Azuza/Yeazrowsnoentor

Total Page:16

File Type:pdf, Size:1020Kb

Azuza/Yeazrowsnoentor June 10, 1947. E. N. BOBROW 2,421,984 MATERIAL FOR GETTERING ELECTRON DISCHARGE DEVICES Filed April 25, 1944 a 47A/2/7 7774//47 a/ya aa/ZZ/Z/Y azuza/YeazrowSnoentor 04a (7 Cattorney Patented are 10, 1947 2,421,984 UNITED STATES PATENT OFFICE 2,421,984 MATERIAL FoR GETTERINGELECTRON DISCHARGE DEVICES, Edwin N. Bobrow, East Orange, N.J., assignor to Radio Corporation of America, a corporation of Delaware Application April 25, 1944, Serial No. 532,650 4 Claims. (C. 252-181.) My invention relates to the introduction into 2 evacuated or gas filled containers, such as elec in a position where it may be heated at will to tron discharge devices, of chemically active met a temperature at which reduction of the barium als or clean-up agents, and more particularly to compound Occurs. the introduction of alkaline earth metals, es Beryllium as a reducing agent has given high pecially barium, into such devices and to an im yields of barium metal from very stable com proved clean-up agent or getter for this purpose. pounds of barium oxide With the acidic oxides Barium is a desirable and useful clean-up of metals from the first sub-groups of Groups IV, agent or getter for electron discharge devices W, and VI of the Mendeleef periodic table, for and similar tubes. Frequently a reducing agent example barium titanate, zirconate, molybdate, is mixed with a barium compound, and when tungstate, Vanadate, columbate, and tantallate. the mixture is heated a reaction occurs and Of these stable barium compounds the one which barium metal is liberated as a vapor. One Com has been found preferable is barium titanate hav pound which gives a high yield of barium in a ing a composition 1BaOi TiO2. The getter ma readily controlled well directed pure barium flash terial with which good results have been obtained is the barium berylliate, disclosed in U. S. Pat is a mixture of finely powdered or comminuted ent 2,173,258, Lederer, mixed with titanium pow barium titanate 1BaOlTiO2 and finely powdered der as a reducing agent. In very humid weather or comminuted beryllium in the ratio of from such as frequently occurs in Summer when the 1 to 2 moles of beryllium to 1 mole of barium relative humidity may be greater than 60% this titanate, good results having been obtained in material is not as stable as desired for factory 2) many cases with a mixture having a ratio of use as shown by a tendency to puff up to several about 1% moles of beryllium to 1 mole of barium times normal size when exposed to Inoisture and titanate, and in other cases a ratio of 2 moles of then heated. InVestigation had indicated that beryllium to 1 mole of the barium titanate. In a high efficiency barium getter necessarily had the getter mixture containing One mole of barium poor resistance to moisture and that only rather 25 titanate less than 1 mole of beryllium does not unstable barium compounds would give high give a reduction complete enough for practical barium yields. purposes, and more than 2 moles of beryllium Tests on the comparatively few stable barium is apt to result in some vaporization of beryllium compounds of high barium and low gas content, at 1300° C. with some impairment of the getter including barium titanate, which contains ini 30 action. tially nearly 60% by weight of barium, made For getter requirements the highest ratio of with titanium, tantalum, and zirconium as re barium oxide to titanium oxide consistent with ducing agents showed either low or no yield of Stability is desirable. Tests have shown that barium, or the vapor of some other metal. These if a dried powder of barium titanate 1BaO-1TiO2 tests indicate that none of the compounds of is soaked in water, only about 0.1% of moisture barium which are stable and moisture resistant is retained; if the compound has the composi would give a high barium yield. y tion 2BaO1TiO2, up to about 10% of moisture may be retained. Although either of these com The principal purpose of this invention is to pounds may be used without encountering the provide an active high yield reaction barium 40 puffing observed with barium berylliate in a very getter which is very resistant to moisture and humid atmosphere, the greater stability of the will give a high yield of barium when heated to 1BaO. 1TiO2 barium titanate makes it the pref the temperatures of about 1300° C. at which get erable barium compound. flashed.ters of the barium berylliate type are usually Barium titanate for use in accordance with In accordance with my invention the chem 45 the invention may conveniently be prepared by ically active metal, such as barium, is introduced mixing 990 grams of anhydrous barium carbon into the device in the form of a compound of ate BaCO3 preferably of a purity of 99.5% or the metal which is very stable and resistant to better with 400 grams of pure anhydrous titanium moisture, together with a reducing agent which oxide TiO2 and firing the mixture in air at 1250 by a reaction that does not evolve gas liberates 50 C. for from 4 to 6 hours. The fired mass is the active metal in pure form and free from broken up into powder of about 20 mesh, then water vapor. The stable barium compound, pref finely powdered by ball-milling for 6 to 7 hours erably barium titanate, is brought into contact and sifted through a 200 mesh sieve. The beryl with metallic beryllium which serves as a reduc lium metal powder may be prepared from beryl ing agent. The metallic beryllium may be a 55 lium chips, preferably of a purity of 99.5% or mass of the metal, for example a ribbon or strip, better, cleaned and degreased in acetone, dried, but for Convenience both the barium titanate and then ball-milled for 20 hours or more to and the metallic beryllium may be finely pow comminute the beryllium chips into a fine pow dered and thoroughly mixed to form the in der of beryllium particles which will pass through () a 200 mesh screen. Good results have been ob proved getter material. This getter mixture may tained with a getter material prepared by mix be supported in conventional ways in the device ing about 226 grams of the barium titanate with 2,421,984 4. 3 may be applied to obtaining a high yield of other about 14 grams of the beryllium powder, thus alkaline earth metals and of alkali metals from obtaining a getter mixture of the approximate stable compounds such as lithium titanate which composition 1.6 moles beryllium to 1 mole of is stable and produces an effective getter reac barium titanate, and in which the beryllium is tion with beryllium. Titanium, silicon, and sim about 6% by Weight of the mixture, the balance ilar reducing agents are effective and useful in being barium titanate. To this mixture a nitro thermionic cathodes coated with oxides of the cellulose binder may be added to facilitate the alkaline earth metals. The properties of beryl placing of the getter material in the getter holder. lium are such that it may be used to advantage The getter material of the invention may be O in the same Way as these other reducing agents. used in the conventional way, and may be heated The invention may be used as illustrated in the to the flashing temperature of about 1300° C. accompanying drawing, in which Fig. 1 is a view either electrically or by induction heating, as of the getter holder or trough containing the get shown in U. S. Patent 2,173,258, Lederer, relating ter, and Fig. 2 shows the preferred way of using to barium berylliate getters. the getter in a conventional metal radio tube, In some cases the getter material made in ac s, such as shown in U. S. Patent 2,208,692, Wams cordance with this invention does not adhere as ley, July 23, 1940. Well to the getter trough or container as SOme Fig. 1 shows the getter f, preferably a finely other getters containing barium compounds. If powdered mixture, contained in a getter holder this lack of adherence is objectionable, the in or trough 2 of a metal such as molybdenum which corporation in the barium compound of a small 20 may be electrically heated and which will retain amount, preferably about 2%, of lithium oxide its shape at 1300° C. or more. The holder and will improve the adherence of the getter mate the getter mixture in it are electrically heated at rial wtihout deleteriously affecting the evolution will to a temperature of about 1300 C., where of the barium and its action as a getter. upon a reaction occurs which liberates barium in Beryllium metal has desirable properties as a 25 the form of vapor and leaves in the trough stable reducing agent for stable moisture resistant bari and gas-free reaction products. um or other alkaline earth compounds. The Fig. 2 shows the getter holder containing the strong affinity of beryllium for oxygen does not getter mounted on a pair of leads 3 of the metal appear until high temperatures are reached, radio tube 4. The getter holder and getter may hence it is stable at room temperature. It is 30 be electrically heated at will by passing current less volatile than barium and the other alkali through the getter holder by connecting the leads and alkaline earth metals, and has little or no 3 to a source of voltage.
Recommended publications
  • Synthesis of Hexacelsian Barium Aluminosilicate by Film Boiling Chemical Vapour Process C
    Synthesis of hexacelsian barium aluminosilicate by film boiling chemical vapour process C. Besnard, A. Allemand, P. David, Laurence Maillé To cite this version: C. Besnard, A. Allemand, P. David, Laurence Maillé. Synthesis of hexacelsian barium aluminosilicate by film boiling chemical vapour process. Journal of the European Ceramic Society, Elsevier, In press, 10.1016/j.jeurceramsoc.2020.02.021. hal-02494032 HAL Id: hal-02494032 https://hal.archives-ouvertes.fr/hal-02494032 Submitted on 28 Feb 2020 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. Synthesis of hexacelsian barium aluminosilicate by film boiling chemical vapour process C. Besnard1, A. Allemand1-2, P. David2, L. Maillé1* 1University of Bordeaux, CNRS, Safran, CEA, Laboratoire des Composites ThermoStructuraux (LCTS), UMR 5801, F-33600 Pessac 2CEA Le Ripault, F-37260, Monts * Corresponding author, email address: [email protected] Abstract An original oxide/oxide ceramic-matrix composite containing mullite-based fibers and a barium aluminosilicate matrix has been synthesized by the film boiling chemical vapour infiltration process. Alkoxides were used as liquid precursors for aluminum, silicon and barium oxides. The structure and microstructure of the oxide matrix were characterized by Scanning Electron Microscopy, Energy Dispersive Spectroscopy and X-ray diffraction.
    [Show full text]
  • Synthesis of a Disperse Phase of Barium Oxide on Aluminum Oxide
    Synthesis of a Disperse Phase of Barium Oxide on Aluminum Oxide by Successive Ionic Layer Deposition Results and Discussion SILD was used to deposit nanoislands of aluminum oxide on a silicon wafer, and then deposit even smaller nanoislands of barium oxide on the surface of the aluminum oxide Thomas I Gilbert * and Johannes W. Schwank nanoislands. Modifications to the conventional SILD procedure were necessary to achieve a University of Michigan, Ann Arbor, Michigan 48109 (USA) successful synthesis. This disperse phase of barium oxide on aluminum oxide supported on a *[email protected] silicon wafer was thermally stable to 450°C. Introduction Heterogeneous catalyst design, synthesis, and characterization have been strongly a b influenced by recent advances in nanoscience [1] Several recent studies suggest that a highly dispersed phase of barium oxide supported on γ-alumina is a better catalyst for NO x storage in lean burn engine emissions than a bulk-like phase of supported barium oxide [2-5]. Successive ionic layer deposition (SILD), also known as successive ionic layer adsorption and reaction (SILAR), is an aqueous method which exploits the electric double layer effect to create thin solid films on supports. In SILD, submonolayers of desired cations and anions are alternately and selectively adsorbed on a support material to produce SILD nanoislands or nanolayers with controlled composition and morphology. Much still remains to be understood about the SILD mechanism. It is unclear whether a precipitate is simply formed on the substrate with each SILD cycle or whether ionic or electrostatic forces persist through SILD layers. If the latter occurs, it is conceivable that these Figure 1.
    [Show full text]
  • Study of the System Barium Oxide-Aluminum Oxide-Water at 30° C by Elmer T
    Journal of Research of the National Bureau of Standards Vol. 45, No. 5, November 1950 Research Faper 2149 Study of the System Barium Oxide-Aluminum Oxide-Water at 30° C By Elmer T. Carlson, Thomas J. Chaconas, and Lansing S. Wells A study has been made of the action of water and of barium hydroxide solutions on the following compounds: BaO.Al2O3, 3BaO.Al2O3, BaO.Al2O3.H2O," BaO.Al2O3.2H2O, BaO.Al2O3.4H2O, BaO.Al2O3.7H2O, 7BaO.6Al2O3.36H2O, 2BaO.Al2O3.5H2O, and A12O3.3H,O. From this, together with a study of precipitation from supersaturated barium aluminate solutions, a diagram of phase equilibria (stable and metastable) at 30° C has been drawn. All the barium aluminates are hydrolyzed by water. The stable solid phases in the system BaO-Al2O3-H2O at 30° C are A12O3.3H2O (gibbsite), Ba(OH)2.8H2O, and, over a narrow range, probably 2BaO.Al2O3.5H2O. With the exception of the two lowest hydrates, all the hydrated barium aluminates possess a range of metastable solubility. I. Introduction properties nor X-ray diffraction data, however, were given. Malquori [16] has published a phase equi- Although the calcium aluminates, because of their librium diagram of the system BaO-Al2O3-H2O at relationship to hydraulic cements, have been the 20° C. subject of numerous investigations here and elsewhere The present investigation includes a study of the during recent years, the barium aluminates have been action of water and of barium hydroxide solutions somewhat neglected. The latter, at present, are of on the various aluminates and a diagram of phase limited practical importance.
    [Show full text]
  • The System Bao-B2O3
    U. S. Department of Commerce Research Paper RPl956 National Bureau of Standards Volume 42, February 1949 Part of the Journal of Research of the National Bureau of Standards By Ernest M. Levin and Howard F. McMurdie A phase equilibrium diagram of the system BaO-B20 3 has been constructed from data obtained essentially by the quenching method. Four congruently m elting compounds were identifi ed: BaOAB20 3, melting at 879° ± 5° C; BaO.2B20 3, melting at 900° ± 5° C; BaO.B20 3, melting at 1,095° ± 5° C; and 3BaO.B20 3, melting at 1,383° ± 5° C . Some optical properties of these compounds were determined with the petrographic microscope, and X-ray d.ffraction data suitable for their id entification were obtained. Barium metaborate, BaO.B 20 3, showed an inversion occurring between 100° and 400° C. Mixtures containing less than 30 percent of BaO were found to eparate on fusion into two li quid layers, one of which contained 30 per­ cent of BaO, wherea t he other was nearly pure 13 20 3• A curve showing indices of refraction of the quenched glasses is also prescntcd. I. Introduction 1,060 ° C, 1,002 ° C, and 1,3 15° C, corresponding to the compounds BaO.B20 3, 2BaO.B20 a, and 3BaO.­ The sLu~ly of this system was undertaken as a B 20 a, respectively. In a tudy on the limits of preliminary to a study of part of the ternary miscibility of boric anhydride and borates in system, BaO-B20 3-Si02 • The latter sy tern is of the fused state, Guertler [5] found that barium fundamental importance to the glass industry, as oxide melted together with more than 63.2 percent it serves as a starting point for investigations of by weight of B 20 a separated into two layers.
    [Show full text]
  • Activereports Document
    Apex Microtechnology Materials Substance Report Model:MP103FC Print Time: 9/19/2013 10:15:45 AM RoHS Compliant:Yes Lead Free: No Bonding Island Substances Total Weight (g) Copper 5.40E-3 Tin 1.80E-3 Capacitor Substances Total Weight (g) Barium Titanate 4.30E-1 Bismuth Titanate 2.53E-2 Calcium Zirconate 2.53E-2 Magnesium Oxide 2.53E-2 Nickel 5.06E-3 Palladium 4.74E-3 Silica 2.53E-2 Silver 9.01E-2 Tin 1.26E-3 Page16 of Apex Microtechnology Materials Substance Report Model:MP103FC Print Time: 9/19/2013 10:15:45 AM Die Substances Total Weight (g) Alumina 3.26E-1 Aluminum 9.76E-3 Antimony Trioxide 1.29E-2 Barium Oxide 4.95E-5 Barium Titanate 1.03E-5 Bismuth Trioxide 5.98E-5 Boron Oxide 5.98E-5 Bromine 1.17E-5 Carbon 1.30E-3 Carbon Black 5.70E-3 Catalyst 2.32E-3 Chlorine 1.17E-5 Chromium 4.68E-5 Cobalt 1.35E-5 Copper 1.50E+0 Curing Agent 1.13E-4 Doped Silicon 3.08E-2 Epoxy 6.32E-3 Epoxy Resins 1.23E-1 Flame Retardent 2.83E-4 Gold 2.40E-3 Iron 8.63E-3 Lead 5.00E-3 Lead Oxide 8.11E-4 Manganese 2.17E-5 Metal Hydroxide 7.04E-4 Nickel 1.58E-2 Palladium 7.33E-4 Phosphorous 1.31E-3 Release Agent 4.71E-5 Ruthenium Dioxide 1.01E-3 Silica 4.70E-1 Silicon 6.57E-3 Silicone 2.60E-3 Silver 1.11E-2 Stress Absorbent 2.36E-4 Page26 of Apex Microtechnology Materials Substance Report Model:MP103FC Print Time: 9/19/2013 10:15:45 AM Tin 2.35E-2 Zinc 3.15E-1 Encapsulant Substances Total Weight (g) NONE N/A Frame Substances Total Weight (g) NONE N/A Header Substances Total Weight (g) NONE N/A Lead Frame Substances Total Weight (g) NONE N/A Lid Substances Total Weight
    [Show full text]
  • Kit Components 05/23/2019 Product Code Description N9306048
    05/23/2019 Kit Components Product code Description N9306048 Replacement Cartridge Set Components: N9306003 Hydrocarbon/Moisture-Removing Replacement Cartridge N9306004 TRAP-HI CAPACITY REPL OXYGEN N9306005 Indicating Oxygen-Removing Replacement Cartridge Page 1/10 Safety Data Sheet acc. to OSHA HCS Printing date 05/23/2019 Review date 05/23/2019 * 1 Identification ∙ Product identifier ∙ Trade name: Hydrocarbon/Moisture-Removing Replacement Cartridge ∙ Article number N9306003 ∙ Application of the substance / the mixture Laboratory chemicals ∙ Details of the supplier of the safety data sheet ∙ Manufacturer/Supplier: PerkinElmer, Inc. 710 Bridgeport Avenue Shelton, Connecticut 06484 USA [email protected] 203-925-4600 ∙ Emergency telephone number: CHEMTREC (within US) 800-424-9300 CHEMTREC (from outside US) +1 703-527-3887 (call collect) CHEMTREC (within AU) +(61)-290372994 * 2 Hazard(s) identification ∙ Classification of the substance or mixture Health hazard Carc. 1A H350 May cause cancer. Corrosion Eye Dam. 1 H318 Causes serious eye damage. ∙ Label elements ∙ GHS label elements The product is classified and labeled according to the Globally Harmonized System (GHS). ∙ Hazard pictograms GHS05, GHS08 ∙ Signal word Danger ∙ Hazard-determining components of labeling: calcium oxide Quartz (SiO2) ∙ Hazard statements H318 Causes serious eye damage. H350 May cause cancer. ∙ Precautionary statements P201 Obtain special instructions before use. P202 Do not handle until all safety precautions have been read and understood. P280 Wear protective gloves/protective clothing/eye protection/face protection. P305+P351+P338 If in eyes: Rinse cautiously with water for several minutes. Remove contact lenses, if present and easy to do. Continue rinsing. P310 Immediately call a poison center/doctor. P308+P313 IF exposed or concerned: Get medical advice/attention.
    [Show full text]
  • DENTSPLY International PROSTHETICS
    DENTSPLY International PROSTHETICS Safety Data Sheet Safety Data Sheet (conforms to with Regulation (EC) Date Issued: 31 August 2016 1907/2006, Regulation (EC) 1272/2008 and Regulation Document Number: 605 (EC) 2015/830), US 29CFR1910.1200, Canada Hazardous Date Revised: 29 August 2018 Products Regulation Revision Number: 3 1. IDENTIFICATION OF THE SUBSTANCE/MIXTURE AND OF THE COMPANY/UNDERTAKING 1.1 Product Identifier: Trade Name (as labeled): Celtra® Ceram Powder Porcelains: Dentin, Opaceous Dentin, Natural Enamel, Opal Enamel, Power Dentin, Dentin Gingiva, Dentin Effect, Enamel Effect, Add-on Correction, Add-on Gingiva. Part/Item Number: 615130-615149, 615150 – 615156, 650130-650149, 615700-615725, 650700-650725; 615201-615206, 650201-650206, 615211-615216, 650211-650216; 615181-615186, 650181-650186; 615171-615175, 650171-650175; 615161-615169, 650161-650168; 615221-615226; 650221-650226; 615401-615404, 650401-650404; 615411-615415, 650411-650415. 1.2 Relevant Identified Uses of the Substance or Mixture and Uses Advised Against: Recommended Use: Used in the fabrication of dental crowns and bridges. Restrictions on Use: For Professional Use Only 1.3 Details of the Supplier of the Safety Data Sheet: Manufacturer/Supplier Name: Dentsply Sirona Prosthetics Manufacturer/Supplier Address: 570 West College Ave. York, PA 17401 Manufacturer/Supplier Telephone Number: 717-845-7511 (Product Information) Email address: [email protected] 1.4 Emergency Telephone Number: Emergency Contact Telephone Number: 800-243-1942 2. HAZARDS IDENTIFICATION 2.1 Classification of the Substance or Mixture: GHS Classification: Health Environmental Physical Not Hazardous Not Hazardous Not Hazardous 2.2 Label Elements: Not Required Celtra® Ceram Powder Porcelains Page 1 of 10 Signal Word: None Hazard Phrases Precautionary Phrases None Required None Required 2.3 Other Hazards: None known.
    [Show full text]
  • Percent Composition Percent by Mass
    Percent Composition And a scientific weight loss program Schweitzer Percent composition • If a human weighs 200 pounds, what is actually contributing to that mass. • In other words how much of that 200 lbs is due to – Muscle – Fat – Bone – Fluids – Ect How does a person actually lose weight? • When you run and you lose weight(mass). How did you actually lose mass? • Sweating? – Yes, you will lose water but you will need to replace that to stay healthy and up right. So no real net loss. • Breathing? – Yes, you actually breath out CO2 which is heavier then the O2 you breath in. Percent Composition • Every person Breaths in oxygen and breaths out carbon dioxide (CO2) If a person breaths out 50 grams of CO2 how much of that mass is due to C and how much is due to O. • To solve this problem we are going to determine the percent by mass of CO2 Important: This percentage is not specific to the sample size. A 10g sample will have the same ratio of C to O as a 1000g sample. Calculating percent composition % mass = Mass X / total mass * 100 • CO2 • Sample size = 1 mole • C = 12 g O = 2 * 16 = 32g • Total mass 1 mole = 44g Any sample of CO2 will have this same composition regardless of sample • C = 12/44 * 100 = 27.2% size!!! • O = 32/44 * 100 = 72.7% Determining mass of a sample • Once again a person breaths out 50 grams of carbon dioxide. How much actual mass of carbon was lost. • 50g * .272 = 13.6g C = 12/44 * 100 = 27.2% O = 32/44 * 100 = 72.7% • The rest of the mass is due to Oxygen which the person breathed in anyway.
    [Show full text]
  • Chemical Names and CAS Numbers Final
    Chemical Abstract Chemical Formula Chemical Name Service (CAS) Number C3H8O 1‐propanol C4H7BrO2 2‐bromobutyric acid 80‐58‐0 GeH3COOH 2‐germaacetic acid C4H10 2‐methylpropane 75‐28‐5 C3H8O 2‐propanol 67‐63‐0 C6H10O3 4‐acetylbutyric acid 448671 C4H7BrO2 4‐bromobutyric acid 2623‐87‐2 CH3CHO acetaldehyde CH3CONH2 acetamide C8H9NO2 acetaminophen 103‐90‐2 − C2H3O2 acetate ion − CH3COO acetate ion C2H4O2 acetic acid 64‐19‐7 CH3COOH acetic acid (CH3)2CO acetone CH3COCl acetyl chloride C2H2 acetylene 74‐86‐2 HCCH acetylene C9H8O4 acetylsalicylic acid 50‐78‐2 H2C(CH)CN acrylonitrile C3H7NO2 Ala C3H7NO2 alanine 56‐41‐7 NaAlSi3O3 albite AlSb aluminium antimonide 25152‐52‐7 AlAs aluminium arsenide 22831‐42‐1 AlBO2 aluminium borate 61279‐70‐7 AlBO aluminium boron oxide 12041‐48‐4 AlBr3 aluminium bromide 7727‐15‐3 AlBr3•6H2O aluminium bromide hexahydrate 2149397 AlCl4Cs aluminium caesium tetrachloride 17992‐03‐9 AlCl3 aluminium chloride (anhydrous) 7446‐70‐0 AlCl3•6H2O aluminium chloride hexahydrate 7784‐13‐6 AlClO aluminium chloride oxide 13596‐11‐7 AlB2 aluminium diboride 12041‐50‐8 AlF2 aluminium difluoride 13569‐23‐8 AlF2O aluminium difluoride oxide 38344‐66‐0 AlB12 aluminium dodecaboride 12041‐54‐2 Al2F6 aluminium fluoride 17949‐86‐9 AlF3 aluminium fluoride 7784‐18‐1 Al(CHO2)3 aluminium formate 7360‐53‐4 1 of 75 Chemical Abstract Chemical Formula Chemical Name Service (CAS) Number Al(OH)3 aluminium hydroxide 21645‐51‐2 Al2I6 aluminium iodide 18898‐35‐6 AlI3 aluminium iodide 7784‐23‐8 AlBr aluminium monobromide 22359‐97‐3 AlCl aluminium monochloride
    [Show full text]
  • Synthesis Target Structures for Alkaline Earth Oxide Clusters
    inorganics Article Synthesis Target Structures for Alkaline Earth Oxide Clusters Susanne G. E. T. Escher, Tomas Lazauskas ID , Martijn A. Zwijnenburg and Scott M. Woodley * ID Department of Chemistry, University College London, London WC1H 0AJ, UK; [email protected] (S.G.E.T.E.); [email protected] (T.L.); [email protected] (M.A.Z.) * Correspondence: [email protected] Received: 21 November 2017; Accepted: 7 February 2018; Published: 21 February 2018 Abstract: Knowing the possible structures of individual clusters in nanostructured materials is an important first step in their design. With previous structure prediction data for BaO nanoclusters as a basis, data mining techniques were used to investigate candidate structures for magnesium oxide, calcium oxide and strontium oxide clusters. The lowest-energy structures and analysis of some of their structural properties are presented here. Clusters that are predicted to be ideal targets for synthesis, based on being both the only thermally accessible minimum for their size, and a size that is thermally accessible with respect to neighbouring sizes, include global minima for: sizes n = 9, 15, 16, 18 and 24 for (MgO)n; sizes n = 8, 9, 12, 16, 18 and 24 for (CaO)n; the greatest number of sizes of (SrO)n clusters (n = 8, 9, 10, 12, 13, 15, 16, 18 and 24); and for (BaO)n sizes of n = 8, 10 and 16. Keywords: inorganic nanoclusters; global optimization; data mining; computational modelling; magnesium oxide; calcium oxide; strontium oxide; barium oxide 1. Introduction Structure determination of materials plays an important role in materials design because the properties of materials are inherently linked to their atomic and electronic structure.
    [Show full text]
  • Compositional Effect of Barium Ions (Ba2+) on Ultrasonic, Structural and Thermal Properties of Leadborate Glasses
    International Journal of Innovative Technology and Exploring Engineering (IJITEE) ISSN: 2278-3075, Volume-9 Issue-1, November 2019 Compositional Effect of Barium Ions (Ba2+) on Ultrasonic, Structural and Thermal Properties of LeadBorate Glasses R. Ezhil Pavai, P. Sangeetha, L. Balu preparing glasses by alone, it is used to behave as a network Abstract: Glasses of the formula 68B2O3-(32-x)PbO-xBaO (0≤ x former/modifier in glass matrices and also addition to glass ≤ 12) were synthesized by standard melt quench technique and network, stabilizes the glass [8, 9]. Moreover doping with investigated their properties using XRD, ultrasonic, FT-IR and barium ions, these glasses show low dispersion, co-efficeint DTA studies. No sharp peaks are existing in the XRD spectra and of thermal expansion and melting point as well as high the broad halo appeared around 2θ≈30o, which reflects the characteristics of amorphous nature. Density decreases due to the refraction and electric resistance [10, 11]. The authors were replacement of higher molar mass by lower molar mass. The attempted to synthesis and characterize the BaO doped B2O3 ultrasonic velocity varies with the gradual substitutions of barium – PbO glasses by using several techniques such as XRD, ions in leadborate host glass matrix. The variations in elastic ultrasonic velocity, DTA and FT-IR. moduli such as L, G, K and E), Poisson’ sratio(), acoustic impedance(Z), microhardness (H) and Debye temperature II. EXPERIMENTAL (θD)were observed which resulted in compact glasses. The functional groups of prepared glasses were studied by FTIR A. Sample preparation analysis and BO4 structural units enhanced with decreasing BO3 Glasses of formula 68B2O3-(32-x)PbO-xBaO were structural units.
    [Show full text]
  • Thermodynamics of Aluminum-Barium Alloys
    Thermodynamics of Aluminum-Barium Alloys S. SRIKANTH and K.T. JACOB The activity of barium in liquid AI-Ba alloys (XB, -< 0.261) at 1373 K has been determined using the Knudsen effusion-mass loss technique. At higher concentrations (XB~ -> 0.38), the activity of barium has been determined by the pseudo-isopiestic technique. Activity of aluminum has been derived by Gibbs-Duhem integration. The concentration-concentration structure factor of Bhatia and Thornton r221 at zero wave vector has been computed from the thermodynamic data. The behavior of the mean-square thermal fluctuation in composition indicates a tendency for association in the liquid state. The associated solution model with A15Ba4 as the predominant complex has been used for the description of the thermodynamic behavior of liquid AI-Ba alloys. Thermodynamic data for the intermetallic compounds in the A1-Ba system and the enthalpy of mixing in liquid alloys have been derived using the phase diagram and the Gibbs' energy of mixing of liquid alloys. I. INTRODUCTION deviations from ideal behavior for Al-rich alloys. Activ- ity data for liquid alloys are not available over the entire A knowledge of activities in liquid A1-Ba alloys is use- concentration range. ful for the analysis of the physical chemistry of the re- The phase diagram of the A1-Ba system given in the duction of barium oxide by aluminum in vacuum. During assessments of Elliott and Shank [4] and Massalski et al. tSl this process, an A1-Ba alloy is formed, which decreases is based on early thermal and microscopic studies of the efficiency of utilization of aluminum and recovery Alberti, E6] Flanigen, t7j and Iida.
    [Show full text]