FDG PET for the Diagnosis of Dementia
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Neuroradiology of Non-Alzheimer's Disease Dementias
Hong Kong J Radiol. 2015;18:58-73 | DOI: 10.12809/hkjr1414267 PICTORIAL ESSAY Neuroradiology of Non-Alzheimer’s Disease Dementias YL Dai1, K Wang1, TCY Cheung1, DLK Dai2 1Department of Imaging and Interventional Radiology, Prince of Wales Hospital, The Chinese University of Hong Kong; 2Department of Medicine and Therapeutics, Prince of Wales Hospital, Hospital Authority, Hong Kong ABSTRACT Dementia is an increasingly prevalent disease of the ageing population. Although Alzheimer’s disease is still the most common cause of dementia, there is emerging clinical interest in other, less common, causes of dementia that can affect patients at a younger age. Early diagnosis of these non-Alzheimer’s disease dementias is now possible with the aid of neuroimaging, including computed tomography and magnetic resonance imaging, as well as newer modalities such as magnetic resonance spectroscopy, diffusion tensor imaging, and single-photon emission computed tomography. The imaging features of some of the more common non- Alzheimer’s disease dementias will be discussed in this review in order to help clinicians and radiologists better diagnose these conditions. Key Words: Alzheimer disease; Aphasia, primary progressive; Dementia, vascular; Magnetic resonance spectroscopy; Multiple system atrophy 中文摘要 非阿爾茨海默病癡呆症的神經放射學 戴毓玲、王琪、張智欣、戴樂群 隨着人口老化,老年癡呆症患者愈發普遍。雖然阿爾茨海默氏症仍然是老年癡呆症最常見的病因, 但臨床對於更年輕患者的其他較少見的病因頗有興趣。神經影像技術有助於非阿爾茨海默氏病的癡 呆症的早期診斷,包括電腦斷層掃描和磁共振成像,以及較新型的技術如磁共振波譜、彌散張量成 像和單光子發射電腦斷層掃描。本文討論一些較常見的非阿爾茨海默病癡呆症的影像學特徵,以幫 助臨床醫生和放射科醫生更好地診斷此類病症。 INTRODUCTION focal brain lesions and identifying surgically rectifiable The prevalence of dementia in people aged 60 years or causes, such as chronic subdural haematomas, to older in Hong Kong in 2009 was 7.2% and is expected arriving at a specific antemortem diagnosis that has a to further increase with the ageing population.1 Imaging profound impact on clinical management and prognostic for dementia has long progressed from exclusion of value. -
Assessment of Cardiac Amyloidosis with 99MTC- Pyrophosphate (PYP) Quantitative Spect
Assessment of Cardiac Amyloidosis With 99MTC- pyrophosphate (PYP) Quantitative Spect Chao Ren Peking Union Medical College Hospital Jingyun Ren Peking Union Medical College Hospital Zhuang Tian Peking Union Medical College Hospital Yanrong Du Peking Union Medical College Hospital Zhixin Hao Peking Union Medical College Hospital Zongyao Zhang Chinese Academy of Medical Sciences & Peking Union Medical College Fuwai Hospital Wei Fang Chinese Academy of Medical Sciences & Peking Union Medical College Fuwai Hospital Fang Li Peking Union Medical College Hospital Shuyang Zhang Peking Union Medical College Hospital Bailing Hsu University of Missouri-Columbia Li Huo ( [email protected] ) Peking Union Medical College Hospital https://orcid.org/0000-0003-1216-083X Original research Keywords: ATTR cardiomyopathy, 99mTc-PYP quantitative SPECT, standardized uptake value, diagnostic feasibility, the operator reproducibility Posted Date: June 5th, 2020 DOI: https://doi.org/10.21203/rs.3.rs-32649/v1 License: This work is licensed under a Creative Commons Attribution 4.0 International License. Read Full License Page 1/25 Version of Record: A version of this preprint was published on January 7th, 2021. See the published version at https://doi.org/10.1186/s40658-020-00342-7. Page 2/25 Abstract Background: 99mTc-PYP scintigraphy provides differential diagnosis of ATTR cardiomyopathy (ATTR-CM) from lightchain cardiac amyloidosis and other myocardial disorders without biopsy. This study was aimed to assess the diagnostic feasibility and the operator reproducibility of 99mTc-PYP quantitative SPECT. Method:Thirty-seven consecutive patients underwent a99mTc-PYP thorax planar scan followed by SPECT and CT scans to diagnose suspected ATTR-CM were enrolled. For the quantitative SPECT, phantom studies were initially performed to determine the image conversion factor (ICF) and partial volume correction (PVC) factor to recover 99mTc-PYP activity concentration in myocardium for calculating the standardized uptake value (SUV) (unit: g/ml). -
Epilepsy & Seizure
Epilepsy & Seizure Journal of Japan Epilepsy Society Vol.4 No.1 (2011) pp.15-25 Original Article Usefulness of 123I-iomazenil SPECT for childhood focal epilepsies 1) 1) 1) 1) Kentaro Okamoto, MD , Hirokazu Oguni, MD , Yoshiko Hirano, MD , Makiko Osawa, MD 1Department of Pediatrics, Tokyo Women's Medical University, 8-1 Kawada-cho, Shinjuku-ku, Tokyo 162-8666, Japan Key words: focal epilepsy, children, 123I-iomazenil SPECT, epileptic foci Published online July 29, 2011 Abstract Purpose: We investigated the usefulness of obtained from visualization of IMZ-SPECT 123I-iomazenil (IMZ-) SPECT to detect epilep- images and those speculated based on a com- tic foci in children with symptomatic focal bination of clinical manifestations, EEG find- epilepsy (SFE). ings, and brain MRI. We then verified the Subjects: 21 children with SFE who under- concordance of the results between the two went IMZ-SPECT to identify the epileptic fo- methods. cus were studied. Results: There was concordance in both later- Methods: We retrospectively compared the alization and localization in 9/12 patients with localization and lateralization of epileptic foci temporal lobe epilepsy (75%), in 2/5 patients Correspondence to: Hirokazu Oguni, MD, Department of Pediatrics, Tokyo Women's Medical University, 8-1 Kawada-cho, Shinjuku-ku, Tokyo 162, Japan Tel. 81-3-3353-8111, Fax. 81-3-5269-7338, [email protected] 15 Kentaro Okamoto, et al. IMZ-SPECT for childhood epilepsy with frontal lobe epilepsy (40%), and in 2/4 interictal/ictal cerebral blood flow single pho- patients with parieto-occipital lobe epilepsy ton emission computed tomography (SPECT) (50%). -
Imaging in Parkinson's Disease
Clinical Medicine 2016 Vol 16, No 4: 371–5 CME MOVEMENT DISORDERS I m a g i n g i n P a r k i n s o n ’ s d i s e a s e Authors: G e n n a r o P a g a n o , A F l a v i a N i c c o l i n i B a n d M a r i o s P o l i t i s C The clinical presentation of Parkinson’s disease (PD) Abnormal intra-neuronal (Lewy bodies) and intra-neuritic is heterogeneous and overlaps with other conditions, (Lewy neurites) deposits of fibrillary aggregates are currently including the parkinsonian variant of multiple system considered the key neuropathological alterations in PD. atrophy (MSA-P), progressive supranuclear palsy (PSP) and The majority of these aggregates, mainly composed of alpha essential tremor. Imaging of the brain in patients with (α)−synuclein, are located at presynaptic level and impair ABSTRACT parkinsonism has the ability to increase the accuracy of axonal trafficking, resulting in a series of noxious events that differential diagnosis. Magnetic resonance imaging (MRI), cause neuronal damage to the substantia nigra pars compacta single photon emission computed tomography (SPECT) and with a subsequent dopaminergic denervation of the striatum. positron emission tomography (PET) allow brain imaging The cardinal motor features of PD (bradykinesia and rigidity, of structural, functional and molecular changes in vivo in with or without resting tremor) manifest after a substantial patients with PD. Structural MRI is useful to differentiate denervation of substantia nigra, which is associated with about PD from secondary and atypical forms of parkinsonism. -
Brain Imaging
Publications · Brochures Brain Imaging A Technologist’s Guide Produced with the kind Support of Editors Fragoso Costa, Pedro (Oldenburg) Santos, Andrea (Lisbon) Vidovič, Borut (Munich) Contributors Arbizu Lostao, Javier Pagani, Marco Barthel, Henryk Payoux, Pierre Boehm, Torsten Pepe, Giovanna Calapaquí-Terán, Adriana Peștean, Claudiu Delgado-Bolton, Roberto Sabri, Osama Garibotto, Valentina Sočan, Aljaž Grmek, Marko Sousa, Eva Hackett, Elizabeth Testanera, Giorgio Hoffmann, Karl Titus Tiepolt, Solveig Law, Ian van de Giessen, Elsmarieke Lucena, Filipa Vaz, Tânia Morbelli, Silvia Werner, Peter Contents Foreword 4 Introduction 5 Andrea Santos, Pedro Fragoso Costa Chapter 1 Anatomy, Physiology and Pathology 6 Elsmarieke van de Giessen, Silvia Morbelli and Pierre Payoux Chapter 2 Tracers for Brain Imaging 12 Aljaz Socan Chapter 3 SPECT and SPECT/CT in Oncological Brain Imaging (*) 26 Elizabeth C. Hackett Chapter 4 Imaging in Oncological Brain Diseases: PET/CT 33 EANM Giorgio Testanera and Giovanna Pepe Chapter 5 Imaging in Neurological and Vascular Brain Diseases (SPECT and SPECT/CT) 54 Filipa Lucena, Eva Sousa and Tânia F. Vaz Chapter 6 Imaging in Neurological and Vascular Brain Diseases (PET/CT) 72 Ian Law, Valentina Garibotto and Marco Pagani Chapter 7 PET/CT in Radiotherapy Planning of Brain Tumours 92 Roberto Delgado-Bolton, Adriana K. Calapaquí-Terán and Javier Arbizu Chapter 8 PET/MRI for Brain Imaging 100 Peter Werner, Torsten Boehm, Solveig Tiepolt, Henryk Barthel, Karl T. Hoffmann and Osama Sabri Chapter 9 Brain Death 110 Marko Grmek Chapter 10 Health Care in Patients with Neurological Disorders 116 Claudiu Peștean Imprint 126 n accordance with the Austrian Eco-Label for printed matters. -
Vizamyl, INN-Flutemetamol (18F)
26 June 2014 EMA/546752/2014 Committee for Medicinal Products for Human Use (CHMP) Vizamyl flutemetamol (18F) Procedure No. EMEA/H/C/002553 Marketing authorisation holder: GE HEALTHCARE LIMITED Assessment report for an initial marketing authorisation application Assessment report as adopted by the CHMP with all commercially confidential information deleted 30 Churchill Place ● Canary Wharf ● London E14 5EU ● United Kingdom Telephone +44 (0)20 3660 6000 Facsimile +44 (0)20 3660 5555 Send a question via our website www.ema.europa.eu/contact An agency of the European Union © European Medicines Agency, 2014. Reproduction is authorised provided the source is acknowledged. Table of contents 1. Background information on the procedure .............................................. 7 1.1. Submission of the dossier ...................................................................................... 7 1.2. Manufacturers ...................................................................................................... 8 1.3. Steps taken for the assessment of the product ......................................................... 8 2. Scientific discussion ................................................................................ 9 2.1. Introduction......................................................................................................... 9 2.2. Quality aspects .................................................................................................. 11 2.2.1. Introduction ................................................................................................... -
Nuclear Medicine Imaging in Neuroblastoma: Current Status and New Developments
Journal of Personalized Medicine Review Nuclear Medicine Imaging in Neuroblastoma: Current Status and New Developments Atia Samim 1,2, Godelieve A.M. Tytgat 1, Gitta Bleeker 3, Sylvia T.M. Wenker 1,2, Kristell L.S. Chatalic 1,2, Alex J. Poot 1,2, Nelleke Tolboom 1,2, Max M. van Noesel 1 , Marnix G.E.H. Lam 2 and Bart de Keizer 1,2,* 1 Princess Maxima Center for Pediatric Oncology, Heidelberglaan 25, 3584 CS Utrecht, The Netherlands; [email protected] (A.S.); [email protected] (G.A.M.T.); [email protected] (S.T.M.W.); [email protected] (K.L.S.C.); [email protected] (A.J.P.); [email protected] (N.T.); [email protected] (M.M.v.N.) 2 Department of Radiology and Nuclear Medicine, University Medical Center Utrecht/Wilhelmina Children’s Hospital, Heidelberglaan 100, 3584 CX Utrecht, The Netherlands; [email protected] 3 Department of Radiology and Nuclear Medicine, Northwest Clinics, Wilhelminalaan 12, 1815 JD Alkmaar, The Netherlands; [email protected] * Correspondence: [email protected]; Tel.: +31-887-571-794 Abstract: Neuroblastoma is the most common extracranial solid malignancy in children. At diagnosis, approximately 50% of patients present with metastatic disease. These patients are at high risk for refractory or recurrent disease, which conveys a very poor prognosis. During the past decades, Citation: Samim, A.; Tytgat, G.A.M.; nuclear medicine has been essential for the staging and response assessment of neuroblastoma. 123 123 Bleeker, G.; Wenker, S.T.M.; Currently, the standard nuclear imaging technique is meta-[ I]iodobenzylguanidine ([ I]mIBG) Chatalic, K.L.S.; Poot, A.J.; whole-body scintigraphy, usually combined with single-photon emission computed tomography Tolboom, N.; van Noesel, M.M.; with computed tomography (SPECT-CT). -
(18F-FDG) Uptake for PET/CT in Normal Organs
www.nature.com/scientificreports OPEN Efects of blood glucose level on 18F fuorodeoxyglucose (18F- FDG) uptake for PET/CT in normal Received: 24 October 2017 Accepted: 18 January 2018 organs: an analysis on 5623 Published: xx xx xxxx patients Clarice Sprinz1,2, Matheus Zanon 3,4, Stephan Altmayer3,4, Guilherme Watte 3, Klaus Irion 5, Edson Marchiori 6 & Bruno Hochhegger 2,3,4 Our purpose was to evaluate the efect of glycemia on 18F-FDG uptake in normal organs of interest. The infuences of other confounding factors, such as body mass index (BMI), diabetes, age, and sex, on the relationships between glycemia and organ-specifc standardized uptake values (SUVs) were also investigated. We retrospectively identifed 5623 consecutive patients who had undergone clinical PET/ CT for oncological indications. Patients were stratifed into groups based on glucose levels, measured immediately before 18F-FDG injection. Diferences in mean SUVmax values among glycemic ranges were clinically signifcant only when >10% variation was observed. The brain was the only organ that presented a signifcant inverse relationship between SUVmax and glycemia (p < 0.001), even after controlling for diabetic status. No such diference was observed for the liver or lung. After adjustment for sex, age, and BMI, the association of glycemia with SUVmax was signifcant for the brain and liver, but not for the lung. In conclusion, the brain was the only organ analyzed showing a clinically signifcant relationship to glycemia after adjustment for potentially confounding variables. The lung was least afected by the variables in our model, and may serve as an alternative background tissue to the liver. -
Initial Clinical Comparison of 18F-Florbetapir and 18F-FDG PET in Patients with Alzheimer Disease and Controls
Journal of Nuclear Medicine, published on May 10, 2012 as doi:10.2967/jnumed.111.099606 Initial Clinical Comparison of 18F-Florbetapir and 18F-FDG PET in Patients with Alzheimer Disease and Controls Andrew B. Newberg1, Steven E. Arnold2, Nancy Wintering1, Barry W. Rovner1, and Abass Alavi2 1Thomas Jefferson University and Hospital, Philadelphia, Pennsylvania; and 2University of Pennsylvania, Philadelphia, Pennsylvania The purpose of this study was to determine how clinical inter- Alzheimer disease (AD) is a brain disorder of older pretations of the 18F-amyloid tracer florbetapir compares diagnos- adults, with symptoms of progressive decline in memory 18 tically with F-FDG PET when evaluating patients with Alzheimer and other cognitive functions. A definitive diagnosis of AD disease (AD) and controls. Methods: Nineteen patients with a clin- ical diagnosis of AD and 21 elderly controls were evaluated with can be established only by demonstrating the presence of both 18F-florbetapir and 18F-FDG PET scans. Scans were inter- abundant senile plaques and neurofibrillary tangles in post- preted together by 2 expert readers masked to any case informa- mortem brain sections (1,2). During life, most patients are tion and were assessed for tracer binding patterns consistent with diagnosed by clinical criteria that imperfectly track with AD. The criteria for interpreting the 18F-florbetapir scan as positive postmortem pathologic findings. The criteria for the diagno- for AD was the presence of binding in the cortical regions relative to sis of AD were defined by the Working Group of the Na- the cerebellum. 18F-FDG PET scans were interpreted as positive if they displayed the classic pattern of hypometabolism in the tem- tional Institute of Neurologic and Communicative Disorders poroparietal regions. -
Amyloid and Tau Signatures of Brain Metabolic Decline in Preclinical Alzheimer's Disease
European Journal of Nuclear Medicine and Molecular Imaging https://doi.org/10.1007/s00259-018-3933-3 ORIGINAL ARTICLE Amyloid and tau signatures of brain metabolic decline in preclinical Alzheimer’s disease Tharick A. Pascoal1 & Sulantha Mathotaarachchi1 & Monica Shin1 & Ah Yeon Park2 & Sara Mohades1 & Andrea L. Benedet1 & Min Su Kang1 & Gassan Massarweh3 & Jean-Paul Soucy3,4 & Serge Gauthier5 & Pedro Rosa-Neto 1,3,5,6 & for the Alzheimer’s Disease Neuroimaging Initiative Received: 12 September 2017 /Accepted: 2 January 2018 # The Author(s) 2018. This article is an open access publication Abstract Purpose We aimed to determine the amyloid (Aβ) and tau biomarker levels associated with imminent Alzheimer’s disease (AD) - related metabolic decline in cognitively normal individuals. Methods A threshold analysis was performed in 120 cognitively normal elderly individuals by modelling 2-year declines in brain glucose metabolism measured with [18F]fluorodeoxyglucose ([18F]FDG) as a function of [18F]florbetapir Aβ positron emission tomography (PET) and cerebrospinal fluid phosphorylated tau biomarker thresholds. Additionally, using a novel voxel-wise analytical framework, we determined the sample sizes needed to test an estimated 25% drugeffect with 80% of power on changes in FDG uptake over 2 years at every brain voxel. Results The combination of [18F]florbetapir standardized uptake value ratios and phosphorylated-tau levels more than one standard deviation higher than their respective thresholds for biomarker abnormality was the best predictor of metabolic decline in individuals with preclinical AD. We also found that a clinical trial using these thresholds would require as few as 100 individuals to test a 25% drug effect on AD-related metabolic decline over 2 years. -
NEURACEQ Safely and Effectively
HIGHLIGHTS OF PRESCRIBING INFORMATION • Obtain 15-20 minute PET images starting from 45 to 130 minutes after These highlights do not include all the information needed to use intravenous administration (2.3) NEURACEQ safely and effectively. See full prescribing information for • Image interpretation: refer to full prescribing information (2.4) NEURACEQ. • The radiation absorbed dose from a 300 MBq (8.1 mCi) dose of Neuraceq is 5.8 mSv in an adult (2.5). NEURACEQ (florbetaben F 18 injection), for intravenous use Initial U.S. Approval: 2014 --------------------- DOSAGE FORMS AND STRENGTHS ------------------- 30 mL multi-dose vials containing a clear injectable solution at a strength of --------------------------- INDICATIONS AND USAGE -------------------------- 50 to 5000 MBq/mL (1.4 to135 mCi/mL) florbetaben F18 at End Of Synthesis Neuraceq™ is a radioactive diagnostic agent indicated for Positron Emission (EOS). At time of administration 300 MBq (8.1 mCi) are contained in up to Tomography (PET) imaging of the brain to estimate β-amyloid neuritic plaque 10 mL solution for injection (3) density in adult patients with cognitive impairment who are being evaluated for Alzheimer’s Disease (AD) and other causes of cognitive decline. A ------------------------------ CONTRAINDICATIONS ---------------------------- negative Neuraceq scan indicates sparse to no neuritic plaques and is None (4) inconsistent with a neuropathological diagnosis of AD at the time of image acquisition; a negative scan result reduces the likelihood that a patient’s ----------------------- WARNINGS AND PRECAUTIONS --------------------- cognitive impairment is due to AD. A positive Neuraceq scan indicates • Image interpretation errors (especially false positives) have been observed moderate to frequent amyloid neuritic plaques; neuropathological examination (5.1). -
Northern Ireland Nuclear Medicine Equipment Survey, 2017
Northern Ireland nuclear medicine equipment survey 2017 Northern Ireland nuclear medicine equipment survey 2017 About Public Health England Public Health England exists to protect and improve the nation’s health and wellbeing and reduce health inequalities. We do this through world-leading science, knowledge and intelligence, advocacy, partnerships and the delivery of specialist public health services. We are an executive agency of the Department of Health and Social Care, and a distinct delivery organisation with operational autonomy. We provide government, local government, the NHS, Parliament, industry and the public with evidence-based professional, scientific and delivery expertise and support. Public Health England Wellington House 133-155 Waterloo Road London SE1 8UG Tel: 020 7654 8000 www.gov.uk/phe Twitter: @PHE_uk Facebook: www.facebook.com/PublicHealthEngland © Crown copyright 2019 You may re-use this information (excluding logos) free of charge in any format or medium, under the terms of the Open Government Licence v3.0. To view this licence, visit OGL. Where we have identified any third-party copyright information you will need to obtain permission from the copyright holders concerned. Published January 2019 PHE publications PHE supports the UN Sustainable Development Goals 2 Northern Ireland nuclear medicine equipment survey 2017 Contents Executive summary 4 Introduction 5 Methodology 6 Number of procedures performed 7 Procedures per scanner 8 Age of Scanners 9 Procedures reported for each organ or system 10 Procedures reported