Finishing (Textiles)

Total Page:16

File Type:pdf, Size:1020Kb

Finishing (Textiles) Finishing (textiles) From Wikipedia, the free encyclopedia Jump to: navigation, search This article needs additional citations for verification. Please help improve this article by adding citations to reliable sources. Unsourced material may be challenged and removed. (September 2010) Textile finishing machinery, Red Bridge Mills, Ainsworth, 1983 In textile manufacturing, finishing refers to the processes that convert the woven or knitted cloth into a usable material and more specifically to any process performed after dyeing the yarn or fabric to improve the look, performance, or "hand" (feel) of the finished textile or clothing.[1][2] The precise meaning depends on context. Some finishing techniques such as bleaching and dyeing are applied to yarn before it is woven while others are applied to the grey cloth directly after it is woven or knitted.[3] Some finishing techniques, such as fulling, have been in use with hand-weaving for centuries; others, such as mercerisation, are byproducts of the Industrial Revolution.[citation needed] Contents [hide] • 1 Introduction • 2 Finishing- processing of cotton o 2.1 Purification and preliminary processes o 2.2 Coloration o 2.3 Finishing • 3 Standard finishes o 3.1 Quality-oriented o 3.2 Design-oriented o 3.3 Handle-oriented • 4 Special finishes for natural fibers • 5 Special finishes for synthetic fibers • 6 References • 7 Bibliography • 8 External links [edit] Introduction In order to impart the required functional properties to the fiber or fabric, it is customary to subject the material to different types of physical and chemical treatments. For example, wash and wear finish for a cotton fabric is necessary to make it crease-free or wrinkle-free. In a similar way, mercerising, singeing, flame retardant, water repellent, waterproof, anti-static and peach finishing achieve various fabric properties desired by consumers. The use of 100% synthetic textiles has increased considerably since the development of textured yarns made of filaments, and the growing production of knit goods. The use of open weave has enabled production of lighter, breathable, fabrics to ensure better wearing comfort. The properties of plastic-based synthetic fibers, most important among them being polyamide, polyester and polyacrylonitrile, are essentially different from those of natural cellulosic and wool fibers. Hence the sequence of finishing operations is likely to be different. While cellulosic fabrics require a resin finishing treatment to impart easy-care properties, synthetic fibers already exhibit these easy-care criteria and require only a heat setting operation. [edit] Finishing- processing of cotton [edit] Purification and preliminary processes The grey cloth,woven cotton fabric in its loom-state, not only contains impurities, including warp size, but requires further treatment in order to develop its full textile potential. Furthermore, it may receive considerable added value by applying one or more finishing processes.[4][5] • Singeing Main article: Singe#Textiles Singeing is designed to burn off the surface fibres from the fabric to produce smoothness. The fabric passes over brushes to raise the fibres, then passes over a plate heated by gas flames.[6] • Desizing Depending on the size that has been used, the cloth may be steeped in a dilute acid and then rinsed, or enzymes may be used to break down the size.[6] • Scouring Scouring, is a chemical washing process carried out on cotton fabric to remove natural wax and non-fibrous impurities (e.g. the remains of seed fragments) from the fibres and any added soiling or dirt. Scouring is usually carried in iron vessels called kiers. The fabric is boiled in an alkali, which forms a soap with free fatty acids (saponification). A kier is usually enclosed, so the solution of sodium hydroxide can be boiled under pressure, excluding oxygen which would degrade the cellulose in the fibre. If the appropriate reagents are used, scouring will also remove size from the fabric although desizing often precedes scouring and is considered to be a separate process known as fabric preparation. Preparation and scouring are prerequisites to most of the other finishing processes. At this stage even the most naturally white cotton fibres are yellowish, and bleaching, the next process, is required.[6] • Bleaching Main article: Textile bleaching Bleaching improves whiteness by removing natural coloration and remaining trace impurities from the cotton; the degree of bleaching necessary is determined by the required whiteness and absorbency. Cotton being a vegetable fibre will be bleached using an oxidizing agent, such as dilute sodium hypochlorite or dilute hydrogen peroxide. If the fabric is to be dyed a deep shade, then lower levels of bleaching are acceptable, for example. However, for white bed sheetings and medical applications, the highest levels of whiteness and absorbency are essential. [7] • Mercerising Main article: Mercerized cotton A further possibility is mercerizing during which the fabric is treated with caustic soda solution to cause swelling of the fibres. This results in improved lustre, strength and dye affinity. Cotton is mercerized under tension, and all alkali must be washed out before the tension is released or shrinkage will take place. Mercerizing can take place directly on grey cloth, or after bleaching.[8] [edit] Coloration Color is a senation caused when white light from a source such as the sun is reflected off a pigment on the surface. The pigment selectively reflects certain wavelengths of light while absorbing others. A dye can be considered as a substance that can be fixed to a material that has these properties. The colour it reflects is defined by the structure of the molecule, and particular the parts of the chromogen molecule called the chromophore group. [9] There are two processes used to apply colour: • Dyeing Main article: Dyeing Finally, cotton is an absorbent fibre which responds readily to colouration processes. Dyeing, for instance, is commonly carried out with an anionic direct dye by completely immersing the fabric (or yarn) in an aqueous dyebath according to a prescribed procedure. For improved fastness to washing, rubbing and light, other dyes such as vats and reactives are commonly used. These require more complex chemistry during processing and are thus more expensive to apply. [10] • Printing Main article: Textile printing Printing, on the other hand, is the application of colour in the form of a paste or ink to the surface of a fabric, in a predetermined pattern. It may be considered as localised dyeing. Printing designs on to already dyed fabric is also possible. The common processes are block printing, roller printing and screen printing [edit] Finishing Mechanical finishing • Raising Another finishing process is raising. During raising, the fabric surface is treated with sharp teeth to lift the surface fibres, thereby imparting hairiness, softness and warmth, as in flannelette. • Calendering Main article: Calender Calendering is the third important mechanical process, in which the fabric is passed between heated rollers to generate smooth, polished or embossed effects depending on roller surface properties and relative speeds. [11] Chemical finishing Many other chemical treatments may be applied to cotton fabrics to produce low flammability, crease resist and other special effects. • Shrinking (Sanforizing) Main article: Sanforization Mechanical shrinking (sometimes referred to as sanforizing), whereby the fabric is forced to shrink width and/or lengthwise, creates a fabric in which any residual tendency to shrink after subsequent laundering is minimal. [12] [edit] Standard finishes [edit] Quality-oriented • Calendering • Decatising • Desizing for woven fabrics. • Pressing • Scouring with detergents, alkaline solutions, or enzymes removes foreign matter. • Shrinking , Sanforization • Shearing or singeing smooths the fabric by removing the fine protruding fibers on the surface of the fabric. Flame singeing is the standard process: the wet fabric is passed through an array of gas burners at a suitable distance to burn the pills off of its surface. [edit] Design-oriented • Bleaching of woven fabrics removes any prior color in order to obtain a uniform color during the dying process. • Dyeing adds color. • Printing adds color and pattern. • Watering adds moiré patterns. [edit] Handle-oriented • Fulling or waulking adds weight and density. • Hydrophobic finishing produces a fabric that repels stains or water. • Weighting silk with metallic salts or polymer adds weight and improves handle. [edit] Special finishes for natural fibers Bio-polishing removes the protruding fibers of a fabric through the action of an enzyme. Enzymes, such as cellulase for cotton, selectively remove protruding fibers. These enzymes may be deactivated by an increase in temperature. Mercerisation makes woven cotton fabric stronger, more lustrous, to have better dye affinity, and to be less abrasive. Raising lifts the surface fibers to improve the softness and warmth, as in flannelette. Peach Finish subjects the fabric (either cotton or its synthetic blends) to emery wheels, making the surface velvet-like. This is a special finish used mostly in garments. Fulling or waulking is a method of thickening woollen material to make it more water- resistant. Decatising to bring dimension stability to woollen fabrics. Calendering makes one or both surfaces of the fabric smooth and shiny. The fabric is passed to through hot, fast-moving stainless steel cylinders.
Recommended publications
  • Textile Industry Needs Christopher D
    The Journal of Cotton Science 21:210–219 (2017) 210 http://journal.cotton.org, © The Cotton Foundation 2017 ENGINEERING & GINNING Textile Industry Needs Christopher D. Delhom, Vikki B. Martin, and Martin K. Schreiner ABSTRACT lthough the immediate customer of the gin is Athe cotton producer, the end user of the ginned The immediate customers of cotton gins are lint is the textile mill, retailers, and eventually the the producers; however, the ultimate customers consumer. Thus, it is essential for the ginner to are textile mills and consumers. The ginner has satisfy both the producers and the textile industry. the challenging task to satisfy both producers and Consequently, the ginner needs to be aware of the the textile industry. Classing and grading systems needs of the textile industry. are intended to assign an economic value to the The intent of the cotton classing and grading bales that relates to textile mill demands and the system is to assign an economic value to the bale that quality of the end product. International textile documents its properties as it relates to the quality of mills currently are the primary consumers of U.S. the end product. Since the last edition of the Cotton cotton lint where it must compete against foreign Ginners Handbook in 1994, the customers of U.S. origins. International textile mills manufacture cotton have changed radically, shifting from primar- primarily ring-spun yarns, whereas domestic mills ily domestic to international mills. International mills manufacture predominantly rotor spun yarns. Pro- have been accustomed primarily to hand-harvested ducers and ginners must produce cottons to satisfy cotton that has been processed at slow ginning all segments of the industry, i.e., domestic and in- rates.
    [Show full text]
  • Textile Printing
    TECHNICAL BULLETIN 6399 Weston Parkway, Cary, North Carolina, 27513 • Telephone (919) 678-2220 ISP 1004 TEXTILE PRINTING This report is sponsored by the Importer Support Program and written to address the technical needs of product sourcers. © 2003 Cotton Incorporated. All rights reserved; America’s Cotton Producers and Importers. INTRODUCTION The desire of adding color and design to textile materials is almost as old as mankind. Early civilizations used color and design to distinguish themselves and to set themselves apart from others. Textile printing is the most important and versatile of the techniques used to add design, color, and specialty to textile fabrics. It can be thought of as the coloring technique that combines art, engineering, and dyeing technology to produce textile product images that had previously only existed in the imagination of the textile designer. Textile printing can realistically be considered localized dyeing. In ancient times, man sought these designs and images mainly for clothing or apparel, but in today’s marketplace, textile printing is important for upholstery, domestics (sheets, towels, draperies), floor coverings, and numerous other uses. The exact origin of textile printing is difficult to determine. However, a number of early civilizations developed various techniques for imparting color and design to textile garments. Batik is a modern art form for developing unique dyed patterns on textile fabrics very similar to textile printing. Batik is characterized by unique patterns and color combinations as well as the appearance of fracture lines due to the cracking of the wax during the dyeing process. Batik is derived from the Japanese term, “Ambatik,” which means “dabbing,” “writing,” or “drawing.” In Egypt, records from 23-79 AD describe a hot wax technique similar to batik.
    [Show full text]
  • Functional Textile Technologies Spring 2021 Power up Your Textiles with Heiq’S High-Performance Technologies
    Functional Textile Technologies Spring 2021 Power up your textiles with HeiQ’s high-performance technologies HeiQ Smart Temp – Intelligent thermoregulation Article No. Product Name Description Properties Application Fiber Type Chemical Basis Charge / Form Provides enhanced thermal Durable dynamic evapo- Exhaust & pad All Special hydro functiona- Nonionic / comfort, keeps moisture from ration and cooling effect (1-4% w.o.f.) lized copolymer Liquid 17907 HeiQ Adaptive AC-06 accumulating between fabric adjusted according to and the skin tem- perature. Overall enhanced performance Provides enhanced thermal Durable dynamic evapo- Exhaust & pad Mainly for synthetics, Hydro-functionalized Nonionic / comfort, keeps moisture from ration and cooling effect (1-3% w.o.f.) PES and PES rich fiber resin polymer Liquid 17902 HeiQ Adaptive AC-03 accumulating between fabric adjusted according to blends and the skin temperature Highly effective in enhancing Breakthrough dual-effect Print application All Thermofunctional Nonionic / thermal comfort for a wide technology, combining (20-40 g/m2) polymer, vegetable oil Liquid range of textiles, especially cooling on contact and derived 19602 HeiQ Cool Touch SWS bedding. More than 50% continuous evaporative bio-based materials, in USDA cooling effect, soft hand- certification in process. feel, good hydrophilicity Application recommendations Polyester (PES) – HeiQ Adaptive AC-06 in combination with: Article No. Product Name Description Properties Application Fiber Type Chemical Basis Charge / Form Soft/cool touch with wicking, Resistant to mild washing, Exhaust & pad PES & blends, also on Ethoxylated carboxylic Nonionic / antistatic and soil release pro- no yellowing if separately (1-6% w.o.f.) polyamide acid Liquid emulsion 16205 HeiQ Hydro SHF perties on synthetics applied, color intensifica- tion in print pastes 8 Polyamide (PA) – HeiQ Adaptive AC-06 in combination with: Article No.
    [Show full text]
  • Fulled Wool Scarves Multiple Projects on the Same Threading
    Fulled Wool Scarves multiple projects on the same threading MADELYN VAN DER HOOGT Choose from a fabulous array of colors and make lots of scarves for quick and easy holiday gifts. Change weft colors for different looks on the same warp—or change the colors of the warp, too! Simply tie a new warp onto the one you’ve just finished. The setts of both the warp and the weft in this project are very open to allow maximum fulling to take place during wet finishing. The result is a wonderfully soft, thick, cuddly, warm winter scarf. hese two scarves were woven on dif- secure them in front of the reed. ferent warps, both of Harrisville Then, taking the first end of the old T Shetland, one in Garnet, the other warp and the first end of the new warp on in Peacock. Both yarns are somewhat one side (right side if you are right hand- “heathered” (flecks of other colors are spun ed, left side if you are left-handed), tie into the yarn), a quality that makes them them together in an overhand knot. Re- work well with a variety of weft colors. peat with the next end from each warp and You can choose to weave many scarves on continue until all ends are tied. The knots one very long warp or even tie on new do not have to be exactly at the same point warps to change scarf colors completely. for every tie. Especially with wool, small Whatever you choose, you’ll find the tension differences between the threads weaving easy and fun.
    [Show full text]
  • Barred Blanket Initialled CY and Dated 1726
    Barred Blanket initialled CY and dated 1726 Introduction The collection of The Scottish Tartans Authority (STA) includes a number of specimens of predominately white based tartan material typical of what is often referred to as an arisaid pattern1. Amongst these is a complete joined specimen initialled CY and dated 1726 (Plate 1). This magnificent piece is the oldest and largest complete example of a joined Highland plaid/blanket known. It was purchased in 19662 from John Telfer Dunbar, collector and author of the seminal work The History of Highland Dressi. Unfortunately, Dunbar’s records are far from complete and in this instance, he gives no clue as to where he acquired the piece. Plate 1. Detail of the blanket showing the initials, date and join. Photo: E. F. Williams. The use of the term ‘arisaid’ to describe this type of pattern resulted in this piece being used in a display in the manner described by Martin Martinii (Plate 2). However, rather than being intended for use as an arisaid, this piece is an example of a Highland domestic plaid3 of a type often referred to as a ‘Barred Blanket’ because of the striped selvedge pattern. This is supported by the family tradition that the plaid was woven by CY to commemorate her marriage (to Capt Arbuthnott) and was used on special occasions to decorate the table. 1 The term refers to the form of over-plaid worn by women until the early 18th century and is discussed further in the companion paper Musings on the Arisaid and other female dress.
    [Show full text]
  • Lenzing Modal ® and Lenzing Viscose ® Pre-Treatmet, Dyeing
    LENZING MODAL® AND LENZING VISCOSE® PRE-TREATMET, DYEING,FINISHING DYEING / FINISHING PROCESSING GUIDELINES DYEING / FINISHING 1 General Instructions for Pre-treatment As with all textiles made of cellulose fibers the best results - luster / drape / handle - are achieved when all wet processes are conducted with low levels of pressure and stretching. This is also true of Lenzing Modal® fibers which are however considerably less sensitive than normal viscose fibers 1.1 Relaxation Hot water shrinkage of yarns and fabrics Processing Condition Fiber Origin carded Lenzing Viscose® Lenzing Modal® cotton Yarn / twisted yarn shrinkage (hot water 96°C) Fiber fineness Ring yarn Nm 50 -2.0/-2.5 -1.5/-2.0 -1.5/-2.0 Ring yarn Nm 70 -3.0 -2.0 -2.0 Rotor yarn Nm 50 -2.5 -2.5 Rotor yarn Nm 40 -2.5/-3.0 -1.5/-2.0 Plied yarn (ring) Nm 40/2 -3.5/-4.0 -2.5/-3.0 Fabrics (warp shrinkage wash 60°C) Fabrics made of Nm 50 (Ring) Fiber titre 1.7 dtex desized -3.0 -1.5 finished + sanforized -1.0 -0.5 (continuously) Fabrics made of Nm 50 (Ring) Fiber titre 1.3 dtex desized -5.5 -3.0 finished + sanforized -1.5 -0.5 (continuously) Fabrics made of Nm 70 (Ring) Fiber titre 1.7 dtex desized -12.0 -8.0 -6.0 finished + sanforized -1.5 -1.0 +/-0 (discontinuously) PROCESSING - 2 / 16 - GUIDELINES DYEING / FINISHING The fabric tensions at the preliminary textile stages should be reduced during the pre-treatment stage, i.e.
    [Show full text]
  • The Effect of Air, Ar and O2 Plasmas on the Electrical Resistivity And
    fibers Article The Effect of Air, Ar and O2 Plasmas on the Electrical Resistivity and Hand-Feel Properties of Polyester/Cotton Blend Fabric Baye Berhanu Yilma 1,2, Joern Felix Luebben 2,* and Govindan Nalankilli 1 1 Ethiopian Institute of Textile and Fashion Technology [EiTEX], Bahir Dar University, Bahir Dar 644, Ethiopia; [email protected] (B.B.Y.); [email protected] (G.N.) 2 Material and Process Engineering [MPE], Albstadt-Sigmaringen University, 72458 Albstadt, Germany * Correspondence: [email protected]; Tel.: +49-(0)-7571-732-9565 Received: 20 December 2019; Accepted: 13 February 2020; Published: 24 February 2020 Abstract: The conventional chemical-based antistatic agents possess ecological and technological drawbacks, such as altering the bulk characteristics, flammability, and toxicity, but not the cost effective process. Recently, using conductive metal fibers in the woven structure also affects the mechanical properties of the fabric. To overcome these challenges, plasma treatment needs to be quite an effective method. In this study, polyester/cotton (P/C), 65/35%, blend fabric was treated in a vacuum-plasma-chamber using air, argon and oxygen. The electro-physical property of the samples were evaluated by measuring the surface and volume resistivities (ρs, ρv) using textile electrode Tera Ohmmeter (TO-3). Textile Softness Analyzer (TSA) has also been used to investigate hand-feel properties of the fabric. After treatment, the results revealed that the surface resistivity was reduced by 35.5% in the case of O2, 27.3% for air and 18.4% for Ar, and also volume resistivity was decreased by 40.9%, 20.3% and 20% after O2, air and Ar-plasma, respectively, whereas hand-feel properties are slightly affected at a higher power level and treatment time.
    [Show full text]
  • 26. Dry Finishing of Wool Fabrics
    26. Dry Finishing of Wool Fabrics Mike Pailthorpe Learning objectives By the end of this lecture, you should be able to: • Describe the various methods that are available for the drying of wool fabrics. • Understand the need for conditioning wool fabrics after drying. • Outline the methods used in the brushing of wool fabrics. • Describe the process of shearing. • Outline the principles involved in the decatising of wool fabrics. • Explain the need for the steaming of wool fabrics. Key terms and concepts Drying, conditioning, raising, shearing, singeing, pressing, decatising, steaming, perching. Introduction The so called dry finishing processes for wool fabrics follow on after hydroextraction and scutching, beginning with drying. One of the objects in wool fabric finishing is to dry the fabric only once, thereby making substantial energy savings. Drying is the process of removing water from wool textiles via the application of heat energy. The three methods of transferring heat energy from one object to another are conduction, convection and radiation. However, for a variety of reasons, convection dryers are preferred for wool fabrics, with the stenter being the most widely used drying machine. After drying the wool fabrics must be conditioned to a regain of 14-16% before further processing. Depending upon the finish required, the wool fabrics may then either be shorn to remove surface fibres or brushed to create a pile of surface fibres. The brushed pile may be shorn to cut the pile fibres to a uniform height or to achieve a sculptured pattern. The wool fabrics are then pressed using either flat, rotary or belt presses to achieve the desired appearance, lustre and handle characteristics.
    [Show full text]
  • Fabricating Carbon Fiber Airframes, Part 2: Finishing
    In This Issue Fabricating Carbon Fiber Airframes, Part 2: Finishing Cover Photo: Lift-off shot by Erin Card at NARAM56 in Pueblo, CO Apogee Components, Inc. — Your Source For Rocket Supplies That Will Take You To The “Peak-of-Flight” 3355 Fillmore Ridge Heights Colorado Springs, Colorado 80907-9024 USA www.ApogeeRockets.com e-mail: [email protected] Phone: 719-535-9335 Fax: 719-534-9050 ISSUE 371 AUGUST 12, 2014 Fabricating Carbon Fiber Airframes Part 2: Finishing By Alex Laraway Congratulations! You’ve moved onto what is frankly the most Start by releasing the lip of the mylar from around one side tedious part of fabricating tubing: getting it to look pretty. of the tube. Once you are finished, use a long dowel to be- One of the reasons carbon fiber is so highly valued is its aes- gin breaking the bond between the mylar and the epoxy on thetic characteristics. For this reason, bare carbon fiber is an the inside of the tube. Ram the dowel to the opposite end of attractive option for the finish on high-end sports cars, bikes, the tube and slowly work it around so that the entire mylar motorcycles and, of course, rockets. Getting a smooth gloss layer is broken out from the epoxy. After this step, the mylar “naked” carbon fiber is tiresome at best, especially starting should slide out with ease! with a peel ply texture. The basic idea is to give it a series of epoxy coats and sand each coat down with a different series of sandpaper grits with each epoxy pass.
    [Show full text]
  • Textile Knowledge of Selected Salespersonnel
    TEXTILE KNOWLEDGE OF SELECTED SALESPERSONNEL By MICHELE ANN CALDWELL Bachelor of Science .University of California - Davis Davis, California . 1975 Submitted to the Faculty of the Graduate College of the Oklahoma State University in partial fulfillment of the requirements for the Degree of MASTER OF SCIENCE July, 1977 TEXTILE KNOWLEDGE OF SELECTED SALES PERSONNEL Thesis Approved: 989120 ii ACKNOWLEDGMENTS I would like to express appreciation to my major adviser, Dr. Grovalynn Sisler, for her assistance and advice in directing the thesis. I also wish to express thanks to the members of my committee, Dr. Lavonne Matern and Dr. Margaret Callsen, for their encouragement and suggestions. In addition, thanks are extended to Dr. Nick Stinnett for his advice with the statistical analysis of the study, to the man­ agers of the participating stores, and to all of the salespeople who participated in the study. Their approval and cooperation made the study possible. To my friends and family, I wish to express my gratitude and appreciation for their friendship and encouragement during my graduate studies. I wish to express a special note of thanks to my parents, Mr. and Mrs. Harold W. Caldwell, for their continuing patience, under­ standing, encouragement and strong support. iii TABLE OF CONTENTS Chapter Page I. INTRODUCTION 1 Purpose and Objectives 3 Hypotheses • . 3 Definition of Terms 3 Procedure 4 Limitations • . 5 Organization of the Study 5 II. REVIEW OF LITERATURE 7 Textile Market . 7 Textile Fibers . 9 Fabric Construction 14 Textile Finishes . 16 Textile Care Knowledge • . 18 Consumerism and the Salesperson 20 Summary . 22 III. METHOD AND PROCEDURE 24 Description of Sample 24 Development of Instrument 25 Collection of Data .
    [Show full text]
  • Sanmar Glossary of Terms August 2019 1X1 Rib Knit. This Narrow Rib
    SanMar Glossary of Terms August 2019 1x1 Rib Knit. This narrow rib has a soft, fine hand and retains its slim fit. 2x1 Rib Knit. Textured rib knit with a comfortable stretch—made to be worn alone or layered. 2-Way Zipper. A zipper with two zipper pulls so the garment can be unzipped from either direction. 3-in-1 Jacket. A jacket that consists of two jacket layers that zip together. You can wear either jacket layer separately, or zip them together for extra warmth and weather protection. 4-Needle Stitching. A finish commonly used on a sleeve or bottom hem that uses four needles to create parallel rows of visible stitching, giving the garment a cleaner, more finished look, as well as adding durability. 4-Way Stretch. A fabric that stretches both on the crosswise and lengthwise grains of the fabric. Also called mechanical stretch, except mechanical stretch doesn’t use spandex or other stretch yarns. Air Jet Yarn. A type of open-end spinning that uses a stationary tube in which jets of air are directed to cause fibers to twist thereby forming a yarn. This process definitely influences the soft hand feel of the fabric while maintaining excellent resistance to pilling. Airlume Combed and Ring Spun Cotton (BELLA+CANVAS). 100% Airlume combed and ring spun cotton, 32 singles. BELLA+CANVAS removes 2.5x more impurities than standard ring spun cotton and uses only long cotton staples, which means there are less stray fibers when the yarn is spun, resulting in a smoother print surface. All-Weather Microfiber.
    [Show full text]
  • TEXTILE DYEING and PRINTING B.A/ B.Sc
    TEXTILE DYEING AND PRINTING B.A/ B.Sc. / B.Com. Part -1 -2016 Scheme : B.Sc. B.A./ B.Com. Nomenclature Dur. Max./Min. Marks Max./Min. Marks No. of Periods Paper-I Weaving and Mkt. 3 hrs 75 27 65 24 3 Paper-II Designing & Dyeing 3 hrs 75 27 65 24 3 Practical 4 hrs 75 27 70 26 4/ Batch PAPER- 1 (Weaving and Marketing) Duration: 3 hrs Max. Marks: (Sc)-75/(Arts/Comm.)-65 Note: The question paper will contain three sections as under- Section-A: One compulsory question with 10 parts, having 2 parts from each unit, short answer in 20 words for each part. 10 (Sc.)/05 (Arts/Comm.) Section-B: 10 questions, 2 questions from each unit, 5 questions to be attempted, taking one from each unit, answer approximately in 250 words. 35 (Sc.)/35 (Arts/Comm.) Section-C: 04 questions (question may have sub division) covering all units but not more than one question from each unit, descriptive type answer in about 500 words, 2 questions to be attempted. 30 (Sc.)/25 (Arts/Comm.) UNIT-1 Introduction to Textile Classification of textile fibers General properties of textile fibers Identification of textile fibers UNIT-2 Natural Fibers-Manufacture, Chemical composition, general properties & Flowchart-cotton, silk, wool Manmade Fibers- Manufacture, Chemical composition, general properties & Flowchart - Rayon, Nylon, Polyester UNIT-3 Preparatory processes (a) Scouring (b) Bleaching (i) bleaching of cotton, silk, nylon (ii) Optical bleaching agents (c) Desizing (i) Acid desizing ( ii) Rot steeping ( iii) enzymatic desizing (d) Singing (i) gas singing (ii) Plate signing (iii) roller singing (e) Mercerization-Historical significance & introduction Action of Caustic Soda on Cotton fibre, Nature of Change occurring in cotton fibres UNIT-4 (a) Introduction to weaving Terms used in weaving Loom & it’s parts Elementary weaves and their derivatives Plain weave- Rib, Basket Twill weave-Right hand & Left hand Satin weaves- Satin & sateen (b) Weave Representation : Weaving plan,Various Drafts and Peg Plans UNIT-5 Meaning, nature& scope of marketing Role & importance of marketing in modern economy.
    [Show full text]