Quality Control of Compounded Radiopharmaceuticals

Total Page:16

File Type:pdf, Size:1020Kb

Quality Control of Compounded Radiopharmaceuticals .::VOLUME 15 (XV), LESSON 3::. Quality Control of Compounded Radiopharmaceuticals Continuing Education for Nuclear Pharmacists And Nuclear Medicine Professionals By Vivian S. Loveless, Pharm.D., BCNP, FAPhA Associate Professor Department of Pharmaceutical Sciences College of Pharmacy The University of Tennessee Health Science Center The University of New Mexico Health Sciences Center, College of Pharmacy is accredited by the Accreditation Council for Pharmacy Education as a provider of continuing pharmacy education. Program No. 0039-0000-09- 150-H04-P 3.5 Contact Hours or .35 CEUs. Release date: 9/14/2009 Expiration date: 9/14/2012 (will be extended an additional 3 years upon initial expiration date) -- Intentionally left blank -- - Page 2 of 34 - Instructions: Upon purchase of this Lesson, you will have gained access to this lesson and the corresponding assessment via the following link <http://hsc.unm.edu/pharmacy/radiopharmacyCE/> To receive a Statement of Credit you must: 1. Review the lesson content 2. Complete the assessment, submit answers online with 70% correct (you will have 2 chances to pass) 3. Complete the lesson evaluation Once all requirements are met, a Statement of Credit will be available in your workspace. At any time you may "View the Certificate" and use the print command of your web browser to print the completion certificate for your records. NOTE: Please be aware that we cannot provide you with the correct answers to questions you received wrong. This would violate the rules and regulations for accreditation by ACPE. We can however, tell you which question number(s) you received wrong. You may contact the CE Administrator to request this information. Disclosure: The Author does not hold a vested interest in or affiliation with any corporate organization offering financial support or grant monies for this continuing education activity, or any affiliation with an organization whose philosophy could potentially bias the presentation. - Page 3 of 34 - Quality Control of Compounded Radiopharmaceuticals By Vivian S. Loveless, Pharm.D, BCNP, FAPhA Editor, CENP Jeffrey P. Norenberg, MS, PharmD, BCNP, FASHP, FAPhA UNM College of Pharmacy Editorial Board Stephen Dragotakes, RPh, BCNP, FAPhA Michael Mosley, RPh, BCNP Neil Petry, RPh, MS, BCNP, FAPhA James Ponto, MS, RPh, BCNP, FAPhA Tim Quinton, PharmD, MS, FAPhA S. Duann Vanderslice, RPh, BCNP, FAPhA John Yuen, PharmD, BCNP Advisory Board Dave Abbott, RPh, BCNP Dave Engstrom, PharmD, BCNP Mark Gurgone, BS, RPh Scott Knishka, RPh, BCNP Lisa Marmon, RPh, BCNP Brigette Nelson, MS, PharmD, BCNP Janet Robertson, BS, RPh, BCNP Samuel Ernesto, RPh, MBA Brantley Strickland, BCNP Director, CENP Administrator, CE & Web Publisher Kristina Wittstrom, MS, RPh, BCNP, FAPhA Christina Muñoz, B.S. UNM College of Pharmacy UNM College of Pharmacy While the advice and information in this publication are believed to be true and accurate at the time of press, the author(s), editors, or the publisher cannot accept any legal responsibility for any errors or omissions that may be made. The publisher makes no warranty, expressed or implied, with respect to the material contained herein. Copyright 2009 University of New Mexico Health Sciences Center Pharmacy Continuing Education - Page 4 of 34 - QUALITY CONTROL OF COMPOUNDED RADIOPHARMACEUTICALS STATEMENT OF LEARNING OBJECTIVES: Upon successful completion of this CE lesson, the participant should be able to discuss the general concepts and processes associated with the quality control procedures of radiopharmaceuticals. Specifically, the participant should be able to: Upon successful completion of this lesson, the reader should be able to: 1. Discuss the various types of quality control procedures involved in the compounding of radiopharmaceuticals and the importance of each. 2. Understand the principles of radiochemical purity testing. 3. Select the proper media and solvents for radiochemical analyses. 4. Determine the appropriate counting instruments to use for radiochemical analyses. 5. Define the steps necessary in developing and validating an alternate procedure to that prescribed in the manufacturer’s package insert. 6. Identify potential pitfalls in radiochemical testing that could lead to false results. 7. Explain the principles of radionuclidic purity testing. 8. Discuss the potential pitfalls in performing radionuclidic purity testing. 9. Describe the procedures for performing quality control for a chemical contaminant. 10. Describe procedures for identifying pharmaceutical concerns. 11. List quality control procedures for Positron Emission Tomography radiopharmaceuticals. -Page 5 of 34- COURSE OUTLINE INTRODUCTION .................................................................................................................................................................. 7 QUALITY CONTROL PROCEDURES .............................................................................................................................. 7 PRINCIPLE OF RADIOCHEMICAL PURITY ANALYSIS ............................................................................................ 7 RADIATION DETECTION INSTRUMENTATION ....................................................................................................... 13 WELL SCINTILLATION COUNTERS ...................................................................................................................................... 13 DOSE CALIBRATORS ........................................................................................................................................................... 13 RADIOCHROMATOGRAM SCANNERS ................................................................................................................................... 14 DEVELOPMENT OF ALTERNATE PROCEDURES FOR RADIOCHEMICAL TESTING .................................... 14 PITFALLS IN DETERMINATION OF RADIOCHEMICAL PURITY 2,13,28-30 ............................................................ 15 PRINCIPLE OF RADIONUCLIDIC PURITY QUALITY CONTROL ........................................................................ 17 PRINCIPLE OF CHEMICAL PURITY ............................................................................................................................ 18 PHARMACEUTICAL CONCERNS .................................................................................................................................. 20 APPEARANCE...................................................................................................................................................................... 20 PARTICLE SIZE AND NUMBER ............................................................................................................................................. 20 PH ...................................................................................................................................................................................... 22 IONIC STRENGTH, ISOTONICITY, AND OSMOLALITY ........................................................................................................... 22 QUALITY CONTROL FOR POSITRON EMISSION TOMOGRAPHY RADIOPHARMACEUTICALS .............. 23 RADIONUCLIDIC PURITY .................................................................................................................................................... 23 RADIOCHEMICAL PURITY ................................................................................................................................................... 23 CHEMICAL PURITY ............................................................................................................................................................. 24 PH ...................................................................................................................................................................................... 24 STERILITY .......................................................................................................................................................................... 25 BACTERIAL ENDOTOXIN TEST ............................................................................................................................................ 25 SUMMARY .......................................................................................................................................................................... 25 REFERENCES ..................................................................................................................................................................... 26 ASSESSMENT QUESTIONS ............................................................................................................................................. 30 -Page 6 of 34- QUALITY CONTROL OF COMPOUNDED RADIOPHARMACEUTICALS Vivian S. Loveless, Pharm.D, BCNP, FAPhA Associate Professor Department of Pharmaceutical Sciences College of Pharmacy The University of Tennessee Health Science Center INTRODUCTION A radiopharmaceutical is only as good as the care taken in each preparation step throughout the compounding process. With diagnostic radiopharmaceuticals it is important to have a product with acceptable quality control (QC) parameters in order for the nuclear medicine study to be effective yet deliver unnecessary radiation exposure to the patient. However, with therapeutic radiopharmaceuticals it is mandatory to satisfy the guidelines for quality control because otherwise, the results could be life-
Recommended publications
  • OPERATIONAL GUIDANCE on HOSPITAL RADIOPHARMACY: a SAFE and EFFECTIVE APPROACH the Following States Are Members of the International Atomic Energy Agency
    OPERATIONAL GUIDANCE ON HOSPITAL RADIOPHARMACY: A SAFE AND EFFECTIVE APPROACH The following States are Members of the International Atomic Energy Agency: AFGHANISTAN GUATEMALA PAKISTAN ALBANIA HAITI PALAU ALGERIA HOLY SEE PANAMA ANGOLA HONDURAS PARAGUAY ARGENTINA HUNGARY PERU ARMENIA ICELAND PHILIPPINES AUSTRALIA INDIA POLAND AUSTRIA INDONESIA PORTUGAL AZERBAIJAN IRAN, ISLAMIC REPUBLIC OF QATAR BANGLADESH IRAQ REPUBLIC OF MOLDOVA BELARUS IRELAND ROMANIA BELGIUM ISRAEL RUSSIAN FEDERATION BELIZE ITALY SAUDI ARABIA BENIN JAMAICA SENEGAL BOLIVIA JAPAN SERBIA BOSNIA AND HERZEGOVINA JORDAN SEYCHELLES BOTSWANA KAZAKHSTAN BRAZIL KENYA SIERRA LEONE BULGARIA KOREA, REPUBLIC OF SINGAPORE BURKINA FASO KUWAIT SLOVAKIA CAMEROON KYRGYZSTAN SLOVENIA CANADA LATVIA SOUTH AFRICA CENTRAL AFRICAN LEBANON SPAIN REPUBLIC LIBERIA SRI LANKA CHAD LIBYAN ARAB JAMAHIRIYA SUDAN CHILE LIECHTENSTEIN SWEDEN CHINA LITHUANIA SWITZERLAND COLOMBIA LUXEMBOURG SYRIAN ARAB REPUBLIC COSTA RICA MADAGASCAR TAJIKISTAN CÔTE D’IVOIRE MALAWI THAILAND CROATIA MALAYSIA THE FORMER YUGOSLAV CUBA MALI REPUBLIC OF MACEDONIA CYPRUS MALTA TUNISIA CZECH REPUBLIC MARSHALL ISLANDS TURKEY DEMOCRATIC REPUBLIC MAURITANIA UGANDA OF THE CONGO MAURITIUS UKRAINE DENMARK MEXICO UNITED ARAB EMIRATES DOMINICAN REPUBLIC MONACO UNITED KINGDOM OF ECUADOR MONGOLIA GREAT BRITAIN AND EGYPT MONTENEGRO NORTHERN IRELAND EL SALVADOR MOROCCO ERITREA MOZAMBIQUE UNITED REPUBLIC ESTONIA MYANMAR OF TANZANIA ETHIOPIA NAMIBIA UNITED STATES OF AMERICA FINLAND NEPAL URUGUAY FRANCE NETHERLANDS UZBEKISTAN GABON NEW ZEALAND VENEZUELA GEORGIA NICARAGUA VIETNAM GERMANY NIGER YEMEN GHANA NIGERIA ZAMBIA GREECE NORWAY ZIMBABWE The Agency’s Statute was approved on 23 October 1956 by the Conference on the Statute of the IAEA held at United Nations Headquarters, New York; it entered into force on 29 July 1957. The Headquarters of the Agency are situated in Vienna.
    [Show full text]
  • Preparation and Dispensing Problems Associated with Technetium Tc-99M Radiopharmaceuticals
    THE UNIVERSITY OF NEW MEXICO HEALTH SCIENCES CENTER COLLEGE OF PHARMACY ALBUQUERQUE, NEW MEXICO Correspondence Continuing Education Courses for Nuclear Pharmacists and Nuclear Medicine Professionals VOLUME 11, LESSON 1 Preparation and Dispensing Problems Associated with Technetium Tc-99m Radiopharmaceuticals By James A. Ponto, MS, RPh, BCNP University of Iowa Hospitals and Clinics, and College of Pharmacy Iowa City, IA The University of New Mexico Health Sciences Center College of Pharmacy is accredited by the American Council on Pharmaceutical Education as a provider of continuing pharmaceutical education. Program No. 039- 000-04-003-H04. Expires May 25, 2007. 2.5 Contact Hours of .25 CEUs. Preparation and Dispensing Problems Associated with Technetium Tc-99m Radiopharmaceuticals By: James A. Ponto Coordinating Editor and Director of Pharmacy Continuing Education William B. Hladik III, MS, RPh College of Pharmacy University of New Mexico Health Sciences Center Managing Editor Julliana Newman, ELS Wellman Publishing, Inc. Albuquerque, New Mexico Editorial Board George H. Hinkle, MS, RPh, BCNP William B. Hladik III, MS, RPh David Laven, NPh, CRPh, FASHP, FAPhA Jeffrey P. Norenberg, MS, PharmD, BCNP, FASHP Neil A. Petry, RPh, MS, BCNP, FAPhA Timothy M. Quinton, PharmD, MS, RPh, BCNP Guest Reviewer Joseph Hung, PhD Director, Nuclear Pharmacy Laboratories and Positron Emission Tomography (PET) Radiochemistry Facility Mayo Clinic 200 First St. S.W. Rochester, MN 55905 While the advice and information in this publication are believed to be true and accurate at press time, the author(s), editors, or the publisher cannot accept any legal responsibility for any errors or omissions that may be made. The publisher makes no war- ranty, express or implied, with respect to the material container herein.
    [Show full text]
  • Epilepsy & Seizure
    Epilepsy & Seizure Journal of Japan Epilepsy Society Vol.4 No.1 (2011) pp.15-25 Original Article Usefulness of 123I-iomazenil SPECT for childhood focal epilepsies 1) 1) 1) 1) Kentaro Okamoto, MD , Hirokazu Oguni, MD , Yoshiko Hirano, MD , Makiko Osawa, MD 1Department of Pediatrics, Tokyo Women's Medical University, 8-1 Kawada-cho, Shinjuku-ku, Tokyo 162-8666, Japan Key words: focal epilepsy, children, 123I-iomazenil SPECT, epileptic foci Published online July 29, 2011 Abstract Purpose: We investigated the usefulness of obtained from visualization of IMZ-SPECT 123I-iomazenil (IMZ-) SPECT to detect epilep- images and those speculated based on a com- tic foci in children with symptomatic focal bination of clinical manifestations, EEG find- epilepsy (SFE). ings, and brain MRI. We then verified the Subjects: 21 children with SFE who under- concordance of the results between the two went IMZ-SPECT to identify the epileptic fo- methods. cus were studied. Results: There was concordance in both later- Methods: We retrospectively compared the alization and localization in 9/12 patients with localization and lateralization of epileptic foci temporal lobe epilepsy (75%), in 2/5 patients Correspondence to: Hirokazu Oguni, MD, Department of Pediatrics, Tokyo Women's Medical University, 8-1 Kawada-cho, Shinjuku-ku, Tokyo 162, Japan Tel. 81-3-3353-8111, Fax. 81-3-5269-7338, [email protected] 15 Kentaro Okamoto, et al. IMZ-SPECT for childhood epilepsy with frontal lobe epilepsy (40%), and in 2/4 interictal/ictal cerebral blood flow single pho- patients with parieto-occipital lobe epilepsy ton emission computed tomography (SPECT) (50%).
    [Show full text]
  • A Comparison of Imaging Modalities for the Diagnosis of Osteomyelitis
    A comparison of imaging modalities for the diagnosis of osteomyelitis Brandon J. Smith1, Grant S. Buchanan2, Franklin D. Shuler2 Author Affiliations: 1. Joan C Edwards School of Medicine, Marshall University, Huntington, West Virginia 2. Marshall University The authors have no financial disclosures to declare and no conflicts of interest to report. Corresponding Author: Brandon J. Smith Marshall University Joan C. Edwards School of Medicine Huntington, West Virginia Email: [email protected] Abstract Osteomyelitis is an increasingly common pathology that often poses a diagnostic challenge to clinicians. Accurate and timely diagnosis is critical to preventing complications that can result in the loss of life or limb. In addition to history, physical exam, and laboratory studies, diagnostic imaging plays an essential role in the diagnostic process. This narrative review article discusses various imaging modalities employed to diagnose osteomyelitis: plain films, computed tomography (CT), magnetic resonance imaging (MRI), ultrasound, bone scintigraphy, and positron emission tomography (PET). Articles were obtained from PubMed and screened for relevance to the topic of diagnostic imaging for osteomyelitis. The authors conclude that plain films are an appropriate first step, as they may reveal osteolytic changes and can help rule out alternative pathology. MRI is often the most appropriate second study, as it is highly sensitive and can detect bone marrow changes within days of an infection. Other studies such as CT, ultrasound, and bone scintigraphy may be useful in patients who cannot undergo MRI. CT is useful for identifying necrotic bone in chronic infections. Ultrasound may be useful in children or those with sickle-cell disease. Bone scintigraphy is particularly useful for vertebral osteomyelitis.
    [Show full text]
  • Imaging in Parkinson's Disease
    Clinical Medicine 2016 Vol 16, No 4: 371–5 CME MOVEMENT DISORDERS I m a g i n g i n P a r k i n s o n ’ s d i s e a s e Authors: G e n n a r o P a g a n o , A F l a v i a N i c c o l i n i B a n d M a r i o s P o l i t i s C The clinical presentation of Parkinson’s disease (PD) Abnormal intra-neuronal (Lewy bodies) and intra-neuritic is heterogeneous and overlaps with other conditions, (Lewy neurites) deposits of fibrillary aggregates are currently including the parkinsonian variant of multiple system considered the key neuropathological alterations in PD. atrophy (MSA-P), progressive supranuclear palsy (PSP) and The majority of these aggregates, mainly composed of alpha essential tremor. Imaging of the brain in patients with (α)−synuclein, are located at presynaptic level and impair ABSTRACT parkinsonism has the ability to increase the accuracy of axonal trafficking, resulting in a series of noxious events that differential diagnosis. Magnetic resonance imaging (MRI), cause neuronal damage to the substantia nigra pars compacta single photon emission computed tomography (SPECT) and with a subsequent dopaminergic denervation of the striatum. positron emission tomography (PET) allow brain imaging The cardinal motor features of PD (bradykinesia and rigidity, of structural, functional and molecular changes in vivo in with or without resting tremor) manifest after a substantial patients with PD. Structural MRI is useful to differentiate denervation of substantia nigra, which is associated with about PD from secondary and atypical forms of parkinsonism.
    [Show full text]
  • Isotope Production Potential at Sandia National Laboratories: Product, Waste, Packaging, and Transportation*
    Isotope Production Potential at Sandia National Laboratories: Product, Waste, Packaging, and Transportation* A. J. Trennel Transportation Systems Department *- *-, o / /"-~~> Sandia National Laboratories** ' J Albuquerque, NM 87185 O Q T » Abstract The U.S. Congress directed the U.S. Department of Energy to establish a domestic source of molybdenum-99, an essential isotope used in nuclear medicine and radiopharmacology. An Environmental Impact Statement for production of 99Mo at one of four candidate sites is being prepared. As one of the candidate sites, Sandia National Laboratories is developing the Isotope Production Project. Using federally approved processes and procedures now owned by the U.S. Department of Energy, and existing facilities that would be modified to meet the production requirements, the Sandia National Laboratories' Isotope Project would manufacture up to 30 percent of the U.S. market, with the capacity to meet 100 percent of the domestic need if necessary. This paper provides a brief overview of the facility, equipment, and processes required to produce isotopes. Packaging and transportation issues affecting both product and waste are addressed, and the storage and disposal of the four low-level radioactive waste types generated by the production program are considered. Recommendations for future development are provided. This work was performed at Sandia National Laboratories, Albuquerque, New Mexico, for the U.S. Department of Energy under Contract DE-AC04-94AL85000. A U.S. Department of Energy facility. DISTRPJTO OF THIS DOCUMENT IS UNLIMITED #t/f W A8 1 fcll PROJECT NEED AND BACKGROUND Nuclear medicine is an expanding segment of today's medical and pharmaceutical communities. Specific radioactive isotopes are vital, with molybdenum-99 (99Mo) being the most important medical isotope.
    [Show full text]
  • Brain Imaging
    Publications · Brochures Brain Imaging A Technologist’s Guide Produced with the kind Support of Editors Fragoso Costa, Pedro (Oldenburg) Santos, Andrea (Lisbon) Vidovič, Borut (Munich) Contributors Arbizu Lostao, Javier Pagani, Marco Barthel, Henryk Payoux, Pierre Boehm, Torsten Pepe, Giovanna Calapaquí-Terán, Adriana Peștean, Claudiu Delgado-Bolton, Roberto Sabri, Osama Garibotto, Valentina Sočan, Aljaž Grmek, Marko Sousa, Eva Hackett, Elizabeth Testanera, Giorgio Hoffmann, Karl Titus Tiepolt, Solveig Law, Ian van de Giessen, Elsmarieke Lucena, Filipa Vaz, Tânia Morbelli, Silvia Werner, Peter Contents Foreword 4 Introduction 5 Andrea Santos, Pedro Fragoso Costa Chapter 1 Anatomy, Physiology and Pathology 6 Elsmarieke van de Giessen, Silvia Morbelli and Pierre Payoux Chapter 2 Tracers for Brain Imaging 12 Aljaz Socan Chapter 3 SPECT and SPECT/CT in Oncological Brain Imaging (*) 26 Elizabeth C. Hackett Chapter 4 Imaging in Oncological Brain Diseases: PET/CT 33 EANM Giorgio Testanera and Giovanna Pepe Chapter 5 Imaging in Neurological and Vascular Brain Diseases (SPECT and SPECT/CT) 54 Filipa Lucena, Eva Sousa and Tânia F. Vaz Chapter 6 Imaging in Neurological and Vascular Brain Diseases (PET/CT) 72 Ian Law, Valentina Garibotto and Marco Pagani Chapter 7 PET/CT in Radiotherapy Planning of Brain Tumours 92 Roberto Delgado-Bolton, Adriana K. Calapaquí-Terán and Javier Arbizu Chapter 8 PET/MRI for Brain Imaging 100 Peter Werner, Torsten Boehm, Solveig Tiepolt, Henryk Barthel, Karl T. Hoffmann and Osama Sabri Chapter 9 Brain Death 110 Marko Grmek Chapter 10 Health Care in Patients with Neurological Disorders 116 Claudiu Peștean Imprint 126 n accordance with the Austrian Eco-Label for printed matters.
    [Show full text]
  • Nuclear Medicine Imaging in Neuroblastoma: Current Status and New Developments
    Journal of Personalized Medicine Review Nuclear Medicine Imaging in Neuroblastoma: Current Status and New Developments Atia Samim 1,2, Godelieve A.M. Tytgat 1, Gitta Bleeker 3, Sylvia T.M. Wenker 1,2, Kristell L.S. Chatalic 1,2, Alex J. Poot 1,2, Nelleke Tolboom 1,2, Max M. van Noesel 1 , Marnix G.E.H. Lam 2 and Bart de Keizer 1,2,* 1 Princess Maxima Center for Pediatric Oncology, Heidelberglaan 25, 3584 CS Utrecht, The Netherlands; [email protected] (A.S.); [email protected] (G.A.M.T.); [email protected] (S.T.M.W.); [email protected] (K.L.S.C.); [email protected] (A.J.P.); [email protected] (N.T.); [email protected] (M.M.v.N.) 2 Department of Radiology and Nuclear Medicine, University Medical Center Utrecht/Wilhelmina Children’s Hospital, Heidelberglaan 100, 3584 CX Utrecht, The Netherlands; [email protected] 3 Department of Radiology and Nuclear Medicine, Northwest Clinics, Wilhelminalaan 12, 1815 JD Alkmaar, The Netherlands; [email protected] * Correspondence: [email protected]; Tel.: +31-887-571-794 Abstract: Neuroblastoma is the most common extracranial solid malignancy in children. At diagnosis, approximately 50% of patients present with metastatic disease. These patients are at high risk for refractory or recurrent disease, which conveys a very poor prognosis. During the past decades, Citation: Samim, A.; Tytgat, G.A.M.; nuclear medicine has been essential for the staging and response assessment of neuroblastoma. 123 123 Bleeker, G.; Wenker, S.T.M.; Currently, the standard nuclear imaging technique is meta-[ I]iodobenzylguanidine ([ I]mIBG) Chatalic, K.L.S.; Poot, A.J.; whole-body scintigraphy, usually combined with single-photon emission computed tomography Tolboom, N.; van Noesel, M.M.; with computed tomography (SPECT-CT).
    [Show full text]
  • Consensus Nomenclature Rules for Radiopharmaceutical Chemistry – Setting the Record Straight
    ÔØ ÅÒÙ×Ö ÔØ Consensus nomenclature rules for radiopharmaceutical chemistry – setting the record straight Heinz H. Coenen, Antony D. Gee, Michael Adam, Gunnar Antoni, Cathy S. Cutler, Yasuhisa Fujibayashi, Jae Min Jeong, Robert H. Mach, Thomas L. Mindt, Victor W. Pike, Albert D. Windhorst PII: S0969-8051(17)30318-9 DOI: doi: 10.1016/j.nucmedbio.2017.09.004 Reference: NMB 7967 To appear in: Nuclear Medicine and Biology Received date: 21 September 2017 Accepted date: 22 September 2017 Please cite this article as: Coenen Heinz H., Gee Antony D., Adam Michael, Antoni Gunnar, Cutler Cathy S., Fujibayashi Yasuhisa, Jeong Jae Min, Mach Robert H., Mindt Thomas L., Pike Victor W., Windhorst Albert D., Consensus nomenclature rules for radiopharmaceutical chemistry – setting the record straight, Nuclear Medicine and Biology (2017), doi: 10.1016/j.nucmedbio.2017.09.004 This is a PDF file of an unedited manuscript that has been accepted for publication. As a service to our customers we are providing this early version of the manuscript. The manuscript will undergo copyediting, typesetting, and review of the resulting proof before it is published in its final form. Please note that during the production process errors may be discovered which could affect the content, and all legal disclaimers that apply to the journal pertain. ACCEPTED MANUSCRIPT Consensus nomenclature rules for radiopharmaceutical chemistry – setting the record straight Recommended guidelines, assembled by an international and inter- society working group after extensive consultation with peers in the wider field of nuclear chemistry and radiopharmaceutical sciences. Heinz H. Coenen1*, Antony D. Gee2*, Michael Adam3, Gunnar Antoni4, Cathy S.
    [Show full text]
  • (18F-FDG) Uptake for PET/CT in Normal Organs
    www.nature.com/scientificreports OPEN Efects of blood glucose level on 18F fuorodeoxyglucose (18F- FDG) uptake for PET/CT in normal Received: 24 October 2017 Accepted: 18 January 2018 organs: an analysis on 5623 Published: xx xx xxxx patients Clarice Sprinz1,2, Matheus Zanon 3,4, Stephan Altmayer3,4, Guilherme Watte 3, Klaus Irion 5, Edson Marchiori 6 & Bruno Hochhegger 2,3,4 Our purpose was to evaluate the efect of glycemia on 18F-FDG uptake in normal organs of interest. The infuences of other confounding factors, such as body mass index (BMI), diabetes, age, and sex, on the relationships between glycemia and organ-specifc standardized uptake values (SUVs) were also investigated. We retrospectively identifed 5623 consecutive patients who had undergone clinical PET/ CT for oncological indications. Patients were stratifed into groups based on glucose levels, measured immediately before 18F-FDG injection. Diferences in mean SUVmax values among glycemic ranges were clinically signifcant only when >10% variation was observed. The brain was the only organ that presented a signifcant inverse relationship between SUVmax and glycemia (p < 0.001), even after controlling for diabetic status. No such diference was observed for the liver or lung. After adjustment for sex, age, and BMI, the association of glycemia with SUVmax was signifcant for the brain and liver, but not for the lung. In conclusion, the brain was the only organ analyzed showing a clinically signifcant relationship to glycemia after adjustment for potentially confounding variables. The lung was least afected by the variables in our model, and may serve as an alternative background tissue to the liver.
    [Show full text]
  • Initial Clinical Comparison of 18F-Florbetapir and 18F-FDG PET in Patients with Alzheimer Disease and Controls
    Journal of Nuclear Medicine, published on May 10, 2012 as doi:10.2967/jnumed.111.099606 Initial Clinical Comparison of 18F-Florbetapir and 18F-FDG PET in Patients with Alzheimer Disease and Controls Andrew B. Newberg1, Steven E. Arnold2, Nancy Wintering1, Barry W. Rovner1, and Abass Alavi2 1Thomas Jefferson University and Hospital, Philadelphia, Pennsylvania; and 2University of Pennsylvania, Philadelphia, Pennsylvania The purpose of this study was to determine how clinical inter- Alzheimer disease (AD) is a brain disorder of older pretations of the 18F-amyloid tracer florbetapir compares diagnos- adults, with symptoms of progressive decline in memory 18 tically with F-FDG PET when evaluating patients with Alzheimer and other cognitive functions. A definitive diagnosis of AD disease (AD) and controls. Methods: Nineteen patients with a clin- ical diagnosis of AD and 21 elderly controls were evaluated with can be established only by demonstrating the presence of both 18F-florbetapir and 18F-FDG PET scans. Scans were inter- abundant senile plaques and neurofibrillary tangles in post- preted together by 2 expert readers masked to any case informa- mortem brain sections (1,2). During life, most patients are tion and were assessed for tracer binding patterns consistent with diagnosed by clinical criteria that imperfectly track with AD. The criteria for interpreting the 18F-florbetapir scan as positive postmortem pathologic findings. The criteria for the diagno- for AD was the presence of binding in the cortical regions relative to sis of AD were defined by the Working Group of the Na- the cerebellum. 18F-FDG PET scans were interpreted as positive if they displayed the classic pattern of hypometabolism in the tem- tional Institute of Neurologic and Communicative Disorders poroparietal regions.
    [Show full text]
  • Amyloid and Tau Signatures of Brain Metabolic Decline in Preclinical Alzheimer's Disease
    European Journal of Nuclear Medicine and Molecular Imaging https://doi.org/10.1007/s00259-018-3933-3 ORIGINAL ARTICLE Amyloid and tau signatures of brain metabolic decline in preclinical Alzheimer’s disease Tharick A. Pascoal1 & Sulantha Mathotaarachchi1 & Monica Shin1 & Ah Yeon Park2 & Sara Mohades1 & Andrea L. Benedet1 & Min Su Kang1 & Gassan Massarweh3 & Jean-Paul Soucy3,4 & Serge Gauthier5 & Pedro Rosa-Neto 1,3,5,6 & for the Alzheimer’s Disease Neuroimaging Initiative Received: 12 September 2017 /Accepted: 2 January 2018 # The Author(s) 2018. This article is an open access publication Abstract Purpose We aimed to determine the amyloid (Aβ) and tau biomarker levels associated with imminent Alzheimer’s disease (AD) - related metabolic decline in cognitively normal individuals. Methods A threshold analysis was performed in 120 cognitively normal elderly individuals by modelling 2-year declines in brain glucose metabolism measured with [18F]fluorodeoxyglucose ([18F]FDG) as a function of [18F]florbetapir Aβ positron emission tomography (PET) and cerebrospinal fluid phosphorylated tau biomarker thresholds. Additionally, using a novel voxel-wise analytical framework, we determined the sample sizes needed to test an estimated 25% drugeffect with 80% of power on changes in FDG uptake over 2 years at every brain voxel. Results The combination of [18F]florbetapir standardized uptake value ratios and phosphorylated-tau levels more than one standard deviation higher than their respective thresholds for biomarker abnormality was the best predictor of metabolic decline in individuals with preclinical AD. We also found that a clinical trial using these thresholds would require as few as 100 individuals to test a 25% drug effect on AD-related metabolic decline over 2 years.
    [Show full text]