Comparison of Different Force Fields for the Study of Disaccharides

Total Page:16

File Type:pdf, Size:1020Kb

Comparison of Different Force Fields for the Study of Disaccharides Carbohydrate Research 344 (2009) 2217–2228 Contents lists available at ScienceDirect Carbohydrate Research journal homepage: www.elsevier.com/locate/carres Comparison of different force fields for the study of disaccharides Carlos A. Stortz a,*, Glenn P. Johnson b, Alfred D. French b, Gábor I. Csonka c a Departamento de Química Orgánica-CIHIDECAR, FCEyN-Universidad de Buenos Aires, Ciudad Universitaria, 1428 Buenos Aires, Argentina b Southern Regional Research Center, U.S. Department of Agriculture, 1100 Robert E. Lee Blvd., New Orleans, LA 70124, USA c Department of Inorganic and Analytical Chemistry, Budapest University of Technology, Szent Gellért tér 4, Budapest H-1521, Hungary article info abstract Article history: Eighteen empirical force fields and the semi-empirical quantum method PM3CARB-1 were compared for Received 26 May 2009 studying b-cellobiose, a-maltose, and a-galabiose [a-D-Galp-(1?4)-a-D-Galp]. For each disaccharide, the Received in revised form 13 August 2009 energies of 54 conformers with differing hydroxymethyl, hydroxyl, and glycosidic linkage orientations Accepted 18 August 2009 were minimized by the different methods, some at two dielectric constants. By comparing these results Available online 22 August 2009 and the available crystal structure data and/or higher level density functional theory results, it was con- cluded that the newer parameterizations for force fields (GROMOS, GLYCAM06, OPLS-2005 and CSFF) give Keywords: results that are reasonably similar to each other, whereas the older parameterizations for Amber, CHARMM Force field or OPLS were more divergent. However, MM3, an older force field, gave energy and geometry values com- Disaccharides Molecular mechanics parable to those of the newer parameterizations, but with less sensitivity to dielectric constant values. Cellobiose These systems worked better than MM2 variants, which were still acceptable. PM3CARB-1 also gave ade- Maltose quate results in terms of linkage and exocyclic torsion angles. GROMOS, GLYCAM06, and MM3 appear to Galabiose be the best choices, closely followed by MM4, CSFF, and OPLS-2005. With GLYCAM06 and to a lesser extent, CSFF, and OPLS-2005, a number of the conformers that were stable with MM3 changed to other forms. Ó 2009 Elsevier Ltd. All rights reserved. 1. Introduction optimization (flexible residues) was just becoming available, but some early versions did not specifically treat the exoanomeric ef- Knowledge of the three-dimensional structures of disaccharides fect. is essential for understanding biological and physical functions. The anomeric effect is thought to arise from a combination of Determinations of the conformational preferences and variability electrostatic effects and rearrangement of the electronic structure, of disaccharides are useful not only for the disaccharides them- giving stabilization to certain conformations and not others. Such selves, but can often also apply to oligo- and polysaccharides hav- problems are the domain of electronic structure theory (quantum ing the same primary structure.1 This understanding can be aided mechanics or QM), which also has the capacity to describe all other by reliable molecular modeling. In the beginning, computerized molecular properties, including hydrogen bonding. In principle, disaccharide modeling relied on very simple models that varied quantum mechanics could answer most of the questions being the torsion angles of the glycosidic linkage but not the geometries asked in MM studies. Apparent success with the Hartree–Fock of the monosaccharide residues. Back then, structures were rated (HF) methods and modestly sized basis sets relies too much on as either ‘allowed’ or ‘disallowed’ based on interatomic distances. cancellation of errors, limiting the possibility of improvement. Later, potential energies were calculated for the rigid residue mod- Density functional theory (DFT) can provide reasonable results els based on van der Waals forces, twisting about bonds, and some- for saccharides,4 but at present it is also expensive in terms of com- times, emulation of hydrogen bonding. The HSEA2 and PFOS3 puter time and memory for large-scale calculations. Correlated potential energy functions for carbohydrates employed torsional wavefunction theory (e.g., MP2 or CCSD(T)) is even more expen- potentials that explicitly accounted for the exoanomeric effect sive. Although QM methods continue to improve, there is still a but still used rigid residues. This was a problem because the results great body of work for which MM methods are more suitable. from such studies depended very much on the particular choice of atomic coordinates used in the rigid residues.3 General-purpose molecular mechanics (MM) software that provided full geometry In MM software, the exoanomeric effect is supported in two ways. The more important is the recognition that the O–C–O–C torsión angle should have different parameters than the C–O–C–C torsión angle. Force fields do not meet that requirement if they base torsional energies on X–C–O–X, where X is any atom. * Corresponding author. Tel./fax: +54 11 4576 3346. Additionally, there are significant bond length variations associated with the E-mail address: [email protected] (C.A. Stortz). anomeric effect, and this has also been parameterized for some force fields. 0008-6215/$ - see front matter Ó 2009 Elsevier Ltd. All rights reserved. doi:10.1016/j.carres.2009.08.019 2218 C. A. Stortz et al. / Carbohydrate Research 344 (2009) 2217–2228 MM methods now often employ parameters that allow the MM QM/MM method.31 The hybrid method was especially useful for software to mimic the results from QM studies on fragments of modeling sucrose. The conformational space of the desialyated Le- disaccharides. This allows MM to account for many factors, includ- wis X trisaccharide and its analogues was probed with HF and ing the exoanomeric effect. MM2* levels of theory.32 Momany and co-workers studied differ- Disaccharide analysis by modeling is a large-scale problem even ent conformations of maltose and cellobiose using DFT.33,34 Even if there is no worry about changes in the form of the pyranosyl though very large amounts of computer time were required, later rings. Disaccharide shapes are analyzed either by generating a QM studies yielded full maps of disaccharides, considered greater Ramachandran-like conformational map (contour map of energy numbers of conformers, or even undertook larger oligosaccha- vs / and w), or just by finding the energies of isolated minima. In rides.35–39 either case, such studies might explain experimental results. While Despite the improved MM methods, the chosen force field still it is often considered that the glycosidic torsion angles / and w influences the results. In 1998, Pérez et al. analyzed several mono- (Fig. 1) are the main variables of shape, there will be numerous sta- saccharides and a single disaccharide with different force fields ble conformers (‘multiple minima’)5 with different energies result- that were available then,40 focusing more on comparing the force ing from different combinations of the orientations of the primary fields to each other rather than on comparisons with the experi- and secondary hydroxyl groups. Preference for the given values of mental values. Since then, only a few comparisons of MM methods / and w will often depend on a particular combination of exocyclic have been published41 in spite of the new parameterizations and group orientations. For example, cellobiose has, in addition to / and functional variants for carbohydrates.24–29 Comparison of HF, hy- w, 10 exocyclic bonds about which rotation can occur. If each is al- brid DFT and MM2* results showed the difficulties in predicting lowed three staggered orientations, there would be 310 = 59,049 energies for carbohydrates with MM methods,42 attributed to their possible structures (for each /,w point). Many would not be stable, densely packed, highly polar functional groups, and the depen- but unless all are evaluated, it could be that the lowest energy value dence of conformational energies on stereoelectronic effects. will not have been found. In modeling studies, a frequent task is to MM2* gave good qualitative results for the lowest energy rotamers compare the depths of different energy wells on a /,w surface. In of monosaccharides, in spite of showing an energetically com- such work it is necessary to give a reasonably complete treatment pressed conformational space with incorrectly ordered rotamers of the exocyclic group orientations for each well to get an answer in the higher energy region. Other comparisons with several force that fully represents the particular computational method. fields have been made for QM results for glucose.43 Comparisons Flexible residue analysis3,6–8 of disaccharides started around have also been made with higher saccharides.32 1979 and by the late 1980s the first fully relaxed energy maps of Herein, we compare the performance of 18 different force fields numerous disaccharides had been constructed.9–11 Except for the or variants, some of them at two different dielectric constants, early Melberg and Rasmussen calculations,6–8,12 most were carried working with a set of 54 conformers each of b-cellobiose, a-malt- 13 out with Allinger’s MM2, by carbohydrate-specific variants like ose, and a-galabiose [a-D-Galp-(1?4)-a-D-Galp](Fig. 1) with vary- 3 14 MM2CARB, or with CHARMM and the carbohydrate parameters ing hydroxymethyl and hydroxyl group orientations. Although of Ha et al.15 Subsequently, MM3, an all-atom force field with up- PM3 and other semiempirical molecular orbital methods have graded parameterization for anomeric effects on torsional energies been shown to fail with carbohydrates,44 a variant parameterized and bond lengths as well as hydrogen bonding,16 was released and for carbohydrates (PM3CARB-145) has been issued. The perfor- used for many disaccharide studies.17–20 Earlier in the 1980s, many mance comparison with this semiempirical method is also new force fields were developed, some of them especially intended included. for molecular dynamics (MD) in general (like GROMOS21).
Recommended publications
  • 20 Years of Polarizable Force Field Development
    20 YEARS OF POLARIZABLE FORCEFIELDDEVELOPMENTfor biomolecular systems thor van heesch Supervised by Daan P. Geerke and Paola Gori-Giorg 1 contents 2 1 Introduction 3 2contentsForce fields: Basics, Caveats and Extensions 4 2.1 The Classical Approach . 4 2.2 The caveats of point-charge electrostatics . 8 2.3 Physical phenomenon of polarizability . 10 2.4 Common implementation methods of electronic polarization . 11 2.5 Accounting for anisotropic interactions . 14 3 Knitting the reviews and perspectives together 17 3.1 Polarizability: A smoking gun? . 17 3.2 New branches of electronic polarization . 18 3.3 Descriptions of electrostatics . 19 3.4 Solvation and polarization . 20 3.5 The rise of new challenges . 21 3.6 Parameterization or polarization? . 22 3.7 Enough response: how far away? . 23 3.8 The last perspectives . 23 3.9 A new hope: the next-generation force fields . 29 4 Learning with machines 29 4.1 Replace the functional form with machine learned force fields . 31 4.2 A different take on polarizable force fields . 33 4.3 Are transferable parameters an universal requirement? . 33 4.4 The difference between derivation and prediction . 34 4.5 From small molecules to long range interactions . 36 4.6 Enough knowledge to fold a protein? . 37 4.7 Boltzmann generators, a not so hypothetical machine anymore . 38 5 Summary: The Red Thread 41 introduction 3 In this literature study we aimed to answer the following question: What has changedabstract in the outlook on polarizable force field development during the last 20 years? The theory, history, methods, and applications of polarizable force fields have been discussed to address this question.
    [Show full text]
  • Melissa Gajewski & Jonathan Mane
    Melissa Gajewski & Jonathan Mane Molecular Mechanics (MM) Methods Force fields & potential energy calculations Example using noscapine Molecular Dynamics (MD) Methods Ensembles & trajectories Example using 18-crown-6 Quantum Mechanics (QM) Methods Schrödinger’s equation Semi-empirical (SE) Wave Functional Theory (WFT) Density Functional Theory (DFT) Hybrid QM/MM & MD Methods Comparison of hybrid methods 2 3 Molecular Mechanics (MM) Methods Force fields & potential energy calculations Example using noscapine Molecular Dynamics (MD) Methods Ensembles & trajectories Example using 18-crown-6 Quantum Mechanics (QM) Methods Schrödinger’s equation Semi-empirical (SE) Wave Functional Theory (WFT) Density Functional Theory (DFT) Hybrid QM/MM & MD Methods Comparison of hybrid methods 4 Useful for all system size ◦ Small molecules, proteins, material assemblies, surface science, etc … ◦ Based on Newtonian mechanics (classical mechanics) d F = (mv) dt ◦ The potential energy of the system is calculated using a force field € 5 An atom is considered as a single particle Example: H atom Particle variables: ◦ Radius (typically van der Waals radius) ◦ Polarizability ◦ Net charge Obtained from experiment or QM calculations ◦ Bond interactions Equilibrium bond lengths & angles from experiment or QM calculations 6 All atom approach ◦ Provides parameters for every atom in the system (including hydrogen) Ex: In –CH3 each atom is assigned a set of data MOLDEN MOLDEN (Radius, polarizability, netMOLDENMOLDENMOLDENMOLDENMOLDEN charge,
    [Show full text]
  • BOSS, Version 4.6 Biochemical and Organic Simulation System User’S Manual for UNIX, Linux, and Windows
    BOSS, Version 4.6 Biochemical and Organic Simulation System User’s Manual for UNIX, Linux, and Windows William L. Jorgensen Department of Chemistry, Yale University P. O. Box 208107 New Haven, Connecticut 06520-8107 Phone: (203) 432-6278 Fax: (203) 432-6299 Internet: [email protected] January 2004 Contents Page Introduction 4 1 Can’t Wait to Start – Use the x Scripts 6 2 Statistical Mechanics Simulation – Theory 6 3 Energy and Free Energy Evaluation 7 4 New Features 9 5 Operating Systems 14 6 Installation 14 7 Files 14 8 Command or bat File Input 16 9 Parameter File Input 18 10 Z-matrix File Input 26 10.1 Atom Input 29 10.2 Geometry Variations 29 10.3 Bond Length Variations 29 10.4 Additional Bonds 30 10.5 Harmonic Restraints 30 10.6 Bond Angle Variations 30 10.7 Additional Bond Angles 31 10.8 Dihedral Angle Variations 31 10.9 Additional Dihedral Angles 33 10.10 Domain Definitions 34 10.11 Conformational Searching 34 10.12 Sample Z-matrix 34 10.13 Z-matrix Input for Custom Solvents 35 11 PDB Input 37 12 Coordinate Input in Mind Format and Reaction Path Following 38 13 Pure Liquid Simulations 39 14 Cluster Simulations 39 2 15 Solventless and Molecular Mechanics Calculations 40 15.1 Continuum Simulations 40 15.2 Energy Minimizations 41 15.3 Dihedral Angle Driving 42 15.4 Potential Surface Scanning 42 15.5 Normal Coordinate Analysis 43 15.6 Conformational Searching 45 16 Available Solvent Boxes 48 17 Ewald Summation for Long-Range Electrostatics 50 18 Test Jobs 51 19 Output 56 19.1 Some Variable Definitions 58 20 Contents of the Distribution Files 59 21 Appendix – No.
    [Show full text]
  • Tinker-HP : Accelerating Molecular Dynamics Simulations of Large Complex Systems with Advanced Point Dipole Polarizable Force Fields Using Gpus and Multi-Gpus Systems
    Tinker-HP : Accelerating Molecular Dynamics Simulations of Large Complex Systems with Advanced Point Dipole Polarizable Force Fields using GPUs and Multi-GPUs systems Olivier Adjoua,y Louis Lagardère*,y,z Luc-Henri Jolly,z Arnaud Durocher,{ Thibaut Very,x Isabelle Dupays,x Zhi Wang,k Théo Jaffrelot Inizan,y Frédéric Célerse,y,? Pengyu Ren,# Jay W. Ponder,k and Jean-Philip Piquemal∗,y,# ySorbonne Université, LCT, UMR 7616 CNRS, F-75005, Paris, France zSorbonne Université, IP2CT, FR2622 CNRS, F-75005, Paris, France {Eolen, 37-39 Rue Boissière, 75116 Paris, France xIDRIS, CNRS, Orsay, France kDepartment of Chemistry, Washington University in Saint Louis, USA ?Sorbonne Université, CNRS, IPCM, Paris, France. #Department of Biomedical Engineering, The University of Texas at Austin, USA E-mail: [email protected],[email protected] arXiv:2011.01207v4 [physics.comp-ph] 3 Mar 2021 Abstract We present the extension of the Tinker-HP package (Lagardère et al., Chem. Sci., 2018,9, 956-972) to the use of Graphics Processing Unit (GPU) cards to accelerate molecular dynamics simulations using polarizable many-body force fields. The new high-performance module allows for an efficient use of single- and multi-GPUs archi- 1 tectures ranging from research laboratories to modern supercomputer centers. After de- tailing an analysis of our general scalable strategy that relies on OpenACC and CUDA , we discuss the various capabilities of the package. Among them, the multi-precision possibilities of the code are discussed. If an efficient double precision implementation is provided to preserve the possibility of fast reference computations, we show that a lower precision arithmetic is preferred providing a similar accuracy for molecular dynamics while exhibiting superior performances.
    [Show full text]
  • Multiscale Friction Simulation of Dry Polymer Contacts: Reaching Experimental Length Scales by Coupling Molecular Dynamics and Contact Mechanics
    Multiscale Friction Simulation of Dry Polymer Contacts: Reaching Experimental Length Scales by Coupling Molecular Dynamics and Contact Mechanics Daniele Savio ( [email protected] ) Freudenberg Technology Innovation SE & Co. KG https://orcid.org/0000-0003-1908-2379 Jannik Hamann Fraunhofer Institute for Mechanics of Materials: Fraunhofer-Institut fur Werkstoffmechanik IWM Pedro A. Romero Freudenberg Technology Innovation SE & Co. KG Christoph Klingshirn Freudenberg FST GmbH Ravindrakumar Bactavatchalou Freudenberg Technology Innovation SE & Co. KG Martin Dienwiebel Fraunhofer Institute for Mechanics of Materials: Fraunhofer-Institut fur Werkstoffmechanik IWM Michael Moseler Fraunhofer Institute for Mechanics of Materials: Fraunhofer-Institut fur Werkstoffmechanik IWM Research Article Keywords: Coupling Molecular Dynamics, Contact Mechanics, Multiscale Friction Posted Date: February 23rd, 2021 DOI: https://doi.org/10.21203/rs.3.rs-223573/v1 License: This work is licensed under a Creative Commons Attribution 4.0 International License. Read Full License Multiscale friction simulation of dry polymer contacts: reaching experimental length scales by coupling molecular dynamics and contact mechanics Daniele Savio1*, Jannik Hamann2, Pedro A. Romero1, Christoph Klingshirn3, Ravindrakumar Bactavatchalou1, Martin Dienwiebel2,4, Michael Moseler2,5 1 Freudenberg Technology Innovation SE & Co. KG, Weinheim, Germany 2 µTC Microtribology Center, Fraunhofer Institute for Mechanics of Materials IWM, Freiburg, Germany 3 Freudenberg FST GmbH, Weinheim, Germany 4 Karlsruhe Institute of Technology, Institute for Applied Materials, IAM-CMS, Karlsruhe, Germany 5 Institute of Physics, University of Freiburg, Freiburg, Germany *Corresponding author: [email protected] Abstract This work elucidates friction in Poly-Ether-Ether-Ketone (PEEK) sliding contacts through multiscale simulations. At the nanoscale, non-reactive classical molecular dynamics (MD) simulations of dry and water-lubricated amorphous PEEK-PEEK interfaces are performed.
    [Show full text]
  • Macromodel Quick Start Guide
    MacroModel Quick Start Guide MacroModel 9.9 Quick Start Guide Schrödinger Press MacroModel Quick Start Guide Copyright © 2012 Schrödinger, LLC. All rights reserved. While care has been taken in the preparation of this publication, Schrödinger assumes no responsibility for errors or omissions, or for damages resulting from the use of the information contained herein. BioLuminate, Canvas, CombiGlide, ConfGen, Epik, Glide, Impact, Jaguar, Liaison, LigPrep, Maestro, Phase, Prime, PrimeX, QikProp, QikFit, QikSim, QSite, SiteMap, Strike, and WaterMap are trademarks of Schrödinger, LLC. Schrödinger and MacroModel are registered trademarks of Schrödinger, LLC. MCPRO is a trademark of William L. Jorgensen. DESMOND is a trademark of D. E. Shaw Research, LLC. Desmond is used with the permission of D. E. Shaw Research. All rights reserved. This publication may contain the trademarks of other companies. Schrödinger software includes software and libraries provided by third parties. For details of the copyrights, and terms and conditions associated with such included third party software, see the Legal Notices, or use your browser to open $SCHRODINGER/docs/html/third_party_legal.html (Linux OS) or %SCHRODINGER%\docs\html\third_party_legal.html (Windows OS). This publication may refer to other third party software not included in or with Schrödinger software ("such other third party software"), and provide links to third party Web sites ("linked sites"). References to such other third party software or linked sites do not constitute an endorsement by Schrödinger, LLC or its affiliates. Use of such other third party software and linked sites may be subject to third party license agreements and fees. Schrödinger, LLC and its affiliates have no responsibility or liability, directly or indirectly, for such other third party software and linked sites, or for damage resulting from the use thereof.
    [Show full text]
  • CORINA Classic Program Manual
    CORINA Classic Generation of Three-Dimensional Molecular Models Version 4.4.0 Program Description Molecular Networks GmbH September 2021 www.mn-am.com Molecular Networks GmbH Altamira LLC Neumeyerstraße 28 470 W Broad St, Unit #5007 90411 Nuremberg Columbus, OH 43215 Germany USA mn-am.com This document is copyright © 1998-2021 by Molecular Networks GmbH Computerchemie and Altamira LLC. All rights reserved. Except as permitted under the terms of the Software Licensing Agreement of Molecular Networks GmbH Computerchemie, no part of this publication may be reproduced or distributed in any form or by any means or stored in a database retrieval system without the prior written permission of Molecular Networks GmbH or Altamira LLC. The software described in this document is furnished under a license and may be used and copied only in accordance with the terms of such license. (Document version: 4.4.0-2021-09-30) Content Content 1 Introducing CORINA Classic 1 1.1 Objective of CORINA Classic 1 1.2 CORINA Classic in Brief 1 2 Release Notes 3 2.1 CORINA (Full Version) 3 2.2 CORINA_F (Restricted FlexX Interface Version) 25 3 Getting Started with CORINA Classic 26 4 Using CORINA Classic 29 4.1 Synopsis 29 4.2 Options 29 5 Use Cases of CORINA Classic 60 6 Supported File Formats and Interfaces 64 6.1 V2000 Structure Data File (SD) and Reaction Data File (RD) 64 6.2 V3000 Structure Data File (SD) and Reaction Data File (RD) 67 6.3 SMILES Linear Notation 67 6.4 InChI file format 69 6.5 SYBYL File Formats 70 6.6 Brookhaven Protein Data Bank Format (PDB)
    [Show full text]
  • Trends in Atomistic Simulation Software Usage [1.3]
    A LiveCoMS Perpetual Review Trends in atomistic simulation software usage [1.3] Leopold Talirz1,2,3*, Luca M. Ghiringhelli4, Berend Smit1,3 1Laboratory of Molecular Simulation (LSMO), Institut des Sciences et Ingenierie Chimiques, Valais, École Polytechnique Fédérale de Lausanne, CH-1951 Sion, Switzerland; 2Theory and Simulation of Materials (THEOS), Faculté des Sciences et Techniques de l’Ingénieur, École Polytechnique Fédérale de Lausanne, CH-1015 Lausanne, Switzerland; 3National Centre for Computational Design and Discovery of Novel Materials (MARVEL), École Polytechnique Fédérale de Lausanne, CH-1015 Lausanne, Switzerland; 4The NOMAD Laboratory at the Fritz Haber Institute of the Max Planck Society and Humboldt University, Berlin, Germany This LiveCoMS document is Abstract Driven by the unprecedented computational power available to scientific research, the maintained online on GitHub at https: use of computers in solid-state physics, chemistry and materials science has been on a continuous //github.com/ltalirz/ rise. This review focuses on the software used for the simulation of matter at the atomic scale. We livecoms-atomistic-software; provide a comprehensive overview of major codes in the field, and analyze how citations to these to provide feedback, suggestions, or help codes in the academic literature have evolved since 2010. An interactive version of the underlying improve it, please visit the data set is available at https://atomistic.software. GitHub repository and participate via the issue tracker. This version dated August *For correspondence: 30, 2021 [email protected] (LT) 1 Introduction Gaussian [2], were already released in the 1970s, followed Scientists today have unprecedented access to computa- by force-field codes, such as GROMOS [3], and periodic tional power.
    [Show full text]
  • Chem3d 17.0 User Guide Chem3d 17.0
    Chem3D 17.0 User Guide Chem3D 17.0 Table of Contents Recent Additions viii Chapter 1: About Chem3D 1 Additional computational engines 1 Serial numbers and technical support 3 About Chem3D Tutorials 3 Chapter 2: Chem3D Basics 5 Getting around 5 User interface preferences 9 Background settings 10 Sample files 10 Saving to Dropbox 10 Chapter 3: Basic Model Building 12 Default settings 12 Selecting a display mode 12 Using bond tools 13 Using the ChemDraw panel 15 Using other 2D drawing packages 15 Building from text 16 Adding fragments 18 Selecting atoms and bonds 18 Atom charges 21 Object position 23 Substructures 24 Refining models 27 Copying and printing 29 Finding structures online 32 Chapter 4: Displaying Models 35 © Copyright 1998-2017 PerkinElmer Informatics Inc., All rights reserved. ii Chem3D 17.0 Display modes 35 Atom and bond size 37 Displaying dot surfaces 38 Serial numbers 38 Displaying atoms 39 Atom symbols 40 Rotating models 41 Atom and bond properties 44 Showing hydrogen bonds 45 Hydrogens and lone pairs 46 Translating models 47 Scaling models 47 Aligning models 47 Applying color 49 Model Explorer 52 Measuring molecules 59 Comparing models by overlay 62 Molecular surfaces 63 Using stereo pairs 72 Stereo enhancement 72 Setting view focus 73 Chapter 5: Building Advanced Models 74 Dummy bonds and dummy atoms 74 Substructures 75 Bonding by proximity 78 Setting measurements 78 Atom and building types 81 Stereochemistry 85 © Copyright 1998-2017 PerkinElmer Informatics Inc., All rights reserved. iii Chem3D 17.0 Building with Cartesian
    [Show full text]
  • Molecular Modeling: a Powerful Tool for Drug Design and Molecular Docking
    GENERAL I ARTICLE Molecular Modeling: A Powerful Tool for Drug Design and Molecular Docking Rama Rao Nadendla Molecular modeling has become a valuable and essential tool to medicinal chemists in the drug design process. Molecular modeling describes the generation, manipula­ tion or representation of three-dimensional structures of molecules and associated physico-chemical properties. It involves a range of computerized techniques based on theoretical chemistry methods and experimental data to predict molecular and biological properties. Depending on Rama Rao Nadendla has the context and the rigor, the subject is often referred to as been working in the 'molecular graphics', 'molecular visualizations', 'computa­ KVSR College of tional chemistry', or 'computational quantum chemistry'. Pharmaceutical Sciences, The molecular modeling techniques are derived from the Vijaywada as a Professor concepts of molecular orbitals of Huckel, Mullikan and of pharmaceutical chemistry. He is involved 'classical mechanical programs' of Westheimer, Wiberg in the synthesis of new and Boyd. biodynamic agents. He also has authored three 1. Why Modeling and Molecular Modeling? books on pharmaceutical organic chemistry and medicinal chemistry. Modeling is a tool for doing chemistry. Models are central for understanding of chemistry. Molecular modeling allows us to do and teach chemistry better by providing better tools for investi­ gating, interpreting, explaining and discovering new phenom­ ena. Like experimental chemistry, it is a skill-demanding sci­ ence and must be learnt by doing and not just reading. Molecular modeling is easy to perform with currently available software, but the difficulty lies in getting the right model and proper interpretation. 2. Molecular Modeling Tools Keywords Molecular modeling, molecu­ The tools of the trade have gradually evolved from physical lar docking, drug design, com­ putational chemistry, molecu­ models (Dreiding, CPK, etc.) and calculators, including the use lar visulatization.
    [Show full text]
  • “One Ring to Rule Them All”
    OpenMM library “One ring to rule them all” https://simtk.org/home/openmm CHARMM * Abalone Presto * ACEMD NAMD * ADUN * Ascalaph Gromacs AMBER * COSMOS ??? HOOMD * Desmond * Culgi * ESPResSo Tinker * GROMOS * GULP * Hippo LAMMPS * Kalypso MD * LPMD * MacroModel * MDynaMix * MOLDY * Materials Studio * MOSCITO * ProtoMol The OpenM(olecular)M(echanics) API * RedMD * YASARA * ORAC https://simtk.org/home/openmm * XMD Goals of OpenMM l Complete library l provide what is most needed l easy to learn and use l Fast, general, extensible l optimize for speed l hide hardware specifics l support new hardware l add new force fields, integration methods etc. l Available APIs in C++, Fortran95, Python l Advantages l Object oriented l Modular l Extensible l Disadvantages l Programs written in other languages need to invoke it through a layer of C++ code Features • Electrostatics: cut-off, Ewald, PME • Implicit solvent • Integrators: Verlet, Langevin, Brownian, custom • Thermostat: Andersen • Barostat: MonteCarlo • Others: energy minimization, virtual sites 5 The OpenMM Architecture Public Interface OpenMM Public API Platform Independent Code OpenMM Implementation Layer Platform Abstraction Layer OpenMM Low Level API Computational Kernels CUDA/OpenCL/Brook/MPI etc. Public API Classes (1) l System l A collection of interaction particles l Defines the mass of each particle (needed for integration) l Specifies distance restraints l Contains a list of Force objects that define the interactions l OpenMMContext l Contains all state information for a particular simulation − Positions, velocities, other parmeters Public API Classes (2) l Force l Anything that affects the system's behavior: forces, barostats, thermostats, etc. l A Force may: − Apply forces to particles − Contribute to the potential energy − Define adjustable parameters − Modify positions, velocities, and parameters at the start of each time step l Existing Force subclasses − HarmonicBond, HarmonicAngle, PeriodicTorsion, RBTorsion, Nonbonded, GBSAOBC, AndersenThermostat, CMMotionRemover..
    [Show full text]
  • Chemistry Packages at CHPC
    Chemistry Packages at CHPC Anita M. Orendt Center for High Performance Computing [email protected] Fall 2014 Purpose of Presentation • Identify the computational chemistry software and related tools currently available at CHPC • Present brief overview of these packages • Present how to access packages on CHPC • Information on usage of Gaussian09 http://www.chpc.utah.edu Ember Lonepeak /scratch/lonepeak/serial 141 nodes/1692 cores 16 nodes/256 cores Infiniband and GigE Large memory, GigE General 70 nodes/852 cores 12 GPU nodes (6 General) Kingspeak 199 nodes/4008 cores Ash cluster (417 nodes) Infiniband and GigE Switch General 44 nodes/832 cores Apex Arch Great Wall PFS Telluride cluster (93 nodes) /scratch/ibrix meteoXX/atmosXX nodes NFS Home NFS Administrative Directories & /scratch/kingspeak/serial Group Nodes Directories 10/1/14 http://www.chpc.utah.edu Slide 3 Brief Overview CHPC Resources • Computational Clusters – kingspeak, ember – general allocation and owner-guest on owner nodes – lonepeak – no allocation – ash and telluride – can run as smithp-guest and cheatham-guest, respectively • Home directory – NFS mounted on all clusters – /uufs/chpc.utah.edu/common/home/<uNID> – generally not backed up (there are exceptions) • Scratch systems – /scratch/ibrix/chpc_gen – kingspeak, ember, ash, telluride – 56TB – /scratch/kingspeak/serial – kingspeak, ember, ash – 175TB – /scratch/lonepeak/serial – lonepeak – 33 TB – /scratch/local on compute nodes • Applications – /uufs/chpc.utah.edu/sys/pkg (use for lonepeak, linux desktops if chpc
    [Show full text]