and insightful colleagues, friends and mentors along the way. Foremost, I would like to thank my supervisor, Derek van der Kooy. Derek’s enthusiasm and aptitude for science has been a constant source of inspiration and motivation. His own passion and curiosity translate into his mentorship style, which encourages independent thought and exploration while also offering earnest critique and guidance. And when things have gotten tough, Derek has afforded me a tremendous amount of patience and understanding that has helped me push through. Derek has also made my time in his lab a wellspring of opportunity to develop into a well-rounded scientist through experiences outside of the lab – from enabling me to attend international conferences and engage with the global scientific community, being supportive of my pursuits as an educator when seeking TAships and guest lectures, to trusting me to represent the lab at meetings among CEOs in order to establish an academic-industry partnership. Derek, thank you for making my PhD such a rewarding experience, all about exploring open questions and open doors. I would also like to thank my advisory committee members Vince Tropepe, Rod Bremner and David Kaplan. You provided me with an extremely effective balance of scientific challenge and guidance that has always made me feel encouraged and eager to redouble my efforts toward achieving my goals. Thank you for your mentorship and support over all these years. To Matthias Steger and the Endogena crew: It has been a rare opportunity as a graduate student to participate in a biotech company as it is built from the ground up. I thoroughly enjoyed iv working with all of you, even when balancing my PhD work and our collaboration had me a little overwhelmed at times. I hope the future holds many exciting achievements for you all and great success for the company. To all the van der Kooy labbies that I have worked with day in and day out over the years, and all of my MoGen colleagues-cum-dear friends, you have been the single greatest source of moral support and encouragement (and perhaps on very rare occasions commiseration) that has kept me going. To my lab sis, Samantha Yammine, thanks for always looking out for me and making everyday lab life so much fun. We ended up pursuing so many endeavours/adventures together over the years, it really does feel like I had a sibling there supporting me along the way. To Brenda Coles, there would have been far less sanity and far more catastrophic failures if you weren’t always there to provide the guidance to keep things on track. Also, thanks for always being so enthusiastic to blast some tunes in the tissue culture room and help me complete an innumerable number of experiments. To my retinoids Saeed Khalili, Tahani Baakdhah, Justin Belair-Hickey and Brian Ballios: I have learned so much from you. You each bring your own unique approach and perspective to research that has truly expanded my… vision as a scientist. Justin, I can’t imagine more capable hands to be carrying the retinoid torch forward. Ahmed Fahmy, you’ve been a lovely labmate, a terrific travel buddy and I hear you’re pretty OK at being a father or something too. Krystal Jacques, it’s been fun collaborating on experiments, and I appreciate you for making me feel like I have at least some competence in the mentorship department. My main Moties, Geith Maal-Bared, Lyla El-Fayomi, and Reza Amirzadeh. Geith, whether in the lab, standing in front of an entire class explaining what they did wrong on their exam, or showing the world that science is a drag, you’ve truly enriched my experience these past years. Lyla, I was thoroughly impressed and enjoyed your debut novel and I look forward to reading all your future NYT bestselling Terminum series books. Hopefully we can soundboard more sci-fi story ideas in the future… but outside of the surgery room. Reza, it has been great fun diving into so many philosophical wormholes with you. Daniel Merritt, Glenn Wolfe and Isabel Mackay-Clackett: you didn’t think you’d worm your way out of this one, did you? Daniel, I don’t think there is a subject on which I wouldn’t be rapt to hear your thoughts. However, whether it is you or the whiskey talking I’m not entirely certain. Glenn, thanks for always giving your honest and insightful advice as the elder statesmen of the lab. Also, please give me your dog. Isabel, thanks for being a wonderful lab neighbour. I’ve really enjoyed all our chats, even if you probably haven’t enjoyed all my desk drum solos. I’d also like to thank all the undergrads who have enriched my time in the lab, especially Nelson v Bautista, whose thoughtfulness and work ethic made him a terrific collaborator and helped experiments run smoothly and successfully. To my extended lab fam – the former Zandstra crew – I cherish the time we’ve had together and your continuing friendships. To my dear friends, of both the Penetanguishene and post-Penetanguishene era, who I consider my chosen family: I have been ridiculously fortunate to have so many wonderful human beings in my life. You are a huge part of the ups in my life and I wouldn’t have the resolve to get through the downs without you – including the challenges this PhD has entailed. I’m fortunate there are so many of you, but unfortunately that means I cannot list you all. Please know that your friendship and support has meant the world to me. I look forward to all that the future has in store for us. On that note, a special shoutout to the Gruvi Institute: I’m excited to see where our open minds might take us. Jeff, Ryan and Kyle of Phantom Atlantic fame: these past few years have been a gift. This is not one of those endeavours that you look back on and realize how good you had it – I am continually thrilled by it and I get a sense of appreciation every single time we play music together.
Recommended publications
  • Shedding New Light on the Generation of the Visual Chromophore PERSPECTIVE Krzysztof Palczewskia,B,C,1 and Philip D
    PERSPECTIVE Shedding new light on the generation of the visual chromophore PERSPECTIVE Krzysztof Palczewskia,b,c,1 and Philip D. Kiserb,d Edited by Jeremy Nathans, Johns Hopkins University School of Medicine, Baltimore, MD, and approved July 9, 2020 (received for review May 16, 2020) The visual phototransduction cascade begins with a cis–trans photoisomerization of a retinylidene chro- mophore associated with the visual pigments of rod and cone photoreceptors. Visual opsins release their all-trans-retinal chromophore following photoactivation, which necessitates the existence of pathways that produce 11-cis-retinal for continued formation of visual pigments and sustained vision. Proteins in the retinal pigment epithelium (RPE), a cell layer adjacent to the photoreceptor outer segments, form the well- established “dark” regeneration pathway known as the classical visual cycle. This pathway is sufficient to maintain continuous rod function and support cone photoreceptors as well although its throughput has to be augmented by additional mechanism(s) to maintain pigment levels in the face of high rates of photon capture. Recent studies indicate that the classical visual cycle works together with light-dependent pro- cesses in both the RPE and neural retina to ensure adequate 11-cis-retinal production under natural illu- minances that can span ten orders of magnitude. Further elucidation of the interplay between these complementary systems is fundamental to understanding how cone-mediated vision is sustained in vivo. Here, we describe recent
    [Show full text]
  • Activation and Molecular Recognition of the GPCR Rhodopsin –
    View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by Institutional Repository of the Freie Universität Berlin Activation and molecular recognition of the GPCR rhodopsin – Insights from time-resolved fluorescence depolarization and single molecule experiments Tai-Yang Kim, Thomas Schlieter, Sebastian Haase, and Ulrike Alexiev Physics Department, Freie Universität Berlin, Arnimallee 14, D-14195 Berlin, Germany Correspondence: Dr. Ulrike Alexiev, Physics Department, Freie Universität Berlin, Arnimallee 14, D-14195 Berlin, Germany, Phone: +49-30-838-55157, Fax: +49-30-838-56150, email: [email protected] Keywords: GPCR, visual phototransduction, rhodopsin, GPCR helix 8, protein dynamics, time-resolved fluorescence depolarization, fluorescence anisotropy, surface potential, single particle tracking 1 Abstract The cytoplasmic surface of the G-protein coupled receptor (GPCR) rhodopsin is a key element in membrane receptor activation, molecular recognition by signaling molecules, and receptor deactivation. Understanding of the coupling between conformational changes in the intramembrane domain and the membrane-exposed surface of the photoreceptor rhodopsin is crucial for the elucidation of molecular mechanism in GPCR activation. As little is known about protein dynamics, particularly the conformational dynamics of the cytoplasmic surface elements on the nanoseconds timescale, we utilized time-resolved fluorescence anisotropy experiments and site-directed fluorescence labeling to provide information on both, conformational space and motion. We summarize our recent advances in understanding rhodopsin dynamics and function using time-resolved fluorescence depolarization and single molecule fluorescence experiments, with particular focus on the amphipathic helix 8, lying parallel to the cytoplasmic membrane surface and connecting transmembrane helix 7 with the long C-terminal tail.
    [Show full text]
  • WO 2011/043591 A2 14 April 2011 (14.04.2011) PCT
    (12) INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT) (19) World Intellectual Property Organization International Bureau I (10) International Publication Number (43) International Publication Date WO 2011/043591 A2 14 April 2011 (14.04.2011) PCT (51) International Patent Classification: (81) Designated States (unless otherwise indicated, for every C12N 5/071 (2010.01) C12N 5/02 (2006.01) kind of national protection available): AE, AG, AL, AM, C12N 5/07 (2010.01) AO, AT, AU, AZ, BA, BB, BG, BH, BR, BW, BY, BZ, CA, CH, CL, CN, CO, CR, CU, CZ, DE, DK, DM, DO, (21) Number: International Application DZ, EC, EE, EG, ES, FI, GB, GD, GE, GH, GM, GT, PCT/KR20 10/006832 HN, HR, HU, ID, IL, IN, IS, JP, KE, KG, KM, KN, KP, (22) International Filing Date: KZ, LA, LC, LK, LR, LS, LT, LU, LY, MA, MD, ME, 6 October 2010 (06.10.2010) MG, MK, MN, MW, MX, MY, MZ, NA, NG, NI, NO, NZ, OM, PE, PG, PH, PL, PT, RO, RS, RU, SC, SD, SE, (25) Filing Language: English SG, SK, SL, SM, ST, SV, SY, TH, TJ, TM, TN, TR, TT, (26) Publication Language: English TZ, UA, UG, US, UZ, VC, VN, ZA, ZM, ZW. (30) Priority Data: (84) Designated States (unless otherwise indicated, for every 10-2009-0094854 6 October 2009 (06. 10.2009) KR kind of regional protection available): ARIPO (BW, GH, GM, KE, LR, LS, MW, MZ, NA, SD, SL, SZ, TZ, UG, (71) Applicant (for all designated States except US): SNU ZM, ZW), Eurasian (AM, AZ, BY, KG, KZ, MD, RU, TJ, R&DB FOUNDATION [KR/KR]; San 56-1, Sillim- TM), European (AL, AT, BE, BG, CH, CY, CZ, DE, DK, dong, Gwanak-gu, Seoul 15 1-742 (KR).
    [Show full text]
  • Phototransduction Mediated by Melanopsin in Intrinsically Photosensitive Retinal Ganglion Cells
    C.A. Domínguez-Solís, J.A. Pérez-León: Phototransduction mediated by melanopsin Contents available at PubMed www.anmm.org.mx PERMANYER Gac Med Mex. 2015;151:709-20 www.permanyer.com GACETA MÉDICA DE MÉXICO REVIEW ARTICLE Phototransduction mediated by melanopsin in intrinsically photosensitive retinal ganglion cells Carlos Augusto Domínguez-Solís and Jorge Alberto Pérez-León* Department of Chemical-Biological Sciences, Institute of Biomedical Sciences, Universidad Autónoma de Ciudad Juárez, Chihuahua, Chih., México Abstract Melanopsin is the most recent photopigment described. As all the other opsins, it attaches in the retina as chromophore. Its amino acid sequence resembles more invertebrate opsins than those of vertebrates. The signal transduction pathway of opsins in vertebrates is based on the coupling to the G protein transducin, triggering a signaling cascade that results in the hyperpolarization of the plasma membrane. On the contrary, the photoreceptors of invertebrates activate the Gq protein pathway, which leads to depolarizing responses. Phototransduction mediated by melanopsin leads to the depolarization of those cells where it is expressed, the intrinsically photosensitive retinal ganglion cells; the cellular messengers and the ion channel type(s) responsible for the cells´ response is still unclear. Studies to elucidate the signaling cascade of melanopsin in heterologous expression systems, in retina and isolated/cultured intrinsically photosensitive retinal ganglion cells, have provided evidence for the involvement of protein Gq and phospholipase C together with the likely participation of an ion channel member of the transient receptor potential-canonical family, a transduction pathway similar to invertebrate photopigments, particularly Drosophila melanogaster. The intrinsically photosensitive retinal ganglion cells are the sole source of retinal inferences to the suprachiasmatic nucleus; thus, clarifying completely the melanopsin signaling pathway will impact the chronobiology field, including the clinical aspects.
    [Show full text]
  • This Week in the Journal
    The Journal of Neuroscience, February 11, 2004 • 24(6):i • i This Week in The Journal F Cellular/Molecular leaving a “carbohydrate stub” that can still tied to a cue that promises imminent food inhibit axon growth. To overcome this reward. Sensory Signals Barreling into limitation, Grimpe and Silver designed a Cortical Layer 1 DNA enzyme that specifically targets the ࡗ mRNA for xylosyltransferase-1 (XT-1). Neurobiology of Disease Yinghua Zhu and J. Julius Zhu Because XT-1 initiates glycosylation of the (see pages 1272-1279) protein backbone, the DNA enzyme Adenosine as an Immunomodulator Specific sensory input to neocortex arrives should inhibit formation of carbohydrate side chains. Consistent with this hypothe- Shigeki Tsutsui, Jurgen Schnermann, in layer 4, whereas nonspecific input, such Farshid Noorbakhsh, Scot Henry, as information about salience or novelty, sis, the new reagent reduced fully glycosy- is thought to arrive in layer 1. This scheme lated proteoglycans and allowed regener- V. Wee Yong, Brent W. Winston, might imply a slower arrival of inputs to ation of adult sensory neurons past a Kenneth Warren, and Christopher Power layer 1. In this issue, Zhu and Zhu exam- spinal cord stab lesion. (see pages 1521-1529) ine this question using paired whole-cell f Behavioral/Systems/Cognitive As neuroscientists, we generally think of recording in vivo from layer 1 nonpyrami- modulators in terms of their effect on dal cells and the dendrites of the output Dopamine and Food-Seeking in Real neurons or glia. However in the case of pyramidal neurons in layer 5. They mea- Time adenosine, this purine nucleoside also sured the latency of EPSCs evoked by nat- ural stimulation of whiskers.
    [Show full text]
  • Time-Series Plasma Cell-Free DNA Analysis Reveals Disease Severity of COVID-19 Patients
    medRxiv preprint doi: https://doi.org/10.1101/2020.06.08.20124305; this version posted June 9, 2020. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. It is made available under a CC-BY-NC-ND 4.0 International license . Time-series plasma cell-free DNA analysis reveals disease severity of COVID- 19 patients Authors: Xinping Chen1†, Yu Lin2†, Tao Wu1†, Jinjin Xu2†, Zhichao Ma1†, Kun Sun2,5†, Hui Li1†, Yuxue Luo2,3†, Chen Zhang1, Fang Chen2, Jiao Wang1, Tingyu Kuo2,4, Xiaojuan Li1, Chunyu Geng2, Feng Lin1, Chaojie Huang2, Junjie Hu1, Jianhua Yin2, Ming Liu1, Ye Tao2, Jiye Zhang1, Rijing Ou2, Furong Xiao1, Huanming Yang2,6, Jian Wang2,6, Xun Xu2,7, Shengmiao Fu1*, Xin Jin2,3*, Hongyan Jiang1*, Ruoyan Chen2* Affiliations: 1Hainan General Hospital, Hainan Affiliated Hospital of Hainan Medical University, Hainan Provincial Key Laboratory of Cell and Molecular Genetic Translational Medicine, Haikou 570311, Hainan, China. 2BGI-Shenzhen, Shenzhen, 518083, Guangdong, China 3School of Medicine, South China University of Technology, Guangzhou 510006, Guangdong, China 4BGI Education Center, University of Chinese Academy of Sciences, Shenzhen 518083, Guangdong, China 5Shenzhen Bay Laboratory, Shenzhen 518132, Guangdong, China 6James D. Watson Institute of Genome Sciences, Hangzhou 310058, China 7Guangdong Provincial Key Laboratory of Genome Read and Write, BGI-Shenzhen, Shenzhen, 518120, China *Correspondence to: [email protected]; [email protected]; [email protected]; [email protected]. †These authors contributed equally to this work. Abstract: Clinical symptoms of coronavirus disease 2019 (COVID-19) range from asymptomatic to severe pneumonia and death.
    [Show full text]
  • Appendix C Table 5.3 List of Pathways That Identified Proteins Are Involved
    Appendix C Table 5.3 List of pathways that identified proteins are involved. Protein Pathwaya Acc. No.c Quantitiesb P54071;P21614;G3UXL2;Q8BMS4;Q78JT3;P42125;Q8BMS1;P30115;S4R1W1;D6RHA7; Q91XD4;Q8QZT1;Q8BGT5;Q9D0F9;Q8K2B3;P32020;O09173;O35490;Q91Y97;Q3UEG6 ;G5E8R3;Q4LDG0;E9PW69;Q91X34;Q9Z2V4;Q8VCH0;Q9DBL1;D3Z3P8;Q9QXX4;P07 724;P52196;P46664;J3QNG0;P19096;Q8CIM7;Q9CR00;Q9DCM0;Q8CHR6;P10649;Q9D B77;Q8QZR5;Q91X83;Q9WUM5;A2AQT8;P00688;P08249;D3YWR7;Q9JK53;Q00519;Q 9JLJ2;Q6PB66;K9J7B2;Q9DBJ1;Q60759;Q80XN0;P62983;Q8VCN5;Q99KI0;P36552;Q9E Q20;P15105;B1B0C7;P00329;O35308;Q9JKY7;P26443;Q91Z53;Q64459;P56391;Q9DCJ5; Metabolism 139 P56593;P24549;Q9DCW4;O70250;D3YUG4;Q8K3J1;D3Z3C3;P50247;Q64442;Q6PF96;P 22315;P17751;D3Z2P8;D3Z0E6;Q9JHI5;B1ASE2;P11714;G3X9Y6;P99028;Q8CG76;P516 60;E9Q484;Q8BMF4;Q9CPP6;A8DUK4;P52480;Q91X44;Q8VC12;Q9CZ13;P48758;Q9Q ZD8;P14152;Q3UEJ6;Q9QXD1;Q99LC3;P38060;O88844;Q8C196;Q571F8;P16015;Q99LC 5;P11352;Q922D8;P20060;P24270;Q5NC80;P05202;Q61176;Q9CR61;Q8CHT0;Q63886;Q 99K67;Q8JZR0;Q93092;Q6XVG2;Q9QXD6;Q91XE4;P33267;P40142;Q9CQA3;P51881;P 16331;P97742;P47738 Q9DCM0;Q9EQ20;P15105;Q78JT3;Q8QZR5;Q8VC12;Q91X83;P26443;Q91Z53;Q9QZD8 Metabolism of amino acids and ;Q91XD4;Q8BGT5;Q8QZT1;D3YWR7;Q8C196;Q571F8;O09173;O35490;Q3UEG6;P5024 34 derivatives 7;Q9JLJ2;E9PW69;P05202;Q61176;Q8CHT0;Q9DBL1;Q9JHI5;Q99K67;Q60759;P52196;P 16331;Q8VCN5;J3QNG0;Q9CR00 O35718;P00329;B1B0C7;Q01853;P68373;O88451;P24549;P43117;Q7TRG2;P68368;P010 27;Q9QYE5;Q9EQ31;E9PW69;P20918;Q61483;D6RFQ4;P27467;D3Z3P8;O54689;D3Z2B Signal Transduction 34 2;P15409;G3X9Y6;P62983;Q8K0E8;P17427;Q99LB2;P99024;Q99PT1;E9Q5F4;Q8BMF4;
    [Show full text]
  • List and Compare Functional Properties of Rods and Cones in Scotopic and Photopic Vision Know the Convergen
    Objectives: ❖ List and compare functional properties of rods and cones in scotopic and photopic vision ❖ Know the convergence and its value. ❖ Describe the photosensitive compounds ❖ Contrast the phototransduction process for rods and cones in light and dark and the ionic basis of these responses ❖ Know the process of rhodopsin regeneration ❖ Know the meaning of nyctalopia ❖ Contrast the dark and light adaptation ❖ Know the visual cycle and rhodopsin regeneration ❖ Recognize types of ganglion cells Done by: - Team leaders: Rawaf Alrawaf - Malak Alhamdi ​ - Team members: Raghad AlMansour - asrar batarfi - Razan Alsabti - Nojood ​ Alhaidri - Luluh AlZeghayer - Samar AlOtaibi Edited by: Mohammed Abunayan ​ ​ Reviced by: Nojood Alhaidri ​ Color index: Important - Further explanation - Doctors Notes - Numbers. ​ ​ ​ ​ ​ *Please check out this link before viewing the file to know if there are any additions or changes. ​ ​ ​ ​ 1 Visual Receptors / photoreceptors (Rods and Cones) Rods Cones abundant in the periphery of the retina abundant in & around fovea ​ ​ ​ best for low light (dim light) conditions best for bright light conditions ​ ​ ​ ​ ​ ​ (night vision/scotopic vision) (photopic vision) see black/white and shades of gray see all colors ​ ​ ﻃﺮﯾﻘﺔ ﻟﻠﺤﻔﻆ .. اول ﺷﻲ ﻟﻤﺎ ﻧﻘﻮل Cone ﻧﺸﻮف اول ﺣﺮف ﻓﯿﻬﺎ اﻟﻠﻲ ﻫﻮ ( C ) ﻧﺘﺬﻛﺮ ​ ​ واﻛﯿﺪ ﻣﺎراح ﻧﺸﻮف اﻻﻟﻮان اﻻ اذا ﻛﺎن ﻓﯿﻪ ﺿﻮء Color ● ​ ● Centre (fovea centralis ) ​ ​ ​ Shape of rods & cones (receptors of vision) ❖ Outer segment (modified cilia) ​ ​ ​ 1. has disks full of photosensitive pigment (rhodopsin) react with light to initiate action ​ ​ ​ ​ ​ potential. ​ In cones it is conical, small and contain 3 types of rhodopsin in small amount. ​ ​ ​ ​ ​ In rods it is big, rod like and contain one type of rhodopsin, which composes 90% of rods’ protein.
    [Show full text]
  • Potential Effects on Degenerative Retinal Diseases
    molecules Review Polyphenols and Visual Health: Potential Effects on Degenerative Retinal Diseases Pol Fernandez-Gonzalez † , Aina Mas-Sanchez † and Pere Garriga * Grup de Biotecnologia Molecular i Industrial, Centre de Biotecnologia Molecular, Departament d’Enginyeria Química, Universitat Politècnica de Catalunya, Edifici Gaia, 08222 Terrassa, Spain; [email protected] (P.F.-G.); [email protected] (A.M.-S.) * Correspondence: [email protected] † These authors contributed equally to the work. Abstract: Dietary polyphenols are a group of natural compounds that have been proposed to have beneficial effects on human health. They were first known for their antioxidant properties, but several studies over the years have shown that these compounds can exert protective effects against chronic diseases. Nonetheless, the mechanisms underlying these potential benefits are still uncertain and contradictory effects have been reported. In this review, we analyze the potential effects of polyphenol compounds on some visual diseases, with a special focus on retinal degenerative diseases. Current effective therapies for the treatment of such retinal diseases are lacking and new strategies need to be developed. For this reason, there is currently a renewed interest in finding novel ligands (or known ligands with previously unexpected features) that could bind to retinal photoreceptors and modulate their molecular properties. Some polyphenols, especially flavonoids (e.g., quercetin and tannic acid), Citation: Fernandez-Gonzalez, P.; could attenuate light-induced receptor damage and promote visual health benefits. Recent evidence Mas-Sanchez, A.; Garriga, P. suggests that certain flavonoids could help stabilize the correctly folded conformation of the visual Polyphenols and Visual Health: photoreceptor protein rhodopsin and offset the deleterious effect of retinitis pigmentosa mutations.
    [Show full text]
  • Pineal-Specific Agouti Protein Regulates Teleost Background Adaptation
    fi Pineal-speci c agouti protein regulates teleost INAUGURAL ARTICLE background adaptation Chao Zhanga, Youngsup Songb, Darren A. Thompsonc, Michael A. Madonnac, Glenn L. Millhauserc, Sabrina Torod, Zoltan Vargad, Monte Westerfieldd, Joshua Gamsee, Wenbiao Chena, and Roger D. Conea,1 aDepartment of Molecular Physiology and Biophysics, The Vanderbilt University School of Medicine, Nashville, TN 37232; bThe Salk Institute for Biological Sciences, La Jolla, CA 92037; cDepartment of Chemistry and Biochemistry, University of California, Santa Cruz, CA 95064; dInstitute of Neuroscience, University of Oregon, Eugene, OR 97403; and eDepartment of Biological Sciences, The Vanderbilt University Medical Center, Nashville, TN 37232 This contribution is part of the special series of Inaugural Articles by members of the National Academy of Sciences elected in 2010. Contributed by Roger D. Cone, October 6, 2010 (sent for review August 30, 2010) Background adaptation is used by teleosts as one of a variety of An important mechanism in the pigmentary response to photic camouflage mechanisms for avoidance of predation. Background information involves the dispersion or aggregation of pigment adaptation is known to involve light sensing by the retina and granules, or melanophores, in dermal melanocytes via the actions subsequent regulation of melanophore dispersion or contraction of the pituitary peptide α-MSH (melanocyte-stimulating hormone) in melanocytes, mediated by α-melanocyte–stimulating hormone and hypothalamic peptide MCH (melanocyte-concentrating hor- and melanin-concentrating hormone, respectively. Here, we dem- mone), respectively (8, 9). The secretory activity of α-MSH– onstrate that an agouti gene unique to teleosts, agrp2, is specifi- expressing cells of the pituitary increases in response to a black α cally expressed in the pineal and is required for up-regulation of background (10), and serum -MSH levels increase as well (11).
    [Show full text]
  • RAW PIPPR Signature Pathway List
    Pathway identifier Pathway name Proteins found Total Proteins Pathway R-MMU-73843 5-Phosphoribose 1-diphosphate biosynthesis 2 4 A tetrasaccharide linker sequence is required for R-MMU-1971475 GAG synthesis 6 26 R-MMU-2161541 Abacavir metabolism 1 3 R-MMU-2161522 Abacavir transport and metabolism 1 6 Abasic sugar-phosphate removal via the single- R-MMU-73930 nucleotide replacement pathway 1 2 R-MMU-1369062 ABC transporters in lipid homeostasis 6 17 R-MMU-382556 ABC-family proteins mediated transport 68 100 R-MMU-156582 Acetylation 1 3 R-MMU-264642 Acetylcholine Neurotransmitter Release Cycle 5 17 R-MMU-399997 Acetylcholine regulates insulin secretion 4 9 R-MMU-2122948 Activated NOTCH1 Transmits Signal to the Nucleus 2 10 R-MMU-9028731 Activated NTRK2 signals through FRS2 and FRS3 2 6 R-MMU-9032500 Activated NTRK2 signals through FYN 2 5 R-MMU-9026527 Activated NTRK2 signals through PLCG1 1 4 R-MMU-9034793 Activated NTRK3 signals through PLCG1 1 3 Activated PKN1 stimulates transcription of AR R-MMU-5625886 (androgen receptor) regulated genes KLK2 and KLK3 9 39 R-MMU-450302 activated TAK1 mediates p38 MAPK activation 12 22 R-MMU-111452 Activation and oligomerization of BAK protein 2 2 R-MMU-165158 Activation of AKT2 2 4 Activation of APC/C and APC/C:Cdc20 mediated R-MMU-176814 degradation of mitotic proteins 63 75 R-MMU-176187 Activation of ATR in response to replication stress 25 37 R-MMU-111447 Activation of BAD and translocation to mitochondria 10 12 R-MMU-114452 Activation of BH3-only proteins 14 18 R-MMU-111446 Activation of BIM and
    [Show full text]
  • A Stochastic Model of the Melanopsin Phototransduction Cascade
    A STOCHASTIC MODEL OF THE MELANOPSIN PHOTOTRANSDUCTION CASCADE R. LANE BROWN∗, ERIKA CAMACHOy , EVAN G. CAMERON z , CHRISTINA HAMLET x , KATHLEEN A. HOFFMAN {, HYE-WON KANG k, PHYLLIS R. ROBINSON ∗∗, KATHERINE S. WILLIAMS yy, AND GLENN R. WYRICK zz Abstract. Melanopsin is an unusual vertebrate photopigment that, in mammals, is expressed in a small subset of intrinsically photosensitive retinal ganglion cells (ipRGCs), whose signaling has been implicated in non-image forming vision, regulating such functions as circadian rhythms, pupillary light reflex, and sleep. The biochemical cascade underlying the light response in ipRGCs has not yet been fully elucidated. We developed a stochastic model of the hypothesized melanopsin phototranduction cascade and illustrate that the stochastic model can qualitatively reproduce experimental results under several different conditions. The model allows us to probe various mechanisms in the phototransduction cascade in a way that is not currently experimentally feasible. Key words. melanopsin, law of mass action, phototransduction cascade, Markov- chain model, Gillespie's algorithm AMS(MOS) subject classifications. 92C45 (Kinetics in Biochemical Problems), 80A30 (Chemical Kinetics) 1. Introduction. The mammalian retina, located at the back of the eye, is the only light sensing tissue and mediates both image forming vi- sion and non-image forming vision. The classical photoreceptors, rods and cones, are involved in image forming vision. These photoreceptors convert light into an electrical signal that is processed in the retina and ultimately transmitted to the brain via retinal ganglion cells. The phototransduc- tion cascade in rods and cones has been extensively studied and is well understood [28]. In the last decade a small subset of retinal ganglion cells (ipRGCs) have also been shown to be light sensitive photoreceptors (see for reviews [5, 25, 32]).
    [Show full text]