Study of the System Barium Oxide-Aluminum Oxide-Water at 30° C by Elmer T

Total Page:16

File Type:pdf, Size:1020Kb

Study of the System Barium Oxide-Aluminum Oxide-Water at 30° C by Elmer T Journal of Research of the National Bureau of Standards Vol. 45, No. 5, November 1950 Research Faper 2149 Study of the System Barium Oxide-Aluminum Oxide-Water at 30° C By Elmer T. Carlson, Thomas J. Chaconas, and Lansing S. Wells A study has been made of the action of water and of barium hydroxide solutions on the following compounds: BaO.Al2O3, 3BaO.Al2O3, BaO.Al2O3.H2O," BaO.Al2O3.2H2O, BaO.Al2O3.4H2O, BaO.Al2O3.7H2O, 7BaO.6Al2O3.36H2O, 2BaO.Al2O3.5H2O, and A12O3.3H,O. From this, together with a study of precipitation from supersaturated barium aluminate solutions, a diagram of phase equilibria (stable and metastable) at 30° C has been drawn. All the barium aluminates are hydrolyzed by water. The stable solid phases in the system BaO-Al2O3-H2O at 30° C are A12O3.3H2O (gibbsite), Ba(OH)2.8H2O, and, over a narrow range, probably 2BaO.Al2O3.5H2O. With the exception of the two lowest hydrates, all the hydrated barium aluminates possess a range of metastable solubility. I. Introduction properties nor X-ray diffraction data, however, were given. Malquori [16] has published a phase equi- Although the calcium aluminates, because of their librium diagram of the system BaO-Al2O3-H2O at relationship to hydraulic cements, have been the 20° C. subject of numerous investigations here and elsewhere The present investigation includes a study of the during recent years, the barium aluminates have been action of water and of barium hydroxide solutions somewhat neglected. The latter, at present, are of on the various aluminates and a diagram of phase limited practical importance. They have been used equilibria in the system at 30° C. to some extent in water softening [I],1 and they may be formed as intermediate products in the conversion II. Preparation of Compounds of barium minerals to other compounds [2, 3]. It has been shown [4] that BaO.Al2O3 possesses binding 1. Raw Materials properties. Hunt and Temin [5] reported some ex- periments with barium aluminate relative to its The alumina used in the preparation of the various suitability as a wall plaster for protection against aluminates was a commercial preparation of gibbsite X-rays, but no details as to preparation or composi- (AI2O3.3H2O) used in the manufacture of glass. It tion of the aluminate were given. Attempts have contained about 0.30 percent of Na2O; other impuri- also been made to prepare barium cement, analogous ties were negligible. Barium was obtained in the to portland cement, by substituting barium carbon- form of the carbonate, the hydroxide, and (for a few ate, in whole or in part, for calcium carbonate in the experiments) the nitrate. These were reagent qual- raw mix. It has recently been reported by Gallo ity chemicals meeting ACS standards. [17] and by Braniski [19] that such substitution is feasible, and that the resulting cement is particularly 2. BaO.Al2O;i resistant to sea water and to sulfate waters. Barium carbonate and gibbsite were blended in the The purpose of the present investigation was two- correct proportions, made up to a thin paste with fold. First, to study the hydra Lion of the barium water containing a few drops of a, dispersing agent, aluminates; and second, to discover what analogies, and thoroughly mixed. The paste was then dried if any, exist between the aluminates of barium, and and heated in a platinum dish at 1,400° C for 1 hr. those of calcium, in the hope thai this might aid in 1 The product was shown bv pet rographie examination clarifying some aspects of the hvdration of the cal- and X-ray diffraction analysis to be essentially cium aluminates that are not completely understood. inonobarium aluminate (Ba().AL():!). Treatment A number of anhydrous barium aluminates are with hydrochloric acid left a residue amounting to reported in the literal lire, but only three may be 0.7 percent, probably consisting of corundum. At- considered definitely established, namely, :>Ba().AIX),, tempts to improve the product bv grinding and BaO.AU);,, and BaO.6Al4O3 [6, 7, 8, 9]. The last is reheating were unsuccessful. Lower burning tem- believed to be analogous to /^-alumina |l(), 11], and peratures were found to be unsatisfactory; for ex- its exact composition appears lo be somewhat in ample, a batch healed for 1 hr at 1,300° had an doubt [8]. ll was not included in the present study. insoluble residue of N..r) percent. The various barium aluminate hydrates have been described in a previous paper [12]. No evidence of 3. 3BaO.ALO:t any hydrate more basic than 2BaO.Al2O8.5H2O was found in the present study, although Beckmann [13] Tribarium aluminate was prepared in the manner and MaekaWa [14, L5] have reported the preparation described above for monobariiini aluminate, will) the of a tribarium aluminate hydrate. Neither optical appropriate change in proportion of raw materials. The mixture was healed in a refractory crucible, as iii I Hack cis Indicate i in' literature references ai end of this paper. experience showed thai platinum was Strongly 381 attacked. A temperature of 1,300° was found to from supersaturated solutions. These solutions were be adequate to reduce the insoluble residue to 0.1 prepared in various ways, the most satisfactory being percent. For some of the tests, the product was agitation of anhydrous BaO.Al2O3 with Ba(OH)2 subsequently fused in an oxygen blast. solution for 1 hr, followed by nitration. By this method, solutions containing as high as 35 g of 4. BaO.Al2O3.H2O A12O3 per liter were obtained. Solutions of lower concentration were prepared somewhat more con- The compound to which the formula BaO.Al2O3.- veniently by the action of boiling barium hydroxide H2O is assigned was prepared hydrothermally. solution on gibbsite. Best results were obtained by Gibbsite and barium hydroxide were mixed in the using 75 g of gibbsite, 125 g of Ba(OH)2.8H2O, and 1 required proportion, with added water, and placed liter of water, boiling for 1% hrs, filtering at once, in platinum dishes that were then stacked in a bomb- and allowing to cool. Concentrations ranging from type autoclave and heated in an oven at about 260° C 11 to nearly 19 g of A12O3 per liter were obtained by for 7 days. The product in each of the dishes con- this method. sisted of a hard crust of the desired hydrate sur- The course of precipitation varied somewhat with rounding a core of softer material. The latter was concentration. From highly concentrated solutions, shown by X-ray analysis to consist of boehmite 7BaO.6Al2O3.36H2O began to separate almost at (A12O3.H2O). Despite this evidence of the presence once, while from more dilute solutions the start of of excess alumina, the molar ratio of BaO to A12O3 precipitation was sometimes delayed several days. in the aluminate ranged from 1.10 to 1.14, in agree- After a period ranging from a few days to 4 mos, the ment with the findings previously published [12]. solid phase underwent a transformation to BaO.- It appears likely that the actual formula should be A12O3.7H2O, probably by means of re-solution and 8BaO.7Al2O3.7H2O or 9BaO.8Al2O3.8H2O, but it reprecipitation, as no intermediate forms were would be impossible to establish either formula on observed. This phase change occurred when the the basis of present data. All preparations of this concentration of alumina had been lowered to a hydrate, regardless of changes in raw materials and rather poorly established range indicated by the in conditions of heating, have been more or less con- dotted line in figure 10. 7BaO.6Al2O3.36H2O ap- taminated with minute inclusions of some unknown pears to be progressively more stable as the BaO material in the crystals. concentration is increased. Solutions having initial concentrations below or only slightly above the 5. BaO.Al2O3.2H2O dotted line in figure 10 yielded BaO.Al2O3.7H2O as the primary crystalline phase. Monobarium aluminate dihydrate, BaO.Al2O3.- Considerable work was done in an effort to estab- 2H2O, was prepared by the method described above lish the composition of these hydrates. In the case for BaO.Al2O3.H2O, except that the temperature was of BaO.Al2O3.7H2O, analysis of numerous prepara- held at about 215° C, and the duration of heating tions gave values ranging from 6 to 7 moles of H O was 4 days. The product consisted of well-formed 2 per mole of A12O3. The following experiment crystals, ranging up to 3 mm in size. Apparently throws some light on the question. A preparation of there was a small amount of uncombined alumina, the hydrate was filtered, washed lightly with water, as the molar ratio, BaO :A12O3 :H2O, was found to be and divided into two portions, one of which was 0.95:1:1.95, and a slight turbidity remained when stored in a desiccator over calcium chloride, the the crystals were dissolved in hydrochloric acid. other over a saturated solution of ammonium chloride (relative humidity about 79%). After 11 6. BaO.ALO3.4H2O days, both samples had reached constant weight. The molar ratio H2O:A12O3 was 0.25 in the sample Several small batches of monobarium aluminate dried over calcium chloride, 6.96 in the one dried at tetrahydrate, Ba,().Al2O:!.4ir2(), prepared by various means, were used in the solubility studies. Some the higher humidity. It is inferred that the formula were prepared by allowing BaO.Al2O3.7H2O to stand, is BaO.Al2O3.7H2O, and that 1 molecule of water is in contact with barium aluminate solution, for so loosely bound that it is easily given ofl" in dry air.
Recommended publications
  • Synthesis of Hexacelsian Barium Aluminosilicate by Film Boiling Chemical Vapour Process C
    Synthesis of hexacelsian barium aluminosilicate by film boiling chemical vapour process C. Besnard, A. Allemand, P. David, Laurence Maillé To cite this version: C. Besnard, A. Allemand, P. David, Laurence Maillé. Synthesis of hexacelsian barium aluminosilicate by film boiling chemical vapour process. Journal of the European Ceramic Society, Elsevier, In press, 10.1016/j.jeurceramsoc.2020.02.021. hal-02494032 HAL Id: hal-02494032 https://hal.archives-ouvertes.fr/hal-02494032 Submitted on 28 Feb 2020 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. Synthesis of hexacelsian barium aluminosilicate by film boiling chemical vapour process C. Besnard1, A. Allemand1-2, P. David2, L. Maillé1* 1University of Bordeaux, CNRS, Safran, CEA, Laboratoire des Composites ThermoStructuraux (LCTS), UMR 5801, F-33600 Pessac 2CEA Le Ripault, F-37260, Monts * Corresponding author, email address: [email protected] Abstract An original oxide/oxide ceramic-matrix composite containing mullite-based fibers and a barium aluminosilicate matrix has been synthesized by the film boiling chemical vapour infiltration process. Alkoxides were used as liquid precursors for aluminum, silicon and barium oxides. The structure and microstructure of the oxide matrix were characterized by Scanning Electron Microscopy, Energy Dispersive Spectroscopy and X-ray diffraction.
    [Show full text]
  • Synthesis of a Disperse Phase of Barium Oxide on Aluminum Oxide
    Synthesis of a Disperse Phase of Barium Oxide on Aluminum Oxide by Successive Ionic Layer Deposition Results and Discussion SILD was used to deposit nanoislands of aluminum oxide on a silicon wafer, and then deposit even smaller nanoislands of barium oxide on the surface of the aluminum oxide Thomas I Gilbert * and Johannes W. Schwank nanoislands. Modifications to the conventional SILD procedure were necessary to achieve a University of Michigan, Ann Arbor, Michigan 48109 (USA) successful synthesis. This disperse phase of barium oxide on aluminum oxide supported on a *[email protected] silicon wafer was thermally stable to 450°C. Introduction Heterogeneous catalyst design, synthesis, and characterization have been strongly a b influenced by recent advances in nanoscience [1] Several recent studies suggest that a highly dispersed phase of barium oxide supported on γ-alumina is a better catalyst for NO x storage in lean burn engine emissions than a bulk-like phase of supported barium oxide [2-5]. Successive ionic layer deposition (SILD), also known as successive ionic layer adsorption and reaction (SILAR), is an aqueous method which exploits the electric double layer effect to create thin solid films on supports. In SILD, submonolayers of desired cations and anions are alternately and selectively adsorbed on a support material to produce SILD nanoislands or nanolayers with controlled composition and morphology. Much still remains to be understood about the SILD mechanism. It is unclear whether a precipitate is simply formed on the substrate with each SILD cycle or whether ionic or electrostatic forces persist through SILD layers. If the latter occurs, it is conceivable that these Figure 1.
    [Show full text]
  • The System Bao-B2O3
    U. S. Department of Commerce Research Paper RPl956 National Bureau of Standards Volume 42, February 1949 Part of the Journal of Research of the National Bureau of Standards By Ernest M. Levin and Howard F. McMurdie A phase equilibrium diagram of the system BaO-B20 3 has been constructed from data obtained essentially by the quenching method. Four congruently m elting compounds were identifi ed: BaOAB20 3, melting at 879° ± 5° C; BaO.2B20 3, melting at 900° ± 5° C; BaO.B20 3, melting at 1,095° ± 5° C; and 3BaO.B20 3, melting at 1,383° ± 5° C . Some optical properties of these compounds were determined with the petrographic microscope, and X-ray d.ffraction data suitable for their id entification were obtained. Barium metaborate, BaO.B 20 3, showed an inversion occurring between 100° and 400° C. Mixtures containing less than 30 percent of BaO were found to eparate on fusion into two li quid layers, one of which contained 30 per­ cent of BaO, wherea t he other was nearly pure 13 20 3• A curve showing indices of refraction of the quenched glasses is also prescntcd. I. Introduction 1,060 ° C, 1,002 ° C, and 1,3 15° C, corresponding to the compounds BaO.B20 3, 2BaO.B20 a, and 3BaO.­ The sLu~ly of this system was undertaken as a B 20 a, respectively. In a tudy on the limits of preliminary to a study of part of the ternary miscibility of boric anhydride and borates in system, BaO-B20 3-Si02 • The latter sy tern is of the fused state, Guertler [5] found that barium fundamental importance to the glass industry, as oxide melted together with more than 63.2 percent it serves as a starting point for investigations of by weight of B 20 a separated into two layers.
    [Show full text]
  • Activereports Document
    Apex Microtechnology Materials Substance Report Model:MP103FC Print Time: 9/19/2013 10:15:45 AM RoHS Compliant:Yes Lead Free: No Bonding Island Substances Total Weight (g) Copper 5.40E-3 Tin 1.80E-3 Capacitor Substances Total Weight (g) Barium Titanate 4.30E-1 Bismuth Titanate 2.53E-2 Calcium Zirconate 2.53E-2 Magnesium Oxide 2.53E-2 Nickel 5.06E-3 Palladium 4.74E-3 Silica 2.53E-2 Silver 9.01E-2 Tin 1.26E-3 Page16 of Apex Microtechnology Materials Substance Report Model:MP103FC Print Time: 9/19/2013 10:15:45 AM Die Substances Total Weight (g) Alumina 3.26E-1 Aluminum 9.76E-3 Antimony Trioxide 1.29E-2 Barium Oxide 4.95E-5 Barium Titanate 1.03E-5 Bismuth Trioxide 5.98E-5 Boron Oxide 5.98E-5 Bromine 1.17E-5 Carbon 1.30E-3 Carbon Black 5.70E-3 Catalyst 2.32E-3 Chlorine 1.17E-5 Chromium 4.68E-5 Cobalt 1.35E-5 Copper 1.50E+0 Curing Agent 1.13E-4 Doped Silicon 3.08E-2 Epoxy 6.32E-3 Epoxy Resins 1.23E-1 Flame Retardent 2.83E-4 Gold 2.40E-3 Iron 8.63E-3 Lead 5.00E-3 Lead Oxide 8.11E-4 Manganese 2.17E-5 Metal Hydroxide 7.04E-4 Nickel 1.58E-2 Palladium 7.33E-4 Phosphorous 1.31E-3 Release Agent 4.71E-5 Ruthenium Dioxide 1.01E-3 Silica 4.70E-1 Silicon 6.57E-3 Silicone 2.60E-3 Silver 1.11E-2 Stress Absorbent 2.36E-4 Page26 of Apex Microtechnology Materials Substance Report Model:MP103FC Print Time: 9/19/2013 10:15:45 AM Tin 2.35E-2 Zinc 3.15E-1 Encapsulant Substances Total Weight (g) NONE N/A Frame Substances Total Weight (g) NONE N/A Header Substances Total Weight (g) NONE N/A Lead Frame Substances Total Weight (g) NONE N/A Lid Substances Total Weight
    [Show full text]
  • Kit Components 05/23/2019 Product Code Description N9306048
    05/23/2019 Kit Components Product code Description N9306048 Replacement Cartridge Set Components: N9306003 Hydrocarbon/Moisture-Removing Replacement Cartridge N9306004 TRAP-HI CAPACITY REPL OXYGEN N9306005 Indicating Oxygen-Removing Replacement Cartridge Page 1/10 Safety Data Sheet acc. to OSHA HCS Printing date 05/23/2019 Review date 05/23/2019 * 1 Identification ∙ Product identifier ∙ Trade name: Hydrocarbon/Moisture-Removing Replacement Cartridge ∙ Article number N9306003 ∙ Application of the substance / the mixture Laboratory chemicals ∙ Details of the supplier of the safety data sheet ∙ Manufacturer/Supplier: PerkinElmer, Inc. 710 Bridgeport Avenue Shelton, Connecticut 06484 USA [email protected] 203-925-4600 ∙ Emergency telephone number: CHEMTREC (within US) 800-424-9300 CHEMTREC (from outside US) +1 703-527-3887 (call collect) CHEMTREC (within AU) +(61)-290372994 * 2 Hazard(s) identification ∙ Classification of the substance or mixture Health hazard Carc. 1A H350 May cause cancer. Corrosion Eye Dam. 1 H318 Causes serious eye damage. ∙ Label elements ∙ GHS label elements The product is classified and labeled according to the Globally Harmonized System (GHS). ∙ Hazard pictograms GHS05, GHS08 ∙ Signal word Danger ∙ Hazard-determining components of labeling: calcium oxide Quartz (SiO2) ∙ Hazard statements H318 Causes serious eye damage. H350 May cause cancer. ∙ Precautionary statements P201 Obtain special instructions before use. P202 Do not handle until all safety precautions have been read and understood. P280 Wear protective gloves/protective clothing/eye protection/face protection. P305+P351+P338 If in eyes: Rinse cautiously with water for several minutes. Remove contact lenses, if present and easy to do. Continue rinsing. P310 Immediately call a poison center/doctor. P308+P313 IF exposed or concerned: Get medical advice/attention.
    [Show full text]
  • DENTSPLY International PROSTHETICS
    DENTSPLY International PROSTHETICS Safety Data Sheet Safety Data Sheet (conforms to with Regulation (EC) Date Issued: 31 August 2016 1907/2006, Regulation (EC) 1272/2008 and Regulation Document Number: 605 (EC) 2015/830), US 29CFR1910.1200, Canada Hazardous Date Revised: 29 August 2018 Products Regulation Revision Number: 3 1. IDENTIFICATION OF THE SUBSTANCE/MIXTURE AND OF THE COMPANY/UNDERTAKING 1.1 Product Identifier: Trade Name (as labeled): Celtra® Ceram Powder Porcelains: Dentin, Opaceous Dentin, Natural Enamel, Opal Enamel, Power Dentin, Dentin Gingiva, Dentin Effect, Enamel Effect, Add-on Correction, Add-on Gingiva. Part/Item Number: 615130-615149, 615150 – 615156, 650130-650149, 615700-615725, 650700-650725; 615201-615206, 650201-650206, 615211-615216, 650211-650216; 615181-615186, 650181-650186; 615171-615175, 650171-650175; 615161-615169, 650161-650168; 615221-615226; 650221-650226; 615401-615404, 650401-650404; 615411-615415, 650411-650415. 1.2 Relevant Identified Uses of the Substance or Mixture and Uses Advised Against: Recommended Use: Used in the fabrication of dental crowns and bridges. Restrictions on Use: For Professional Use Only 1.3 Details of the Supplier of the Safety Data Sheet: Manufacturer/Supplier Name: Dentsply Sirona Prosthetics Manufacturer/Supplier Address: 570 West College Ave. York, PA 17401 Manufacturer/Supplier Telephone Number: 717-845-7511 (Product Information) Email address: [email protected] 1.4 Emergency Telephone Number: Emergency Contact Telephone Number: 800-243-1942 2. HAZARDS IDENTIFICATION 2.1 Classification of the Substance or Mixture: GHS Classification: Health Environmental Physical Not Hazardous Not Hazardous Not Hazardous 2.2 Label Elements: Not Required Celtra® Ceram Powder Porcelains Page 1 of 10 Signal Word: None Hazard Phrases Precautionary Phrases None Required None Required 2.3 Other Hazards: None known.
    [Show full text]
  • Percent Composition Percent by Mass
    Percent Composition And a scientific weight loss program Schweitzer Percent composition • If a human weighs 200 pounds, what is actually contributing to that mass. • In other words how much of that 200 lbs is due to – Muscle – Fat – Bone – Fluids – Ect How does a person actually lose weight? • When you run and you lose weight(mass). How did you actually lose mass? • Sweating? – Yes, you will lose water but you will need to replace that to stay healthy and up right. So no real net loss. • Breathing? – Yes, you actually breath out CO2 which is heavier then the O2 you breath in. Percent Composition • Every person Breaths in oxygen and breaths out carbon dioxide (CO2) If a person breaths out 50 grams of CO2 how much of that mass is due to C and how much is due to O. • To solve this problem we are going to determine the percent by mass of CO2 Important: This percentage is not specific to the sample size. A 10g sample will have the same ratio of C to O as a 1000g sample. Calculating percent composition % mass = Mass X / total mass * 100 • CO2 • Sample size = 1 mole • C = 12 g O = 2 * 16 = 32g • Total mass 1 mole = 44g Any sample of CO2 will have this same composition regardless of sample • C = 12/44 * 100 = 27.2% size!!! • O = 32/44 * 100 = 72.7% Determining mass of a sample • Once again a person breaths out 50 grams of carbon dioxide. How much actual mass of carbon was lost. • 50g * .272 = 13.6g C = 12/44 * 100 = 27.2% O = 32/44 * 100 = 72.7% • The rest of the mass is due to Oxygen which the person breathed in anyway.
    [Show full text]
  • Chemical Names and CAS Numbers Final
    Chemical Abstract Chemical Formula Chemical Name Service (CAS) Number C3H8O 1‐propanol C4H7BrO2 2‐bromobutyric acid 80‐58‐0 GeH3COOH 2‐germaacetic acid C4H10 2‐methylpropane 75‐28‐5 C3H8O 2‐propanol 67‐63‐0 C6H10O3 4‐acetylbutyric acid 448671 C4H7BrO2 4‐bromobutyric acid 2623‐87‐2 CH3CHO acetaldehyde CH3CONH2 acetamide C8H9NO2 acetaminophen 103‐90‐2 − C2H3O2 acetate ion − CH3COO acetate ion C2H4O2 acetic acid 64‐19‐7 CH3COOH acetic acid (CH3)2CO acetone CH3COCl acetyl chloride C2H2 acetylene 74‐86‐2 HCCH acetylene C9H8O4 acetylsalicylic acid 50‐78‐2 H2C(CH)CN acrylonitrile C3H7NO2 Ala C3H7NO2 alanine 56‐41‐7 NaAlSi3O3 albite AlSb aluminium antimonide 25152‐52‐7 AlAs aluminium arsenide 22831‐42‐1 AlBO2 aluminium borate 61279‐70‐7 AlBO aluminium boron oxide 12041‐48‐4 AlBr3 aluminium bromide 7727‐15‐3 AlBr3•6H2O aluminium bromide hexahydrate 2149397 AlCl4Cs aluminium caesium tetrachloride 17992‐03‐9 AlCl3 aluminium chloride (anhydrous) 7446‐70‐0 AlCl3•6H2O aluminium chloride hexahydrate 7784‐13‐6 AlClO aluminium chloride oxide 13596‐11‐7 AlB2 aluminium diboride 12041‐50‐8 AlF2 aluminium difluoride 13569‐23‐8 AlF2O aluminium difluoride oxide 38344‐66‐0 AlB12 aluminium dodecaboride 12041‐54‐2 Al2F6 aluminium fluoride 17949‐86‐9 AlF3 aluminium fluoride 7784‐18‐1 Al(CHO2)3 aluminium formate 7360‐53‐4 1 of 75 Chemical Abstract Chemical Formula Chemical Name Service (CAS) Number Al(OH)3 aluminium hydroxide 21645‐51‐2 Al2I6 aluminium iodide 18898‐35‐6 AlI3 aluminium iodide 7784‐23‐8 AlBr aluminium monobromide 22359‐97‐3 AlCl aluminium monochloride
    [Show full text]
  • Synthesis Target Structures for Alkaline Earth Oxide Clusters
    inorganics Article Synthesis Target Structures for Alkaline Earth Oxide Clusters Susanne G. E. T. Escher, Tomas Lazauskas ID , Martijn A. Zwijnenburg and Scott M. Woodley * ID Department of Chemistry, University College London, London WC1H 0AJ, UK; [email protected] (S.G.E.T.E.); [email protected] (T.L.); [email protected] (M.A.Z.) * Correspondence: [email protected] Received: 21 November 2017; Accepted: 7 February 2018; Published: 21 February 2018 Abstract: Knowing the possible structures of individual clusters in nanostructured materials is an important first step in their design. With previous structure prediction data for BaO nanoclusters as a basis, data mining techniques were used to investigate candidate structures for magnesium oxide, calcium oxide and strontium oxide clusters. The lowest-energy structures and analysis of some of their structural properties are presented here. Clusters that are predicted to be ideal targets for synthesis, based on being both the only thermally accessible minimum for their size, and a size that is thermally accessible with respect to neighbouring sizes, include global minima for: sizes n = 9, 15, 16, 18 and 24 for (MgO)n; sizes n = 8, 9, 12, 16, 18 and 24 for (CaO)n; the greatest number of sizes of (SrO)n clusters (n = 8, 9, 10, 12, 13, 15, 16, 18 and 24); and for (BaO)n sizes of n = 8, 10 and 16. Keywords: inorganic nanoclusters; global optimization; data mining; computational modelling; magnesium oxide; calcium oxide; strontium oxide; barium oxide 1. Introduction Structure determination of materials plays an important role in materials design because the properties of materials are inherently linked to their atomic and electronic structure.
    [Show full text]
  • Compositional Effect of Barium Ions (Ba2+) on Ultrasonic, Structural and Thermal Properties of Leadborate Glasses
    International Journal of Innovative Technology and Exploring Engineering (IJITEE) ISSN: 2278-3075, Volume-9 Issue-1, November 2019 Compositional Effect of Barium Ions (Ba2+) on Ultrasonic, Structural and Thermal Properties of LeadBorate Glasses R. Ezhil Pavai, P. Sangeetha, L. Balu preparing glasses by alone, it is used to behave as a network Abstract: Glasses of the formula 68B2O3-(32-x)PbO-xBaO (0≤ x former/modifier in glass matrices and also addition to glass ≤ 12) were synthesized by standard melt quench technique and network, stabilizes the glass [8, 9]. Moreover doping with investigated their properties using XRD, ultrasonic, FT-IR and barium ions, these glasses show low dispersion, co-efficeint DTA studies. No sharp peaks are existing in the XRD spectra and of thermal expansion and melting point as well as high the broad halo appeared around 2θ≈30o, which reflects the characteristics of amorphous nature. Density decreases due to the refraction and electric resistance [10, 11]. The authors were replacement of higher molar mass by lower molar mass. The attempted to synthesis and characterize the BaO doped B2O3 ultrasonic velocity varies with the gradual substitutions of barium – PbO glasses by using several techniques such as XRD, ions in leadborate host glass matrix. The variations in elastic ultrasonic velocity, DTA and FT-IR. moduli such as L, G, K and E), Poisson’ sratio(), acoustic impedance(Z), microhardness (H) and Debye temperature II. EXPERIMENTAL (θD)were observed which resulted in compact glasses. The functional groups of prepared glasses were studied by FTIR A. Sample preparation analysis and BO4 structural units enhanced with decreasing BO3 Glasses of formula 68B2O3-(32-x)PbO-xBaO were structural units.
    [Show full text]
  • Thermodynamics of Aluminum-Barium Alloys
    Thermodynamics of Aluminum-Barium Alloys S. SRIKANTH and K.T. JACOB The activity of barium in liquid AI-Ba alloys (XB, -< 0.261) at 1373 K has been determined using the Knudsen effusion-mass loss technique. At higher concentrations (XB~ -> 0.38), the activity of barium has been determined by the pseudo-isopiestic technique. Activity of aluminum has been derived by Gibbs-Duhem integration. The concentration-concentration structure factor of Bhatia and Thornton r221 at zero wave vector has been computed from the thermodynamic data. The behavior of the mean-square thermal fluctuation in composition indicates a tendency for association in the liquid state. The associated solution model with A15Ba4 as the predominant complex has been used for the description of the thermodynamic behavior of liquid AI-Ba alloys. Thermodynamic data for the intermetallic compounds in the A1-Ba system and the enthalpy of mixing in liquid alloys have been derived using the phase diagram and the Gibbs' energy of mixing of liquid alloys. I. INTRODUCTION deviations from ideal behavior for Al-rich alloys. Activ- ity data for liquid alloys are not available over the entire A knowledge of activities in liquid A1-Ba alloys is use- concentration range. ful for the analysis of the physical chemistry of the re- The phase diagram of the A1-Ba system given in the duction of barium oxide by aluminum in vacuum. During assessments of Elliott and Shank [4] and Massalski et al. tSl this process, an A1-Ba alloy is formed, which decreases is based on early thermal and microscopic studies of the efficiency of utilization of aluminum and recovery Alberti, E6] Flanigen, t7j and Iida.
    [Show full text]
  • Health Hazard Evaluation Report 1985-0540-1816
    Health Hazard Evaluation HETA 85-540-1816 INTERNATIONAL ASSOCIATION Report OF FIRE FIGHTERS WASHINGTON., D.C. PREFACE The Hazard Evaluations and Technical Assistance Branch of NIOSH conducts field investigations of possible health hazards in the workplace. These investigations are conducted under the authority of Section 20(a)(6) of the Occupational Safety and Health Act of 1970, 29 U.S.C. 669(a)(6) which authorizes the Secretary of Health and Human Services, following a written reQuest from any emplpyer or authorized representative of employees, to determine whether any substance normally found in the place of employment has potentially toxic effects in such concentrations as used or found. The Hazard Evaluations and Technical Assistance Branch also provides, upon request, medical, nursing, and industrial hygiene technical and consultative assistance (TA) to Federal. state, and local agencies; labor; industry and other groups or individuals to control occupational health hazards and to prevent related trauma and disease. Mention of company names or products does not constitute endorsement by the National Institute for Occupational Safety and Health. HETA 85-540-1816 NIOSH INVESTIGATOR : JULY 1987 GREGORY A. BURR, C.I.H. INTERNATIONAL ASSOCIATION OF FIRE FIGHTERS WASHINGTON, D.C. I. SUMMARY On September 20, 1985, the National Institute for Occupational Safety and Health (NIOSH) received a request for technical assistance from the International Association of Fire Fighters (IAFF), Health and Safety Department, Washington, D.C., to assess the toxicity of Chimfex, a commercially available chinmey fire extinguishing product. Area air sampling was performed in a simulated "worse case" situation (minimal ventilation and no containment once the Chimfex fire extinguishing product was ignited) using a fire fighter training facility located in Cincinnati, Ohio.
    [Show full text]