In Human Breast Cancer Cells Hongli Dong University of Connecticut School of Medicine and Dentistry

Total Page:16

File Type:pdf, Size:1020Kb

In Human Breast Cancer Cells Hongli Dong University of Connecticut School of Medicine and Dentistry University of Connecticut OpenCommons@UConn UCHC Articles - Research University of Connecticut Health Center Research 12-2013 Expression of Phosphodiesterase 6 (PDE6) in Human Breast Cancer Cells Hongli Dong University of Connecticut School of Medicine and Dentistry Kevin P. Claffey University of Connecticut School of Medicine and Dentistry Stefan Brocke University of Connecticut School of Medicine and Dentistry Paul M. Epstein University of Connecticut School of Medicine and Dentistry Follow this and additional works at: https://opencommons.uconn.edu/uchcres_articles Part of the Life Sciences Commons, and the Medicine and Health Sciences Commons Recommended Citation Dong, Hongli; Claffey, Kevin P.; Brocke, Stefan; and Epstein, Paul M., "Expression of Phosphodiesterase 6 (PDE6) in Human Breast Cancer Cells" (2013). UCHC Articles - Research. 226. https://opencommons.uconn.edu/uchcres_articles/226 Dong et al. SpringerPlus 2013, 2:680 http://www.springerplus.com/content/2/1/680 a SpringerOpen Journal RESEARCH Open Access Expression of phosphodiesterase 6 (PDE6) in human breast cancer cells Hongli Dong1, Kevin P Claffey1, Stefan Brocke2 and Paul M Epstein1* Abstract Considerable epidemiological evidence demonstrates a positive association between artificial light at night (LAN) levels and incidence rates of breast cancer, suggesting that exposure to LAN is a risk factor for breast cancer. There is a 30-50% higher risk of breast cancer in the highest LAN exposed countries compared to the lowest LAN countries, and studies showing higher incidence of breast cancer among shift workers exposed to more LAN have led the International Agency for Research on Cancer to classify shift work as a probable human carcinogen. Nevertheless, the means by which light can affect breast cancer is still unknown. In this study we examined established human breast cancer cell lines and patients’ primary breast cancer tissues for expression of genetic components of phosphodiesterase 6 (PDE6), a cGMP-specific PDE involved in transduction of the light signal, and previously thought to be selectively expressed in photoreceptors. By microarray analysis we find highly significant expression of mRNA for the PDE6B, PDE6C, and PDE6D genes in both the cell lines and patients’ tissues, minimal expression of PDE6A and PDE6G and no expression of PDE6H. Using antibody specific for PDE6β, we find expression of PDE6B protein in a wide range of patients’ tissues by immunohistochemistry, and in MCF-7 breast cancer cells by immunofluorescence and Western blot analysis. Considerable expression of key circadian genes, PERIOD 2, CLOCK, TIMELESS, CRYPTOCHROME 1, and CRYPTOCHROME 2 was also seen in all breast cancer cell lines and all patients’ breast cancer tissues. These studies indicate that genes for PDE6 and control of circadian rhythm are expressed in human breast cancer cells and tissues and may play a role in transducing the effects of light on breast cancer. Keywords: Breast cancer; Cyclic nucleotide phosphodiesterase; PDE6; Light; Circadian clock genes; cGMP signaling Introduction transduction of light (Stryer 1986; Zhang and Cote 2005). Cyclic Nucleotide Phosphodiesterases (PDEs) are enco- The rod outer segment (ROS) is a dual membrane system ded by 21 different genes grouped into 11 gene families composed of about 2000 disks surrounded by a physically based on sequence similarity, mode of regulation, and separate plasma membrane. The disks contain rhodopsin, specificity for cAMP or cGMP as substrate (Francis, PDE6 and transducin. The plasma membrane contains a et al. 2011; Lerner and Epstein 2006). There is conside- cGMP-gated sodium channel. In the dark, the ROS con- rable interest in PDEs owing to studies showing them to tains an unusally high concentration of cGMP (≈ 70 μM), be excellent candidate targets for treating a wide range which activates the sodium channel and depolarizes the of illnesses including hematological malignancies, os- membrane. When light impinges on rhodopsin on the teoporosis and inflammatory and autoimmune diseases disks, it photoisomerizes its chromophore, which in turn (Epstein 2012; Francis, et al. 2011; Lerner and Epstein activates the GTP-binding protein, transducin, which acti- 2006; Vang, et al. 2010). Catalytic subunits of PDE6, a vates the catalytic activity of PDE6 by dissociating its in- cGMP-specific PDE, were thought to be photoreceptor- hibitory γ subunits. PDE6 then very rapidly reduces the specific, localized exclusively to the outer segment of cGMP concentration leading to inactivation of the sodium rods and cones in the eye, where they are crucial for the channels and hyperpolarization of the plasma membrane which is conveyed to the synapse at the other end of the rod and communicated to other cells of the retina (Stryer * Correspondence: [email protected] 1Departments of Cell Biology, University of Connecticut Health Center, 1986; Zhang and Cote 2005). In the human rod, PDE6 is 263 Farmington Ave, Farmington, CT 06030-3505, USA composed of two large (≈99 kDa) catalytic subunits, α and Full list of author information is available at the end of the article © 2013 Dong et al.; licensee Springer. This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. Dong et al. SpringerPlus 2013, 2:680 Page 2 of 10 http://www.springerplus.com/content/2/1/680 β, encoded by the PDE6A and PDE6B genes respectively, manner. All procedures involving human tissue were ap- two small (≈ 11 kDa) inhibitory γ subunits encoded by proved by the UCHC Institutional Review Board. PDE6β PDE6G,andasmall(≈ 17 kDa) δ regulatory subunit en- specific antibody (catalog no. NB120-5663) was from coded by PDE6D. The human cone PDE6 contains two α’ Novus Biologicals (Littleton, CO). Alexa Fluor 350 conju- catalytic subunits encoded by PDE6C,twoinhibitoryγ gated goat anti-rabbit IgG was from Invitrogen (Carlsbad, subunits encoded by PDE6H, and a regulatory δ subunit CA). Horseradish peroxidase conjugated goat anti-Rabbit encoded by PDE6D (Ionita and Pittler 2007). The PDE6D- IgG was from GE Healthcare (Piscataway, NJ). encoded δ subunit (PDE6δ) is not specific to PDE6 in that it binds to other enzymes and is expressed in other tissues Cell culture (Zhang, et al. 2004). Its function as part of the PDE6 en- Cell lines were maintained in DMEM medium sup- zyme is unclear, although it is generally found to be bound plemented with 10% fetal bovine serum, 2 mM L-glu- to the soluble fraction of PDE6 in retina extracts and may tamine, 100 U/ml penicillin and 100 μg/ ml streptomycin, play a role in transport of PDE6 to the disks or its trans- at 37°C in a humidified atmosphere of 95% air and location to the plasma membrane (Cook, et al. 2001; 5% CO2. Zhang, et al. 2007). PDE6δ has also been shown to func- tion as a cytosolic farnesyl-binding chaperone protein for ras, which facilitates ras trafficking and signaling Microarray (Chandra, et al. 2012). The γ inhibitory subunit of PDE6 is Microarray analyses were performed with Illumina Ref8 ’ also expressed in other tissues such as lung and kidney bead chips according to the manufacturer s directions. cells (Guo and Ruoho 2008; Tate, et al. 2002) and has been Data analysis was performed with Illumina Gene Studio suggested to play a role in the activation of MAP kinase software. Gene array data for cell lines or tumor samples by epidermal growth factor signaling (Wan, et al. 2003). were treated as separate groups and normalized using PDE6 catalytic activity has also been reported in chick rank-invariant normalization of raw data. Statistical sig- pineal gland where it is believed to mediate the light in- nificance of each value was determined based upon sig- duced inhibition of melatonin synthesis (Holthues and nal variance for multiple probes for each gene to assume Vollrath 2004; Morin, et al. 2001). In contrast to humans, appropriate mRNA expression. in chick, both in rods and pineal glands, the catalytic ac- tivity of PDE6 appears to be comprised of homodimers of Western immunoblot analysis two PDE6B-encoded β subunits, with no evidence for the Western immunoblotting analysis was performed as expression of PDE6A-encoded α subunits present in these described previously (Vang, et al. 2013). MB-231 and chick tissues (Huang, et al. 2004; Morin, et al. 2001). Inas- MCF-7 breast cancer cells were centrifuged at 300 × g much as cGMP has been shown to regulate proliferation for 5 min, washed twice with ice-cold phosphate buf- and apoptosis of breast cancer cells (Saravani, et al. 2012; fered saline (PBS), and lysed in RIPA buffer (50 mM Tri- Tinsley, et al. 2011), we examined breast cancer cells for HCl, pH 7.4, 150 mM NaCl, 1 mM EDTA, 1% NP-40, the expression of PDE6 genes. In this paper we show sig- 0.25% Na-deoxycholate with 1:100 dilution Sigma pro- nificant expression of PDE6B, PDE6C, and PDE6D, in hu- tease inhibitor cocktail). Protein concentration was de- man breast cancer cell lines and patients’ breast cancer termined using a Micro BCA Protein Assay Kit (Pierce, tissues. Rockford, IL). Equal amounts of protein were loaded and run on 10% SDS-PAGE gels. Proteins were then trans- Materials and methods ferred onto Immobilon-p Transfer Membrane (Millipore). Materials Membranes were blocked with 5% BSA in Tris-buffered Breast cancer/uninvolved paired tissue array (catalog no. saline (TBS) for 1 h at room temperature and probed with BRC481) was obtained from Pantomics (San Francisco, 1:200 dilution of PDE6β specific primary antibody (Novus CA, USA). Tissues were classified as tumor or uninvolved Biologicals) overnight at 4°C, washed three times with based upon H&E staining and immunohistochemistry TBS-T (TBS with 0.1% Tween 20) buffer, and incubated using anti-cytokeratin antibody and staged according to with horseradish peroxidase-conjugated secondary anti- the standard TNM classification by a certified physician.
Recommended publications
  • Shedding New Light on the Generation of the Visual Chromophore PERSPECTIVE Krzysztof Palczewskia,B,C,1 and Philip D
    PERSPECTIVE Shedding new light on the generation of the visual chromophore PERSPECTIVE Krzysztof Palczewskia,b,c,1 and Philip D. Kiserb,d Edited by Jeremy Nathans, Johns Hopkins University School of Medicine, Baltimore, MD, and approved July 9, 2020 (received for review May 16, 2020) The visual phototransduction cascade begins with a cis–trans photoisomerization of a retinylidene chro- mophore associated with the visual pigments of rod and cone photoreceptors. Visual opsins release their all-trans-retinal chromophore following photoactivation, which necessitates the existence of pathways that produce 11-cis-retinal for continued formation of visual pigments and sustained vision. Proteins in the retinal pigment epithelium (RPE), a cell layer adjacent to the photoreceptor outer segments, form the well- established “dark” regeneration pathway known as the classical visual cycle. This pathway is sufficient to maintain continuous rod function and support cone photoreceptors as well although its throughput has to be augmented by additional mechanism(s) to maintain pigment levels in the face of high rates of photon capture. Recent studies indicate that the classical visual cycle works together with light-dependent pro- cesses in both the RPE and neural retina to ensure adequate 11-cis-retinal production under natural illu- minances that can span ten orders of magnitude. Further elucidation of the interplay between these complementary systems is fundamental to understanding how cone-mediated vision is sustained in vivo. Here, we describe recent
    [Show full text]
  • Supplemental Material
    Supplemental Table B ARGs in alphabetical order Symbol Title 3 months 6 months 9 months 12 months 23 months ANOVA Direction Category 38597 septin 2 1557 ± 44 1555 ± 44 1579 ± 56 1655 ± 26 1691 ± 31 0.05219 up Intermediate 0610031j06rik kidney predominant protein NCU-G1 491 ± 6 504 ± 14 503 ± 11 527 ± 13 534 ± 12 0.04747 up Early Adult 1G5 vesicle-associated calmodulin-binding protein 662 ± 23 675 ± 17 629 ± 16 617 ± 20 583 ± 26 0.03129 down Intermediate A2m alpha-2-macroglobulin 262 ± 7 272 ± 8 244 ± 6 290 ± 7 353 ± 16 0.00000 up Midlife Aadat aminoadipate aminotransferase (synonym Kat2) 180 ± 5 201 ± 12 223 ± 7 244 ± 14 275 ± 7 0.00000 up Early Adult Abca2 ATP-binding cassette, sub-family A (ABC1), member 2 958 ± 28 1052 ± 58 1086 ± 36 1071 ± 44 1141 ± 41 0.05371 up Early Adult Abcb1a ATP-binding cassette, sub-family B (MDR/TAP), member 1A 136 ± 8 147 ± 6 147 ± 13 155 ± 9 185 ± 13 0.01272 up Midlife Acadl acetyl-Coenzyme A dehydrogenase, long-chain 423 ± 7 456 ± 11 478 ± 14 486 ± 13 512 ± 11 0.00003 up Early Adult Acadvl acyl-Coenzyme A dehydrogenase, very long chain 426 ± 14 414 ± 10 404 ± 13 411 ± 15 461 ± 10 0.01017 up Late Accn1 amiloride-sensitive cation channel 1, neuronal (degenerin) 242 ± 10 250 ± 9 237 ± 11 247 ± 14 212 ± 8 0.04972 down Late Actb actin, beta 12965 ± 310 13382 ± 170 13145 ± 273 13739 ± 303 14187 ± 269 0.01195 up Midlife Acvrinp1 activin receptor interacting protein 1 304 ± 18 285 ± 21 274 ± 13 297 ± 21 341 ± 14 0.03610 up Late Adk adenosine kinase 1828 ± 43 1920 ± 38 1922 ± 22 2048 ± 30 1949 ± 44 0.00797 up Early
    [Show full text]
  • Product Data Sheet
    Product Data Sheet ExProfileTM Human AMPK Signaling Related Gene qPCR Array For focused group profiling of human AMPK signaling genes expression Cat. No. QG004-A (4 x 96-well plate, Format A) Cat. No. QG004-B (4 x 96-well plate, Format B) Cat. No. QG004-C (4 x 96-well plate, Format C) Cat. No. QG004-D (4 x 96-well plate, Format D) Cat. No. QG004-E (4 x 96-well plate, Format E) Plates available individually or as a set of 6. Each set contains 336 unique gene primer pairs deposited in one 96-well plate. Introduction The ExProfile human AMPK signaling related gene qPCR array profiles the expression of 336 human genes related to AMPK-mediated signal transduction. These genes are carefully chosen for their close pathway correlation based on a thorough literature search of peer-reviewed publications, mainly including genes that encode AMP-activated protein kinase complex,its regulators and targets involved in many important biological processes, such as glucose uptake, β-oxidation of fatty acids and modulation of insulin secretion. This array allows researchers to study the pathway-related genes to gain understanding of their roles in the different biological processes. QG004 plate 01: 84 unique gene PCR primer pairs QG004 plate 02: 84 unique gene PCR primer pairs QG004 plate 03: 84 unique gene PCR primer pairs QG004 plate 04: 84 unique gene PCR primer pairs Shipping and storage condition Shipped at room temperate Stable for at least 6 months when stored at -20°C Array format GeneCopoeia provides five qPCR array formats (A, B, C, D, and E) suitable for use with the following real- time cyclers.
    [Show full text]
  • Investigating Cone Photoreceptor Development Using Patient-Derived NRL Null Retinal Organoids
    ARTICLE https://doi.org/10.1038/s42003-020-0808-5 OPEN Investigating cone photoreceptor development using patient-derived NRL null retinal organoids Alyssa Kallman1,11, Elizabeth E. Capowski 2,11, Jie Wang 3, Aniruddha M. Kaushik4, Alex D. Jansen2, Kimberly L. Edwards2, Liben Chen4, Cynthia A. Berlinicke3, M. Joseph Phillips2,5, Eric A. Pierce6, Jiang Qian3, ✉ ✉ Tza-Huei Wang4,7, David M. Gamm2,5,8 & Donald J. Zack 1,3,9,10 1234567890():,; Photoreceptor loss is a leading cause of blindness, but mechanisms underlying photoreceptor degeneration are not well understood. Treatment strategies would benefit from improved understanding of gene-expression patterns directing photoreceptor development, as many genes are implicated in both development and degeneration. Neural retina leucine zipper (NRL) is critical for rod photoreceptor genesis and degeneration, with NRL mutations known to cause enhanced S-cone syndrome and retinitis pigmentosa. While murine Nrl loss has been characterized, studies of human NRL can identify important insights for human retinal development and disease. We utilized iPSC organoid models of retinal development to molecularly define developmental alterations in a human model of NRL loss. Consistent with the function of NRL in rod fate specification, human retinal organoids lacking NRL develop S- opsin dominant photoreceptor populations. We report generation of two distinct S-opsin expressing populations in NRL null retinal organoids and identify MEF2C as a candidate regulator of cone development. 1 Institute of Genetic Medicine, Johns Hopkins University School of Medicine, Baltimore, USA. 2 Waisman Center, University of Wisconsin-Madison, Madison, USA. 3 Department of Ophthalmology, Wilmer Eye Institute, Johns Hopkins University School of Medicine, Baltimore, USA.
    [Show full text]
  • A Computational Approach for Defining a Signature of Β-Cell Golgi Stress in Diabetes Mellitus
    Page 1 of 781 Diabetes A Computational Approach for Defining a Signature of β-Cell Golgi Stress in Diabetes Mellitus Robert N. Bone1,6,7, Olufunmilola Oyebamiji2, Sayali Talware2, Sharmila Selvaraj2, Preethi Krishnan3,6, Farooq Syed1,6,7, Huanmei Wu2, Carmella Evans-Molina 1,3,4,5,6,7,8* Departments of 1Pediatrics, 3Medicine, 4Anatomy, Cell Biology & Physiology, 5Biochemistry & Molecular Biology, the 6Center for Diabetes & Metabolic Diseases, and the 7Herman B. Wells Center for Pediatric Research, Indiana University School of Medicine, Indianapolis, IN 46202; 2Department of BioHealth Informatics, Indiana University-Purdue University Indianapolis, Indianapolis, IN, 46202; 8Roudebush VA Medical Center, Indianapolis, IN 46202. *Corresponding Author(s): Carmella Evans-Molina, MD, PhD ([email protected]) Indiana University School of Medicine, 635 Barnhill Drive, MS 2031A, Indianapolis, IN 46202, Telephone: (317) 274-4145, Fax (317) 274-4107 Running Title: Golgi Stress Response in Diabetes Word Count: 4358 Number of Figures: 6 Keywords: Golgi apparatus stress, Islets, β cell, Type 1 diabetes, Type 2 diabetes 1 Diabetes Publish Ahead of Print, published online August 20, 2020 Diabetes Page 2 of 781 ABSTRACT The Golgi apparatus (GA) is an important site of insulin processing and granule maturation, but whether GA organelle dysfunction and GA stress are present in the diabetic β-cell has not been tested. We utilized an informatics-based approach to develop a transcriptional signature of β-cell GA stress using existing RNA sequencing and microarray datasets generated using human islets from donors with diabetes and islets where type 1(T1D) and type 2 diabetes (T2D) had been modeled ex vivo. To narrow our results to GA-specific genes, we applied a filter set of 1,030 genes accepted as GA associated.
    [Show full text]
  • Cellular and Molecular Signatures in the Disease Tissue of Early
    Cellular and Molecular Signatures in the Disease Tissue of Early Rheumatoid Arthritis Stratify Clinical Response to csDMARD-Therapy and Predict Radiographic Progression Frances Humby1,* Myles Lewis1,* Nandhini Ramamoorthi2, Jason Hackney3, Michael Barnes1, Michele Bombardieri1, Francesca Setiadi2, Stephen Kelly1, Fabiola Bene1, Maria di Cicco1, Sudeh Riahi1, Vidalba Rocher-Ros1, Nora Ng1, Ilias Lazorou1, Rebecca E. Hands1, Desiree van der Heijde4, Robert Landewé5, Annette van der Helm-van Mil4, Alberto Cauli6, Iain B. McInnes7, Christopher D. Buckley8, Ernest Choy9, Peter Taylor10, Michael J. Townsend2 & Costantino Pitzalis1 1Centre for Experimental Medicine and Rheumatology, William Harvey Research Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, Charterhouse Square, London EC1M 6BQ, UK. Departments of 2Biomarker Discovery OMNI, 3Bioinformatics and Computational Biology, Genentech Research and Early Development, South San Francisco, California 94080 USA 4Department of Rheumatology, Leiden University Medical Center, The Netherlands 5Department of Clinical Immunology & Rheumatology, Amsterdam Rheumatology & Immunology Center, Amsterdam, The Netherlands 6Rheumatology Unit, Department of Medical Sciences, Policlinico of the University of Cagliari, Cagliari, Italy 7Institute of Infection, Immunity and Inflammation, University of Glasgow, Glasgow G12 8TA, UK 8Rheumatology Research Group, Institute of Inflammation and Ageing (IIA), University of Birmingham, Birmingham B15 2WB, UK 9Institute of
    [Show full text]
  • Quantification of Cardiovascular Disease Biomarkers in Human
    proteomes Article Quantification of Cardiovascular Disease Biomarkers in Human Platelets by Targeted Mass Spectrometry Sebastian Malchow ID , Christina Loosse, Albert Sickmann and Christin Lorenz * Leibniz-Institut für Analytische Wissenschaften-ISAS-e.V., 44139 Dortmund, Germany; [email protected] (S.M.); [email protected] (C.L.); [email protected] (A.S.) * Correspondence: [email protected]; Tel.: +49-231-1392-289 Received: 3 October 2017; Accepted: 13 November 2017; Published: 15 November 2017 Abstract: Platelets are known to be key players in thrombosis and hemostasis, contributing to the genesis and progression of cardiovascular diseases. Due to their pivotal role in human physiology and pathology, platelet function is regulated tightly by numerous factors which have either stimulatory or inhibitory effects. A variety of factors, e.g., collagen, fibrinogen, ADP, vWF, thrombin, and thromboxane promote platelet adhesion and aggregation by utilizing multiple intracellular signal cascades. To quantify platelet proteins for this work, a targeted proteomics workflow was applied. In detail, platelets are isolated and lyzed, followed by a tryptic protein digest. Subsequently, a mix of stable isotope-labeled peptides of interesting biomarker proteins in concentrations ranging from 0.1 to 100 fmol is added to 3 µg digest. These peptides are used as an internal calibration curve to accurately quantify endogenous peptides and corresponding proteins in a pooled platelet reference sample by nanoLC-MS/MS with parallel reaction monitoring. In order to assure a valid quantification, limit of detection (LOD) and limit of quantification (LOQ), as well as linear range, were determined. This quantification of platelet activation and proteins by targeted mass spectrometry may enable novel diagnostic strategies in the detection and prevention of cardiovascular diseases.
    [Show full text]
  • Genomic Instability and DNA Ploidy Are Linked to DNA Copy Number Aberrations of 8P23 and 22Q11.23 in Gastric Cancers
    333-339.qxd 15/7/2010 11:08 Ì ™ÂÏ›‰·333 INTERNATIONAL JOURNAL OF MOLECULAR MEDICINE 26: 333-339, 2010 333 Genomic instability and DNA ploidy are linked to DNA copy number aberrations of 8p23 and 22q11.23 in gastric cancers SHIGETO KAWAUCHI1, TOMOKO FURUAY1, TETSUJI UCHIYAMA2, ATSUSHI ADACHI2, TAKAE OKADA1 MOTONAO NAKAO1, ATSUNORI OGA1, KENICHIRO UCHIDA1 and KOHSUKE SASAKI1 1Department of Pathology, Yamaguchi University Graduate School of Medicine, Ube 755-8505; 2Department of Surgery, Iwakuni Medical Center, Iwakuni 740-0021, Japan Received April 8, 2010; Accepted June 2, 2010 DOI: 10.3892/ijmm_00000470 Abstract. The close relationship between chromosomal Introduction instability (CIN) and aneuploidy has been reported. The purpose of this study was to identify genomic aberrations Cancer progression is accompanied by the accumulation of present with CIN and aneuploidy in gastric cancers. FISH genetic alterations in the genes controlling cell proliferation and image cytometry were applied to 27 sporadic gastric and death. Indeed, some genomic abnormalities, ranging adenocarcinomas to identify CIN-positive tumors and to from point mutations to chromosomal aberrations, are determine DNA ploidy, respectively. In addition, array-based detected in virtually all cancers, including gastric cancers. comparative genomic hybridization was used to identify Although the biological characteristics of cancers greatly bacterial artificial chromosome clones that displayed vary from case to case, they are primarily affected by genomic differences in the frequency of copy number aberrations alterations. In general, cancer cells inherently take on genomic between CIN-positive and CIN-negative tumors, and instability that is conceptually divided into microsatellite between aneuploid and diploid tumors. There were many instability (MIN) and chromosomal instability (CIN) (1,2).
    [Show full text]
  • Activation and Molecular Recognition of the GPCR Rhodopsin –
    View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by Institutional Repository of the Freie Universität Berlin Activation and molecular recognition of the GPCR rhodopsin – Insights from time-resolved fluorescence depolarization and single molecule experiments Tai-Yang Kim, Thomas Schlieter, Sebastian Haase, and Ulrike Alexiev Physics Department, Freie Universität Berlin, Arnimallee 14, D-14195 Berlin, Germany Correspondence: Dr. Ulrike Alexiev, Physics Department, Freie Universität Berlin, Arnimallee 14, D-14195 Berlin, Germany, Phone: +49-30-838-55157, Fax: +49-30-838-56150, email: [email protected] Keywords: GPCR, visual phototransduction, rhodopsin, GPCR helix 8, protein dynamics, time-resolved fluorescence depolarization, fluorescence anisotropy, surface potential, single particle tracking 1 Abstract The cytoplasmic surface of the G-protein coupled receptor (GPCR) rhodopsin is a key element in membrane receptor activation, molecular recognition by signaling molecules, and receptor deactivation. Understanding of the coupling between conformational changes in the intramembrane domain and the membrane-exposed surface of the photoreceptor rhodopsin is crucial for the elucidation of molecular mechanism in GPCR activation. As little is known about protein dynamics, particularly the conformational dynamics of the cytoplasmic surface elements on the nanoseconds timescale, we utilized time-resolved fluorescence anisotropy experiments and site-directed fluorescence labeling to provide information on both, conformational space and motion. We summarize our recent advances in understanding rhodopsin dynamics and function using time-resolved fluorescence depolarization and single molecule fluorescence experiments, with particular focus on the amphipathic helix 8, lying parallel to the cytoplasmic membrane surface and connecting transmembrane helix 7 with the long C-terminal tail.
    [Show full text]
  • G-Protein ␤␥-Complex Is Crucial for Efficient Signal Amplification in Vision
    The Journal of Neuroscience, June 1, 2011 • 31(22):8067–8077 • 8067 Cellular/Molecular G-Protein ␤␥-Complex Is Crucial for Efficient Signal Amplification in Vision Alexander V. Kolesnikov,1 Loryn Rikimaru,2 Anne K. Hennig,1 Peter D. Lukasiewicz,1 Steven J. Fliesler,4,5,6,7 Victor I. Govardovskii,8 Vladimir J. Kefalov,1 and Oleg G. Kisselev2,3 1Department of Ophthalmology and Visual Sciences, Washington University School of Medicine, St. Louis, Missouri 63110, Departments of 2Ophthalmology and 3Biochemistry and Molecular Biology, Saint Louis University School of Medicine, Saint Louis, Missouri 63104, 4Research Service, Veterans Administration Western New York Healthcare System, and Departments of 5Ophthalmology (Ross Eye Institute) and 6Biochemistry, University at Buffalo/The State University of New York (SUNY), and 7SUNY Eye Institute, Buffalo, New York 14215, and 8Sechenov Institute for Evolutionary Physiology and Biochemistry, Russian Academy of Sciences, Saint Petersburg 194223, Russia A fundamental question of cell signaling biology is how faint external signals produce robust physiological responses. One universal mechanism relies on signal amplification via intracellular cascades mediated by heterotrimeric G-proteins. This high amplification system allows retinal rod photoreceptors to detect single photons of light. Although much is now known about the role of the ␣-subunit of the rod-specific G-protein transducin in phototransduction, the physiological function of the auxiliary ␤␥-complex in this process remains a mystery. Here, we show that elimination of the transducin ␥-subunit drastically reduces signal amplification in intact mouse rods. The consequence is a striking decline in rod visual sensitivity and severe impairment of nocturnal vision. Our findings demonstrate that transducin ␤␥-complex controls signal amplification of the rod phototransduction cascade and is critical for the ability of rod photoreceptors to function in low light conditions.
    [Show full text]
  • WO 2011/043591 A2 14 April 2011 (14.04.2011) PCT
    (12) INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT) (19) World Intellectual Property Organization International Bureau I (10) International Publication Number (43) International Publication Date WO 2011/043591 A2 14 April 2011 (14.04.2011) PCT (51) International Patent Classification: (81) Designated States (unless otherwise indicated, for every C12N 5/071 (2010.01) C12N 5/02 (2006.01) kind of national protection available): AE, AG, AL, AM, C12N 5/07 (2010.01) AO, AT, AU, AZ, BA, BB, BG, BH, BR, BW, BY, BZ, CA, CH, CL, CN, CO, CR, CU, CZ, DE, DK, DM, DO, (21) Number: International Application DZ, EC, EE, EG, ES, FI, GB, GD, GE, GH, GM, GT, PCT/KR20 10/006832 HN, HR, HU, ID, IL, IN, IS, JP, KE, KG, KM, KN, KP, (22) International Filing Date: KZ, LA, LC, LK, LR, LS, LT, LU, LY, MA, MD, ME, 6 October 2010 (06.10.2010) MG, MK, MN, MW, MX, MY, MZ, NA, NG, NI, NO, NZ, OM, PE, PG, PH, PL, PT, RO, RS, RU, SC, SD, SE, (25) Filing Language: English SG, SK, SL, SM, ST, SV, SY, TH, TJ, TM, TN, TR, TT, (26) Publication Language: English TZ, UA, UG, US, UZ, VC, VN, ZA, ZM, ZW. (30) Priority Data: (84) Designated States (unless otherwise indicated, for every 10-2009-0094854 6 October 2009 (06. 10.2009) KR kind of regional protection available): ARIPO (BW, GH, GM, KE, LR, LS, MW, MZ, NA, SD, SL, SZ, TZ, UG, (71) Applicant (for all designated States except US): SNU ZM, ZW), Eurasian (AM, AZ, BY, KG, KZ, MD, RU, TJ, R&DB FOUNDATION [KR/KR]; San 56-1, Sillim- TM), European (AL, AT, BE, BG, CH, CY, CZ, DE, DK, dong, Gwanak-gu, Seoul 15 1-742 (KR).
    [Show full text]
  • Novel Driver Strength Index Highlights Important Cancer Genes in TCGA Pancanatlas Patients
    medRxiv preprint doi: https://doi.org/10.1101/2021.08.01.21261447; this version posted August 5, 2021. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. It is made available under a CC-BY-NC-ND 4.0 International license . Novel Driver Strength Index highlights important cancer genes in TCGA PanCanAtlas patients Aleksey V. Belikov*, Danila V. Otnyukov, Alexey D. Vyatkin and Sergey V. Leonov Laboratory of Innovative Medicine, School of Biological and Medical Physics, Moscow Institute of Physics and Technology, 141701 Dolgoprudny, Moscow Region, Russia *Corresponding author: [email protected] NOTE: This preprint reports new research that has not been certified by peer review and should not be used to guide clinical practice. 1 medRxiv preprint doi: https://doi.org/10.1101/2021.08.01.21261447; this version posted August 5, 2021. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. It is made available under a CC-BY-NC-ND 4.0 International license . Abstract Elucidating crucial driver genes is paramount for understanding the cancer origins and mechanisms of progression, as well as selecting targets for molecular therapy. Cancer genes are usually ranked by the frequency of mutation, which, however, does not necessarily reflect their driver strength. Here we hypothesize that driver strength is higher for genes that are preferentially mutated in patients with few driver mutations overall, because these few mutations should be strong enough to initiate cancer.
    [Show full text]