Rare Independent Mutations in Renal Salt Handling Genes Contribute to Blood Pressure Variation

Total Page:16

File Type:pdf, Size:1020Kb

Rare Independent Mutations in Renal Salt Handling Genes Contribute to Blood Pressure Variation ARTICLES Rare independent mutations in renal salt handling genes contribute to blood pressure variation Weizhen Ji1,2,8, Jia Nee Foo1,2,8, Brian J O’Roak1, Hongyu Zhao1,3, Martin G Larson4,5, David B Simon1,2, Christopher Newton-Cheh4, Matthew W State1,6, Daniel Levy4,7 & Richard P Lifton1,2 The effects of alleles in many genes are believed to contribute to common complex diseases such as hypertension. Whether risk alleles comprise a small number of common variants or many rare independent mutations at trait loci is largely unknown. We screened members of the Framingham Heart Study (FHS) for variation in three genes—SLC12A3 (NCCT), SLC12A1 (NKCC2) and KCNJ1 (ROMK)—causing rare recessive diseases featuring large reductions in blood pressure. Using comparative genomics, http://www.nature.com/naturegenetics genetics and biochemistry, we identified subjects with mutations proven or inferred to be functional. These mutations, all heterozygous and rare, produce clinically significant blood pressure reduction and protect from development of hypertension. Our findings implicate many rare alleles that alter renal salt handling in blood pressure variation in the general population, and identify alleles with health benefit that are nonetheless under purifying selection. These findings have implications for the genetic architecture of hypertension and other common complex traits. Hypertension affects 1 billion people world-wide and is a major renal salt wasting and hypotension, often resulting in neonatal death. contributor to death from stroke, myocardial infarction, end-stage It is caused by recessive loss-of-function mutations in any of four renal disease and congestive heart failure. Although epidemiologic genes required for normal renal NaCl reabsorption12–15. These include studies have demonstrated high heritability of blood pressure variation the Na-K-2Cl cotransporter gene SLC12A1 and the inward rectifier Nature Publishing Group Group Nature Publishing 2 B 1 + 8 (h of long-term blood pressure 0.6) , identification of the respon- K channel gene KCNJ1. Gitelman’s syndrome is a less severe salt- sible genes has been difficult owing to the trait’s complexity. wasting disease caused by recessive loss-of-function mutations in the 200 Whether common variants or, alternatively, many independent rare Na-Cl cotransporter gene SLC12A3 (ref. 16). © mutations will account for the contributions of specific genes is The prevalences of Bartter’s and Gitelman’s syndromes (estimated unknown. Recent large genome-wide association studies have identi- at B1 per million and 1 per 40,000, respectively)16,17 suggest that fied a number of common variants that contribute to metabolic traits heterozygous disease alleles should be present in at least 1% of the including diabetes2–4, coronary artery disease5,6, and obesity7;notably, population (likely to be an underestimate, owing to early lethality of these collectively explain only a small fraction of interindividual risk2. Bartter’s syndrome), motivating evaluation of these genes in a large, These studies have thus far failed to identify any statistically significant well characterized cohort. We examined SLC12A1, SLC12A3 and loci for blood pressure or hypertension2,8, raising the possibility that KCNJ1 in the Framingham Heart Study (FHS) offspring cohort. rare independent variants account for a large fraction of blood This cohort, comprising 5,124 subjects (3,125 with DNA), has been pressure variation, as would be expected if trait alleles are under followed for up to 35 years with periodic evaluation of cardiovascular purifying selection9. risk factors and other traits, permitting stable assessments of quanti- The study of rare mendelian traits has identified more than 20 genes tative trait values over time. in which mutations impart large effects on blood pressure; these predominantly act by changing net renal salt reabsorption10,11.Several RESULTS of these disorders, exemplified by Bartter’s and Gitelman’s syndromes, Mutations in SLC12A3, SLC12A1 and KCNJ1 in FHS are recessive traits that lower blood pressure, raising the question of We screened all coding exons and flanking intronic sequences of whether the more prevalent heterozygous mutations in these genes SLC12A3, SLC12A1 and KCNJ1 for DNA sequence variants in the might commonly affect the trait. Bartter’s syndrome features massive 1,985 unrelated subjects and 1,140 relatives with available DNA 1Department of Genetics, Yale University School of Medicine, 333 Cedar Street, New Haven, Connecticut 06510, USA. 2Howard Hughes Medical Institute, Yale University School of Medicine, 295 Congress Avenue, New Haven, Connecticut 06510, USA. 3Department of Epidemiology and Public Health, Yale University School of Medicine, 60 College Street, New Haven, Connecticut 06510, USA. 4National Heart, Lung, and Blood Institute’s Framingham Heart Study, 73 Mount Wayte Avenue, Suite 2, Framingham, Massachusetts 01702, USA. 5Department of Mathematics and Statistics, Boston University, 111 Cummington Street, Boston, Massachusetts 02215, USA. 6Child Study Center, Yale University School of Medicine, 230 South Frontage Road, New Haven, Connecticut 06520, USA. 7National Heart, Lung and Blood Institute, 31 Center Drive, Bethesda, Maryland 20892, USA. 8These authors contributed equally to this work. Correspondence should be addressed to R.P.L. ([email protected]). Received 2 November 2007; accepted 15 February 2008; published online 6 April 2008; corrected online 13 April 2008 (details online); doi:10.1038/ng.118 592 VOLUME 40 [ NUMBER 5 [ MAY 2008 NATURE GENETICS ARTICLES samples. This constituted evaluation of B24 Mb of diploid sequence. different disruptive mutations or missense mutations at highly con- The sensitivity of variant detection was high, as we detected all 18 served positions that accounted for 189 mutant alleles in subjects with validated SNPs in these genes and their allele frequencies in FHS were Gitelman’s syndrome. From these data we calculate that these criteria similar to previous frequency estimates (Supplementary Table 1 provide 77% sensitivity and 90% specificity for identification of online). In addition, eight subjects with Gitelman’s syndrome were functional mutations. Further, because 35 of the independent muta- blindly included in the screen and their 16 known mutations were tions in the Gitelman’s cohort were only found once, saturation for correctly identified. Variants were confirmed by two independent disease-causing mutations has not been approached. Similar results methods (Supplementary Fig. 1 online), and variants in the final were found for SLC12A1 and KCNJ1 (disruptive mutations or missense set were further verified by independent amplification of the original mutations at highly conserved positions were found in 86% and 65% sample. These variants recurred among siblings at expected mendelian of Bartter’s alleles, respectively). It is worth noting that we obtained frequencies (32 of 60 siblings), providing assurance of proper sample similar results if we confined the analysis to the 128 Gitelman’s tracking and indicating that few variants are de novo mutations. syndrome subjects of European ancestry (criteria showed 78% A total of 138 different coding sequence variants were found in sensitivity and 90% specificity), excluding a strong effect of 2,492 FHS subjects, whereas the remainder showed only wild-type genetic background on the spectrum of functional mutations. These sequence (Supplementary Table 2 online). The variants included findings provide direct experimental validation that these criteria 46 different synonymous substitutions found in 2,235 subjects, were sensitive and specific for identification of functional mutations 89 different missense variants found in 1,062 subjects, one nonsense mutation and two frameshift mutations. Table 1 Proven and inferred mutations in SLC12A3, SLC12A1 and KCNJ1 in FHS Given the rarity of Bartter’s and Gitelman’s Allele frequency Allele frequency Biochemical syndromes, the vast majority of these variants Phylogenetic conservation in unrelated in European-ancestry loss of must not cause loss of function. We first Variant of wild-type residue FHS subjects subjects with disease function18–22 SIFT/PolyPhen http://www.nature.com/naturegenetics looked for well documented disease-causing mutations that had been shown biochemi- SLC12A3 cally to cause loss of function of the encoded a cotransporter or channel18–22.Thisidentified E112X Disruptive 0.00025 0.0039 Yes NA ten different biochemically proven loss of L155F Complete 0.00025 0 Unknown ++/+ S188F Complete 0.00025 0 Unknown ++/++ function mutations found in 23 subjects A232T Complete 0.00050 0 Unknown ++/+ (Table 1). R261Ca Complete 0.00050 0 Unknown ++/++ We next sought to identify additional R399La Vertebrate 0.00025 0.0078 Yes ++/++ functional variants using phylogenetic con- G439Sa Complete 0.00050 0.0391 Yes ++/++ servation as an indication of amino acid F495L Complete 0.00025 0 Unknown ++/++ positions that are subject to purifying selec- P560Ha Complete 0.00025 0 Unknown ++/++ Nature Publishing Group Group Nature Publishing 8 tion. We characterized orthologs and para- G613Sa Complete 0.00025 0.0039 Yes ++/++ logs of each gene from diverse vertebrate and a 200 G741R Complete 0.00050 0.1211 Yes ++/++ © invertebrate species (10–12 orthologs and G779E Complete 0.00025 0 Unknown ++/++ 6–14 paralogs for each gene; see Methods) R861Ca Vertebrate 0.00025 0.0195 Unknown ++/+ and determined the conservation of each R964Qa Vertebrate 0.00025 0.0117 Yes ++/++ amino acid
Recommended publications
  • The Mineralocorticoid Receptor Leads to Increased Expression of EGFR
    www.nature.com/scientificreports OPEN The mineralocorticoid receptor leads to increased expression of EGFR and T‑type calcium channels that support HL‑1 cell hypertrophy Katharina Stroedecke1,2, Sandra Meinel1,2, Fritz Markwardt1, Udo Kloeckner1, Nicole Straetz1, Katja Quarch1, Barbara Schreier1, Michael Kopf1, Michael Gekle1 & Claudia Grossmann1* The EGF receptor (EGFR) has been extensively studied in tumor biology and recently a role in cardiovascular pathophysiology was suggested. The mineralocorticoid receptor (MR) is an important efector of the renin–angiotensin–aldosterone‑system and elicits pathophysiological efects in the cardiovascular system; however, the underlying molecular mechanisms are unclear. Our aim was to investigate the importance of EGFR for MR‑mediated cardiovascular pathophysiology because MR is known to induce EGFR expression. We identifed a SNP within the EGFR promoter that modulates MR‑induced EGFR expression. In RNA‑sequencing and qPCR experiments in heart tissue of EGFR KO and WT mice, changes in EGFR abundance led to diferential expression of cardiac ion channels, especially of the T‑type calcium channel CACNA1H. Accordingly, CACNA1H expression was increased in WT mice after in vivo MR activation by aldosterone but not in respective EGFR KO mice. Aldosterone‑ and EGF‑responsiveness of CACNA1H expression was confrmed in HL‑1 cells by Western blot and by measuring peak current density of T‑type calcium channels. Aldosterone‑induced CACNA1H protein expression could be abrogated by the EGFR inhibitor AG1478. Furthermore, inhibition of T‑type calcium channels with mibefradil or ML218 reduced diameter, volume and BNP levels in HL‑1 cells. In conclusion the MR regulates EGFR and CACNA1H expression, which has an efect on HL‑1 cell diameter, and the extent of this regulation seems to depend on the SNP‑216 (G/T) genotype.
    [Show full text]
  • The Chondrocyte Channelome: a Novel Ion Channel Candidate in the Pathogenesis of Pectus Deformities
    Old Dominion University ODU Digital Commons Biological Sciences Theses & Dissertations Biological Sciences Summer 2017 The Chondrocyte Channelome: A Novel Ion Channel Candidate in the Pathogenesis of Pectus Deformities Anthony J. Asmar Old Dominion University, [email protected] Follow this and additional works at: https://digitalcommons.odu.edu/biology_etds Part of the Biology Commons, Molecular Biology Commons, and the Physiology Commons Recommended Citation Asmar, Anthony J.. "The Chondrocyte Channelome: A Novel Ion Channel Candidate in the Pathogenesis of Pectus Deformities" (2017). Doctor of Philosophy (PhD), Dissertation, Biological Sciences, Old Dominion University, DOI: 10.25777/pyha-7838 https://digitalcommons.odu.edu/biology_etds/19 This Dissertation is brought to you for free and open access by the Biological Sciences at ODU Digital Commons. It has been accepted for inclusion in Biological Sciences Theses & Dissertations by an authorized administrator of ODU Digital Commons. For more information, please contact [email protected]. THE CHONDROCYTE CHANNELOME: A NOVEL ION CHANNEL CANDIDATE IN THE PATHOGENESIS OF PECTUS DEFORMITIES by Anthony J. Asmar B.S. Biology May 2010, Virginia Polytechnic Institute M.S. Biology May 2013, Old Dominion University A Dissertation Submitted to the Faculty of Old Dominion University in Partial Fulfillment of the Requirements for the Degree of DOCTOR OF PHILOSOPHY BIOMEDICAL SCIENCES OLD DOMINION UNIVERSITY August 2017 Approved by: Christopher Osgood (Co-Director) Michael Stacey (Co-Director) Lesley Greene (Member) Andrei Pakhomov (Member) Jing He (Member) ABSTRACT THE CHONDROCYTE CHANNELOME: A NOVEL ION CHANNEL CANDIDATE IN THE PATHOGENESIS OF PECTUS DEFORMITIES Anthony J. Asmar Old Dominion University, 2017 Co-Directors: Dr. Christopher Osgood Dr. Michael Stacey Costal cartilage is a type of rod-like hyaline cartilage connecting the ribs to the sternum.
    [Show full text]
  • Ion Channels
    UC Davis UC Davis Previously Published Works Title THE CONCISE GUIDE TO PHARMACOLOGY 2019/20: Ion channels. Permalink https://escholarship.org/uc/item/1442g5hg Journal British journal of pharmacology, 176 Suppl 1(S1) ISSN 0007-1188 Authors Alexander, Stephen PH Mathie, Alistair Peters, John A et al. Publication Date 2019-12-01 DOI 10.1111/bph.14749 License https://creativecommons.org/licenses/by/4.0/ 4.0 Peer reviewed eScholarship.org Powered by the California Digital Library University of California S.P.H. Alexander et al. The Concise Guide to PHARMACOLOGY 2019/20: Ion channels. British Journal of Pharmacology (2019) 176, S142–S228 THE CONCISE GUIDE TO PHARMACOLOGY 2019/20: Ion channels Stephen PH Alexander1 , Alistair Mathie2 ,JohnAPeters3 , Emma L Veale2 , Jörg Striessnig4 , Eamonn Kelly5, Jane F Armstrong6 , Elena Faccenda6 ,SimonDHarding6 ,AdamJPawson6 , Joanna L Sharman6 , Christopher Southan6 , Jamie A Davies6 and CGTP Collaborators 1School of Life Sciences, University of Nottingham Medical School, Nottingham, NG7 2UH, UK 2Medway School of Pharmacy, The Universities of Greenwich and Kent at Medway, Anson Building, Central Avenue, Chatham Maritime, Chatham, Kent, ME4 4TB, UK 3Neuroscience Division, Medical Education Institute, Ninewells Hospital and Medical School, University of Dundee, Dundee, DD1 9SY, UK 4Pharmacology and Toxicology, Institute of Pharmacy, University of Innsbruck, A-6020 Innsbruck, Austria 5School of Physiology, Pharmacology and Neuroscience, University of Bristol, Bristol, BS8 1TD, UK 6Centre for Discovery Brain Science, University of Edinburgh, Edinburgh, EH8 9XD, UK Abstract The Concise Guide to PHARMACOLOGY 2019/20 is the fourth in this series of biennial publications. The Concise Guide provides concise overviews of the key properties of nearly 1800 human drug targets with an emphasis on selective pharmacology (where available), plus links to the open access knowledgebase source of drug targets and their ligands (www.guidetopharmacology.org), which provides more detailed views of target and ligand properties.
    [Show full text]
  • Altered Physiological Functions and Ion Currents in Atrial Fibroblasts From
    Physiological Reports ISSN 2051-817X ORIGINAL RESEARCH Altered physiological functions and ion currents in atrial fibroblasts from patients with chronic atrial fibrillation Claire Poulet1, Stephan Kunzel€ 1, Edgar Buttner€ 1, Diana Lindner2, Dirk Westermann2 & Ursula Ravens1 1 Department of Pharmacology and Toxicology, Medical Faculty Carl-Gustav-Carus, TU Dresden, Dresden, Germany 2 Department of General and Interventional Cardiology, University Heart Center Hamburg Eppendorf, Hamburg, Germany Keywords Abstract Atrial fibrillation, electrophysiology, fibroblasts. The contribution of human atrial fibroblasts to cardiac physiology and patho- physiology is poorly understood. Fibroblasts may contribute to arrhythmogen- Correspondence esis through fibrosis, or by directly altering electrical activity in Claire Poulet, Imperial College London, Imperial cardiomyocytes. The objective of our study was to uncover phenotypic differ- Centre for Translational and Experimental ences between cells from patients in sinus rhythm (SR) and chronic atrial fib- Medicine, Hammersmith Campus, Du Cane rillation (AF), with special emphasis on electrophysiological properties. We Road, London W12 0NN, UK isolated fibroblasts from human right atrial tissue for patch-clamp experi- Tel: +44 207 594 2738 Fax: +44 207 594 3653 ments, proliferation, migration, and differentiation assays, and gene expression E-mail: [email protected] profiling. In culture, proliferation and migration of AF fibroblasts were strongly impaired but differentiation into myofibroblasts was increased. This Present Addresses was associated with a higher number of AF fibroblasts expressing functional Claire Poulet, Imperial College London, Nav1.5 channels. Strikingly Na+ currents were considerably larger in AF cells. National Heart and Lung Institute, London, UK Blocking Na+ channels in culture with tetrodotoxin did not affect prolifera- tion, migration, or differentiation in neither SR nor AF cells.
    [Show full text]
  • Dimethylation of Histone 3 Lysine 9 Is Sensitive to the Epileptic Activity
    1368 MOLECULAR MEDICINE REPORTS 17: 1368-1374, 2018 Dimethylation of Histone 3 Lysine 9 is sensitive to the epileptic activity, and affects the transcriptional regulation of the potassium channel Kcnj10 gene in epileptic rats SHAO-PING ZHANG1,2*, MAN ZHANG1*, HONG TAO1, YAN LUO1, TAO HE3, CHUN-HUI WANG3, XIAO-CHENG LI3, LING CHEN1,3, LIN-NA ZHANG1, TAO SUN2 and QI-KUAN HU1-3 1Department of Physiology; 2Ningxia Key Laboratory of Cerebrocranial Diseases, Incubation Base of National Key Laboratory, Ningxia Medical University; 3General Hospital of Ningxia Medical University, Yinchuan, Ningxia 750004, P.R. China Received February 18, 2017; Accepted September 13, 2017 DOI: 10.3892/mmr.2017.7942 Abstract. Potassium channels can be affected by epileptic G9a by 2-(Hexahydro-4-methyl-1H-1,4-diazepin-1-yl)-6,7-di- seizures and serve a crucial role in the pathophysiology of methoxy-N-(1-(phenyl-methyl)-4-piperidinyl)-4-quinazolinamine epilepsy. Dimethylation of histone 3 lysine 9 (H3K9me2) and tri-hydrochloride hydrate (bix01294) resulted in upregulation its enzyme euchromatic histone-lysine N-methyltransferase 2 of the expression of Kir4.1 proteins. The present study demon- (G9a) are the major epigenetic modulators and are associated strated that H3K9me2 and G9a are sensitive to epileptic seizure with gene silencing. Insight into whether H3K9me2 and G9a activity during the acute phase of epilepsy and can affect the can respond to epileptic seizures and regulate expression of transcriptional regulation of the Kcnj10 channel. genes encoding potassium channels is the main purpose of the present study. A total of 16 subtypes of potassium channel Introduction genes in pilocarpine-modelled epileptic rats were screened by reverse transcription-quantitative polymerase chain reac- Epilepsies are disorders of neuronal excitability, characterized tion, and it was determined that the expression ATP-sensitive by spontaneous and recurrent seizures.
    [Show full text]
  • Pflugers Final
    CORE Metadata, citation and similar papers at core.ac.uk Provided by Serveur académique lausannois A comprehensive analysis of gene expression profiles in distal parts of the mouse renal tubule. Sylvain Pradervand2, Annie Mercier Zuber1, Gabriel Centeno1, Olivier Bonny1,3,4 and Dmitri Firsov1,4 1 - Department of Pharmacology and Toxicology, University of Lausanne, 1005 Lausanne, Switzerland 2 - DNA Array Facility, University of Lausanne, 1015 Lausanne, Switzerland 3 - Service of Nephrology, Lausanne University Hospital, 1005 Lausanne, Switzerland 4 – these two authors have equally contributed to the study to whom correspondence should be addressed: Dmitri FIRSOV Department of Pharmacology and Toxicology, University of Lausanne, 27 rue du Bugnon, 1005 Lausanne, Switzerland Phone: ++ 41-216925406 Fax: ++ 41-216925355 e-mail: [email protected] and Olivier BONNY Department of Pharmacology and Toxicology, University of Lausanne, 27 rue du Bugnon, 1005 Lausanne, Switzerland Phone: ++ 41-216925417 Fax: ++ 41-216925355 e-mail: [email protected] 1 Abstract The distal parts of the renal tubule play a critical role in maintaining homeostasis of extracellular fluids. In this review, we present an in-depth analysis of microarray-based gene expression profiles available for microdissected mouse distal nephron segments, i.e., the distal convoluted tubule (DCT) and the connecting tubule (CNT), and for the cortical portion of the collecting duct (CCD) (Zuber et al., 2009). Classification of expressed transcripts in 14 major functional gene categories demonstrated that all principal proteins involved in maintaining of salt and water balance are represented by highly abundant transcripts. However, a significant number of transcripts belonging, for instance, to categories of G protein-coupled receptors (GPCR) or serine-threonine kinases exhibit high expression levels but remain unassigned to a specific renal function.
    [Show full text]
  • Caveolin-1 Deficiency Inhibits the Basolateral K Channels in The
    BASIC RESEARCH www.jasn.org Caveolin-1 Deficiency Inhibits the Basolateral K+ Channels in the Distal Convoluted Tubule and Impairs Renal K+ and Mg2+ Transport † †‡ † † † Lijun Wang,* Chengbiao Zhang, Xiaotong Su, Dao-Hong Lin, and Wenhui Wang *Department of Physiology, Harbin Medical University, Harbin, China; †Department of Pharmacology, New York Medical College, Valhalla, New York; and ‡Jiangsu Province Key Laboratory of Anesthesiology, Xuzhou Medical College, Xuzhou, China ABSTRACT Kcnj10 encodes the inwardly rectifying K+ channel Kir4.1 in the basolateral membrane of the distal convoluted tubule (DCT) and is activated by c-Src. However, the regulation and function of this K+ channel are incompletely characterized. Here, patch-clamp experiments in Kcnj10-transfected HEK293 cells demonstrated that c-Src–induced stimulation of Kcnj10 requires coexpression of caveolin-1 (cav-1), and immunostaining showed expression of cav-1 in the basolateral membrane of parvalbumin-positive DCT. Patch-clamp experiments detected a 40-pS inwardly rectifying K+ channel, a heterotetramer of Kir4.1/Kir5.1, in the basolateral membrane of the early DCT (DCT1) in both wild-type (WT) and cav-1- knockout (KO) mice. However, the activity of this basolateral 40-pS K+ channel was lower in KO mice than in WT mice. Moreover, the K+ reversal potential (an indication of membrane potential) was less negative in theDCT1ofKOmicethanintheDCT1ofWTmice.Westernblotanalysisdemonstratedthatcav-1 – deficiency decreased the expression of the Na+/Cl cotransporter and Ste20-proline-alanine-rich kinase (SPAK) but increased the expression of epithelial Na+ channel-a. Furthermore, the urinary excretion of Mg2+ and K+ was significantly higher in KO mice than in WT mice, and KO mice developed hypomagne- semia, hypocalcemia, and hypokalemia.
    [Show full text]
  • Renal Phenotype in Mice Lacking the Kir5.1 (Kcnj16) K Channel Subunit
    Renal phenotype in mice lacking the Kir5.1 (Kcnj16) K+ channel subunit contrasts with that observed in SeSAME/EAST syndrome Marc Paulaisa,b,1, May Bloch-Faurea,b, Nicolas Picarda,b, Thibaut Jacquesb,c, Suresh Krishna Ramakrishnana,b, Mathilde Kecka,b, Fabien Soheta,b, Dominique Eladaria,b,c,d, Pascal Houilliera,b,c,d, Stéphane Lourdela,b, Jacques Teulona,b, and Stephen J. Tuckere aUniversité Pierre et Marie Curie Paris 6, Université Paris 5, and Institut National de la Santé et de la Recherche Médicale, Unité Mixte de Recherche en Santé 872, 75006 Paris, France; bCentre National de la Recherche Scientifique, Équipes de Recherche Labellisées 7226, Genomics Physiology, and Renal Physiopathology Laboratory, Centre de Recherche des Cordeliers, 75270 Paris 6, France; cFaculty of Medicine, Université Paris–Descartes, 75006 Paris, France; dAssistance Publique–Hôpitaux de Paris, Hôpital Européen Georges Pompidou, 75015 Paris, France; and eClarendon Laboratory and Department of Physics, University of Oxford, Oxford OX1 3PU, United Kingdom Edited by Maurice B. Burg, National Heart, Lung, and Blood Institute, Bethesda, MD, and approved May 9, 2011 (received for review January 31, 2011) The heteromeric inwardly rectifying Kir4.1/Kir5.1 K+ channel underlies encodes the Kir4.1 subunit, underlie SeSAME/EAST syndrome, the basolateral K+ conductance in the distal nephron and is extremely a rare disorder in which patients experience neurological and sensitive to inhibition by intracellular pH. The functional importance renal symptoms (11, 12). In the kidney, it is thought that these of Kir4.1/Kir5.1 in renal ion transport has recently been highlighted by loss-of-function mutations in Kir4.1 impair the function of het- mutations in the human Kir4.1 gene (KCNJ10) that result in seizures, eromeric Kir4.1/Kir5.1 channels (13, 14), thereby dramatically sensorineural deafness, ataxia, mental retardation, and electrolyte impairing salt reuptake from the DCT, and increasing down- imbalance (SeSAME)/epilepsy, ataxia, sensorineural deafness, and re- stream K+ and H+ secretion.
    [Show full text]
  • Disease Associated Mutations in KIR Proteins Linked to Aberrant Inward Rectifier Channel Trafficking
    biomolecules Review Disease Associated Mutations in KIR Proteins Linked to Aberrant Inward Rectifier Channel Trafficking 1, 2, 2 1 Eva-Maria Zangerl-Plessl y, Muge Qile y, Meye Bloothooft , Anna Stary-Weinzinger and Marcel A. G. van der Heyden 2,* 1 Department of Pharmacology and Toxicology, University of Vienna, 1090 Vienna, Austria; [email protected] (E.-M.Z.-P.); [email protected] (A.S.-W.) 2 Department of Medical Physiology, Division of Heart & Lungs, University Medical Center Utrecht, 3584 CM Utrecht, The Netherlands; [email protected] (M.Q.); [email protected] (M.B.) * Correspondence: [email protected]; Tel.: +31-887558901 These authors contributed equally to this work. y Received: 28 August 2019; Accepted: 23 October 2019; Published: 25 October 2019 Abstract: The ubiquitously expressed family of inward rectifier potassium (KIR) channels, encoded by KCNJ genes, is primarily involved in cell excitability and potassium homeostasis. Channel mutations associate with a variety of severe human diseases and syndromes, affecting many organ systems including the central and peripheral neural system, heart, kidney, pancreas, and skeletal muscle. A number of mutations associate with altered ion channel expression at the plasma membrane, which might result from defective channel trafficking. Trafficking involves cellular processes that transport ion channels to and from their place of function. By alignment of all KIR channels, and depicting the trafficking associated mutations, three mutational hotspots were identified. One localized in the transmembrane-domain 1 and immediately adjacent sequences, one was found in the G-loop and Golgi-export domain, and the third one was detected at the immunoglobulin-like domain.
    [Show full text]
  • RT² Profiler PCR Array (96-Well Format and 384-Well [4 X 96] Format)
    RT² Profiler PCR Array (96-Well Format and 384-Well [4 x 96] Format) Mouse Neuronal Ion Channels Cat. no. 330231 PAMM-036ZA For pathway expression analysis Format For use with the following real-time cyclers RT² Profiler PCR Array, Applied Biosystems® models 5700, 7000, 7300, 7500, Format A 7700, 7900HT, ViiA™ 7 (96-well block); Bio-Rad® models iCycler®, iQ™5, MyiQ™, MyiQ2; Bio-Rad/MJ Research Chromo4™; Eppendorf® Mastercycler® ep realplex models 2, 2s, 4, 4s; Stratagene® models Mx3005P®, Mx3000P®; Takara TP-800 RT² Profiler PCR Array, Applied Biosystems models 7500 (Fast block), 7900HT (Fast Format C block), StepOnePlus™, ViiA 7 (Fast block) RT² Profiler PCR Array, Bio-Rad CFX96™; Bio-Rad/MJ Research models DNA Format D Engine Opticon®, DNA Engine Opticon 2; Stratagene Mx4000® RT² Profiler PCR Array, Applied Biosystems models 7900HT (384-well block), ViiA 7 Format E (384-well block); Bio-Rad CFX384™ RT² Profiler PCR Array, Roche® LightCycler® 480 (96-well block) Format F RT² Profiler PCR Array, Roche LightCycler 480 (384-well block) Format G RT² Profiler PCR Array, Fluidigm® BioMark™ Format H Sample & Assay Technologies Description The Mouse Neuronal Ion Channels RT² Profiler PCR Array was developed to profile expression of a panel of 84 genes encoding neuroscience-related ion channels and transporters. The genes represented on the array are listed below, grouped according to their functional and structural features. Included are calcium channels, potassium channels, sodium channels, chloride channels, and transporters. Using real-time PCR, you can easily and reliably analyze expression of a focused panel of genes related to the neuronal ion channels and transporters with this array.
    [Show full text]
  • Inwardly Rectifying Potassium Channel
    Genes & Diseases (2021) 8, 272e278 Available online at www.sciencedirect.com ScienceDirect journal homepage: http://ees.elsevier.com/gendis/default.asp REVIEW ARTICLE Inwardly rectifying potassium channel 5.1: Structure, function, and possible roles in diseases Junhui Zhang a,b,f,1, Jian Han c,1, Lingfei Li d, Qiong Zhang a,b, Yanhai Feng a,b, Youzhao Jiang e, Fang Deng f, Yuping Zhang f, Qinan Wu g, Bing Chen f,**, Jiongyu Hu a,b,f,* a Institute of Burn Research, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, 400038, PR China b State Key Laboratory of Trauma, Burns and Combined Injury, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, 400038, PR China c Department of Obstetrics and Gynecology, Daping Hospital, Third Military Medical University (Army Medical University), Chongqing, 400042, PR China d Department of Dermatology, Daping Hospital, Third Military Medical University (Army Medical University), Chongqing, 400042, PR China e Department of Endocrinology, People’s Hospital of Banan District, Chongqing, 401320, PR China f Department of Endocrinology, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, 400038, PR China g Department of Endocrinology, Chongqing Cancer Hospital (Chongqing University Cancer Hospital), Chongqing, 40030, PR China Received 27 November 2019; received in revised form 2 March 2020; accepted 13 March 2020 Available online 21 March 2020 þ KEYWORDS Abstract Inwardly rectifying potassium (Kir) channels make it easier for K to enter into a Cancer; cell and subsequently regulate cellular biological functions. Kir5.1 (encoded by KCNJ16) alone Cardiovascular can form a homotetramer and can form heterotetramers with Kir4.1 (encoded by KCNJ10)or Kir4.2 (encoded by KCNJ15).
    [Show full text]
  • Genome-Wide Analysis of Differential Gene Expression and Splicing in Excitatory Neurons and Interneuron Subtypes
    Research Articles: Cellular/Molecular Genome-wide analysis of differential gene expression and splicing in excitatory neurons and interneuron subtypes https://doi.org/10.1523/JNEUROSCI.1615-19.2019 Cite as: J. Neurosci 2019; 10.1523/JNEUROSCI.1615-19.2019 Received: 8 July 2019 Revised: 17 October 2019 Accepted: 3 December 2019 This Early Release article has been peer-reviewed and accepted, but has not been through the composition and copyediting processes. The final version may differ slightly in style or formatting and will contain links to any extended data. Alerts: Sign up at www.jneurosci.org/alerts to receive customized email alerts when the fully formatted version of this article is published. Copyright © 2019 Huntley et al. This is an open-access article distributed under the terms of the Creative Commons Attribution 4.0 International license, which permits unrestricted use, distribution and reproduction in any medium provided that the original work is properly attributed. 1 Genome-wide analysis of differential gene expression and splicing in excitatory 2 neurons and interneuron subtypes 3 4 Abbreviated Title: Excitatory and inhibitory neuron transcriptomics 5 6 Melanie A. Huntley1,2*, Karpagam Srinivasan2, Brad A. Friedman1,2, Tzu-Ming Wang2, 7 Ada X. Yee2, Yuanyuan Wang2, Josh S. Kaminker1,2, Morgan Sheng2, David V. Hansen2, 8 Jesse E. Hanson2* 9 10 1 Department of Bioinformatics and Computational Biology, 2 Department of 11 Neuroscience, Genentech, Inc., South San Francisco, CA. 12 *Correspondence to [email protected] or [email protected] 13 14 Conflict of interest: All authors are current or former employees of Genentech, Inc.
    [Show full text]