Chlorophyta, Trebouxiophyceae) in Lake Tanganyika (Africa)*

Total Page:16

File Type:pdf, Size:1020Kb

Chlorophyta, Trebouxiophyceae) in Lake Tanganyika (Africa)* Biologia 63/6: 799—805, 2008 Section Botany DOI: 10.2478/s11756-008-0101-4 Siderocelis irregularis (Chlorophyta, Trebouxiophyceae) in Lake Tanganyika (Africa)* Maya P. Stoyneva1, Elisabeth Ingolič2,WernerKofler3 &WimVyverman4 1Sofia University ‘St Kliment Ohridski’, Faculty of Biology, Department of Botany, 8 bld. Dragan Zankov, BG-1164 Sofia, Bulgaria; e-mail: [email protected], [email protected]fia.bg 2Graz University of Technology, Research Institute for Electron Microscopy, Steyrergasse 17,A-8010 Graz, Austria; e-mail: [email protected] 3University of Innsbruck, Institute of Botany, Sternwartestrasse 15,A-6020 Innsbruck, Austria; e-mail: werner.kofl[email protected] 4Ghent University, Department Biology, Laboratory of Protistology and Aquatic Ecology, Krijgslaan 281-S8,B-9000 Gent, Belgium; e-mail: [email protected] Abstract: Siderocelis irregularis Hindák, representing a genus Siderocelis (Naumann) Fott that is known from European temperate waters, was identified as a common phytoplankter in Lake Tanganyika. It was found aposymbiotic as well as ingested (possibly endosymbiotic) in lake heterotrophs, mainly Strombidium sp. and Vorticella spp. The morphology and ultrastructure of the species, studied with LM, SEM and TEM, are described with emphasis on the structure of the cell wall and the pyrenoid. Key words: Chlorophyta; cell wall; pyrenoid; symbiosis; ciliates; Strombidium; Vorticella Introduction ics of symbiotic species in general came into alignment with that of free-living algae and the term ‘zoochlorel- Tight partnerships between algae and aquatic inver- lae’ was abandoned as being taxonomically ambiguous tebrates, including symbiotic relationships, have long (e.g. Bal 1968; Reisser & Wiessner 1984; Taylor 1984; been of interest and a number of excellent reviews are Reisser 1992a). It was proposed to replace this obsolete available. In the context of modern biology, Reisser notion by the prefix ‘symbiotic’, and the exact species or (1992b, p. xii) defined ‘symbiosis’ as the ‘living together genus designation or, in cases of uncertainty, by ‘sym- in physical contact of organisms of different species’, biotic green alga’ (Reisser 1984; Reisser & Widowski while the interaction between heterotrophic cells and 1992). The terms ‘endosymbiotic’ and ‘endosymbiont’ ‘symbiotic’ chloroplasts derived from ingested algae was were further clarified by Reisser (1992a, p. 2) to be used mentioned by him as “twilight-zones” of symbiosis in- in a general sense as ‘living within genetically different cluded there by tradition. organism... which will be called “host” without any Many symbiotic genera and species appear closely implications as to mutual harm or benefit. related to, or fall within, recognized free-living assem- Heterotrophic hosts seem to be very fastidious blages. However, by strong contrast with the free-living in choosing a potential autotrophic partner. Although (aposymbiotic) algae the descriptions of most of the the freshwater habitat offers a plethora of diverse symbiotic forms are still quite rudimentary and often cyanoprokaryotes and algae, they pick up exclusively contradictory (Reisser 1984). Following the studies of asexual green coccoid species (Reisser 1986). Due to Brandt (1882) the most commonly applied term to their simple morphology, classification by light mi- the green autotrophic partners was ‘zoochlorellae’. This croscopy alone is not easy. It has commonly been stated term, without any taxonomic value and arbitrarily ex- that the predominant symbiotic algal partners of fresh- tended to every green algal cell that lives in associa- water associations belong to the genus Chlorella (with tion with a heterotrophic organism, was characteristic some preference to the Chlorella vulgaris-sorokiniana of the confused state of knowledge on symbiotic forms cluster) and its representatives do not differ principally (Reisser 1984). After many discussions on whether exis- by morphology or cytology from free-living chlorellae, tence in a symbiotic association was a sufficient reason but are distinguished from them mainly by physiolog- to place these organisms in separate taxa, the systemat- ical characteristics (Reisser & Widowski 1992). More * Presented at the International Symposium Biology and Taxonomy of Green Algae V, Smolenice, June 26–29, 2007, Slovakia. c 2008 Institute of Botany, Slovak Academy of Sciences 800 M.P. Stoyneva et al. recently, the first molecular phylogeny based on 18S for a tropical coloured lake with abundance of ciliates rRNA sequences was reported and revealed paramae- up to 250 000 L−1. This suggests that mixotrophic cili- cian symbionts which were genetically close to so-called ates may play a substantial role in plankton photosyn- Chlorella vulgaris group (Hoshina et al. 2004, 2005). Oc- thesis. casionally, other green algae (species of Scenedesmus, The considerable role of ciliates is especially valid Ankistrodesmus, Pleurococcus, Oocystis, Choricystis, for the ancient, large tropical oligotrophic Lake Tan- Chlamydomonas, Symbiococcum and a few prasino- ganyika (Hecky & Kling 1981, 1987; Pirlot et al. 2005). phyceans) have been reported to occur in freshwater There ‘the biomass of Strombidium cf. viride nearly symbiotic systems (for references consult Reisser 1984; equaled or exceeded the phytoplankton biomass dur- Rahat 1992; Reisser & Widowski 1992; Nakahara et al. ing much of the stably stratified period; this protozoan 2004). However, these data, based mainly on field ob- probably has a symbiotic relationship with zoochlorel- servations, need careful corroboration by modern tax- lae, which were always present in it’ (Hecky & Kling onomic methods applied to material grown under lab- 1981, p. 548). More recently, ciliates are still found to oratory conditions in order to exclude the possibility be an abundant group in the lake (Descy et al. 2005) that the observed algae have only been taken as a food and in 2002, total autotrophic carbon was partly sus- (Reisser 1986; 1992a; Reisser & Widowski 1992). tained by the endosymbionts in Strombidium (Pirlot The hosts of freshwater endosymbiotic associations et al. 2005). When fixed phytoplankton samples were can be assigned to different groups but among them processed during the same study of Lake Tanganyika, the overwhelming are chromalveolate protists, predom- it was observed that this abundant ciliate contained inantly ciliates. This fact has long been linked with their numerous coccoid green algal cells. Similar green cells ability to feed via phagocytosis (Reisser 1992a). Ciliates were detected in the samples in different quantities as are commonly considered as herbivores, but they are ac- free-living or inside other zooplankters (e.g. Vorticella tually composed of more or less distinct trophic guilds spp.). Using light microscopy the alga was identified (Dolan 1991). The key role that ciliates may play in as Siderocelis irregularis Hindák, a first record for the food webs in lakes was stressed by many authors dur- lake (Descy et al. 2005). For the present study, selected ing the last few decades. These studies have revealed samples were prepared for scanning (SEM) and trans- that ciliate communities are composed of a high num- mission electron microscopy (TEM). Here we describe ber of species with different sizes that reflect a diverse the cell morphology, cytological peculiarities and repro- range of feeding strategies, ranging from phagotrophic duction mode of Siderocelis irregularis and we discuss ingestion of particles (including nanoplanktonic algae) its taxonomic position. to photosynthetic fixation of organic carbon. The pho- tosynthetic capability can be acquired by sequestration Material and methods of chloroplasts from ingested prey or by possession of photosynthetic cells as endosymbionts (Modenutti et al. The material was collected from the large deep ancient tec- 2000; Endo & Taniguchi 2006; Summerer et al. 2007). tonic tropical Lake Tanganyika. In 2002–2004, standard bi- This mixed nutrition, termed mixotrophy, may improve weekly phytoplankton sampling at a depth of 20 m was access to scarce nutrients since by excretion of carbohy- conducted in the regions of Kigoma and Mpulungu. Ad- drates host metabolism could be sustained (e.g. Stabell ditional samples through a longitudinal transect of the lake were collected during a cruise in July 2003. A Zeiss Ax- et al. 2002). Therefore mixotrophy can be viewed as a iovert 135 inverted microscope was used for phytoplankton kind of symbiosis and also as an adaptive strategy that counting. Detailed investigations on non-permanent slides provides greater flexibility in the planktonic environ- were carried-out on a Leitz Diaplan microscope with Differ- ment and particularly strong advantage in oligotrophic ential Interference Contrast. Staining involved Indian ink, waters (Jones 1994; Schoonhoven 2000). These easily Methylene Blue, Gentiane Violet and Iodine. TEM method- explains why ciliates appear in quite different types of ology followed G¨artner & Ingoli´c (2003). Micrographs were waters (Stoecker 1998) but are especially common in taken with a FEI Tecnai 12 TEM microscope with a Gatan oligotrophic waters where a close nutrient cycle within CCD camera Bioscan. For SEM studies algal cells were the symbiotic association would confer advantages to washed with distilled water and dehydrated in a series of ethanol with gradually increasing concentrations (from 10% both symbiotic partners (Fenchel 1987; Modenutti et to 96%; 30 min. each). The material was then transferred to al. 2000).
Recommended publications
  • Toxicity, Physiological, and Ultrastructural Effects of Arsenic
    International Journal of Environmental Research and Public Health Article Toxicity, Physiological, and Ultrastructural Effects of Arsenic and Cadmium on the Extremophilic Microalga Chlamydomonas acidophila Silvia Díaz 1, Patricia De Francisco 1,2, Sanna Olsson 3 , Ángeles Aguilera 2,*, Elena González-Toril 2 and Ana Martín-González 1 1 Department of Genetics, Physiology and Microbiology, Faculty of Biology, Universidad Complutense de Madrid (UCM), C/José Antonio Novais, 12, 28040 Madrid, Spain; [email protected] (S.D.); [email protected] (P.d.F.); [email protected] (A.M.-G.) 2 Astrobiology Center (INTA-CSIC), Carretera de Ajalvir km 4, Torrejón de Ardoz, 28850 Madrid, Spain; [email protected] 3 Department of Forest Ecology and Genetics, INIA Forest Research Center (INIA-CIFOR), Carretera de A Coruña km 7.5, 28040 Madrid, Spain; sanna.olsson@helsinki.fi * Correspondence: [email protected]; Tel.: +34-91-520-6434 Received: 17 December 2019; Accepted: 24 February 2020; Published: 3 March 2020 Abstract: The cytotoxicity of cadmium (Cd), arsenate (As(V)), and arsenite (As(III)) on a strain of Chlamydomonas acidophila, isolated from the Rio Tinto, an acidic environment containing high metal(l)oid concentrations, was analyzed. We used a broad array of methods to produce complementary information: cell viability and reactive oxygen species (ROS) generation measures, ultrastructural observations, transmission electron microscopy energy dispersive x-ray microanalysis (TEM–XEDS), and gene expression. This acidophilic microorganism was affected differently by the tested metal/metalloid: It showed high resistance to arsenic while Cd was the most toxic heavy metal, showing an LC50 = 1.94 µM.
    [Show full text]
  • An Integrative Approach Sheds New Light Onto the Systematics
    www.nature.com/scientificreports OPEN An integrative approach sheds new light onto the systematics and ecology of the widespread ciliate genus Coleps (Ciliophora, Prostomatea) Thomas Pröschold1*, Daniel Rieser1, Tatyana Darienko2, Laura Nachbaur1, Barbara Kammerlander1, Kuimei Qian1,3, Gianna Pitsch4, Estelle Patricia Bruni4,5, Zhishuai Qu6, Dominik Forster6, Cecilia Rad‑Menendez7, Thomas Posch4, Thorsten Stoeck6 & Bettina Sonntag1 Species of the genus Coleps are one of the most common planktonic ciliates in lake ecosystems. The study aimed to identify the phenotypic plasticity and genetic variability of diferent Coleps isolates from various water bodies and from culture collections. We used an integrative approach to study the strains by (i) cultivation in a suitable culture medium, (ii) screening of the morphological variability including the presence/absence of algal endosymbionts of living cells by light microscopy, (iii) sequencing of the SSU and ITS rDNA including secondary structures, (iv) assessment of their seasonal and spatial occurrence in two lakes over a one‑year cycle both from morphospecies counts and high‑ throughput sequencing (HTS), and, (v) proof of the co‑occurrence of Coleps and their endosymbiotic algae from HTS‑based network analyses in the two lakes. The Coleps strains showed a high phenotypic plasticity and low genetic variability. The algal endosymbiont in all studied strains was Micractinium conductrix and the mutualistic relationship turned out as facultative. Coleps is common in both lakes over the whole year in diferent depths and HTS has revealed that only one genotype respectively one species, C. viridis, was present in both lakes despite the diferent lifestyles (mixotrophic with green algal endosymbionts or heterotrophic without algae).
    [Show full text]
  • Closing the Circle in Chlamydomonas the Different Stages of the Calvin-Benson Cycle Take Place in Separate Locations Within the Chloroplast
    INSIGHT CARBON FIXATION Closing the circle In Chlamydomonas the different stages of the Calvin-Benson cycle take place in separate locations within the chloroplast. MARYLOU C MACHINGURA AND JAMES V MORONEY terrestrial plants and both groups have Rubisco Related research article Ku¨ ken A, Sommer enzymes with similar properties. However, land F, Yaneva-Roder L, Mackinder LCM, Ho¨ hne plants rarely have pyrenoids because CO2 dif- M, Geimer S, Jonikas MC, Schroda M, Stitt fuses 10,000 times more rapidly in air than in M, Nikoloski Z, Mettler-Altmann T. 2018. water. Once an aquatic organism has fixed CO2, Effects of microcompartmentation on flux it takes a long time for the next molecule to distribution and metabolic pools in Chlamy- arrive, hence the need for a carbon concentra- domonas reinhardtii chloroplasts. eLife 7: tion mechanism that kicks in when the levels of e37960. DOI: 10.7554/eLife.37960 CO2 get too low. The carbon concentration mechanism in Chla- - mydomonas takes bicarbonate (HCO3 ) from outside the cells and converts it into CO2 that can be used by Rubisco inside the pyrenoid. hen the unicellular green alga Chla- There, Rubisco catalyzes the addition of CO2 mydomonas reinhardtii is viewed onto a molecule known as RuBP to create two W under a microscope, the most promi- molecules of a compound called 3PGA; this is nent object in the cell is a structure called the the first step in the Calvin-Benson cycle, a chain pyrenoid. Located within the chloroplast, the of reactions which results in the creation of organelle where photosynthesis takes place, the organic molecules that the cell needs.
    [Show full text]
  • Neoproterozoic Origin and Multiple Transitions to Macroscopic Growth in Green Seaweeds
    Neoproterozoic origin and multiple transitions to macroscopic growth in green seaweeds Andrea Del Cortonaa,b,c,d,1, Christopher J. Jacksone, François Bucchinib,c, Michiel Van Belb,c, Sofie D’hondta, f g h i,j,k e Pavel Skaloud , Charles F. Delwiche , Andrew H. Knoll , John A. Raven , Heroen Verbruggen , Klaas Vandepoeleb,c,d,1,2, Olivier De Clercka,1,2, and Frederik Leliaerta,l,1,2 aDepartment of Biology, Phycology Research Group, Ghent University, 9000 Ghent, Belgium; bDepartment of Plant Biotechnology and Bioinformatics, Ghent University, 9052 Zwijnaarde, Belgium; cVlaams Instituut voor Biotechnologie Center for Plant Systems Biology, 9052 Zwijnaarde, Belgium; dBioinformatics Institute Ghent, Ghent University, 9052 Zwijnaarde, Belgium; eSchool of Biosciences, University of Melbourne, Melbourne, VIC 3010, Australia; fDepartment of Botany, Faculty of Science, Charles University, CZ-12800 Prague 2, Czech Republic; gDepartment of Cell Biology and Molecular Genetics, University of Maryland, College Park, MD 20742; hDepartment of Organismic and Evolutionary Biology, Harvard University, Cambridge, MA 02138; iDivision of Plant Sciences, University of Dundee at the James Hutton Institute, Dundee DD2 5DA, United Kingdom; jSchool of Biological Sciences, University of Western Australia, WA 6009, Australia; kClimate Change Cluster, University of Technology, Ultimo, NSW 2006, Australia; and lMeise Botanic Garden, 1860 Meise, Belgium Edited by Pamela S. Soltis, University of Florida, Gainesville, FL, and approved December 13, 2019 (received for review June 11, 2019) The Neoproterozoic Era records the transition from a largely clear interpretation of how many times and when green seaweeds bacterial to a predominantly eukaryotic phototrophic world, creat- emerged from unicellular ancestors (8). ing the foundation for the complex benthic ecosystems that have There is general consensus that an early split in the evolution sustained Metazoa from the Ediacaran Period onward.
    [Show full text]
  • Effects of Microcompartmentation on Flux Distribution and Metabolic Pools
    RESEARCH ARTICLE Effects of microcompartmentation on flux distribution and metabolic pools in Chlamydomonas reinhardtii chloroplasts Anika Ku¨ ken1,2, Frederik Sommer1†, Liliya Yaneva-Roder1, Luke CM Mackinder3‡, Melanie Ho¨ hne1, Stefan Geimer4, Martin C Jonikas3§, Michael Schroda1†, Mark Stitt1, Zoran Nikoloski1,2, Tabea Mettler-Altmann1,5,6* 1Max Planck Institute of Molecular Plant Physiology, Potsdam-Golm, Germany; 2Bioinformatics Group, Institute of Biochemistry and Biology, University of Potsdam, Potsdam, Germany; 3Department of Plant Biology, Carnegie Institution for Science, Stanford, United States; 4Institute of Cell Biology, University of Bayreuth, Bayreuth, Germany; 5Cluster of Excellence on Plant Sciences, Heinrich-Heine University, Du¨ sseldorf, Germany; 6Institute of Plant Biochemistry, Heinrich-Heine University, Du¨ sseldorf, Germany Abstract Cells and organelles are not homogeneous but include microcompartments that alter *For correspondence: [email protected] the spatiotemporal characteristics of cellular processes. The effects of microcompartmentation on metabolic pathways are however difficult to study experimentally. The pyrenoid is a † Present address: Molecular microcompartment that is essential for a carbon concentrating mechanism (CCM) that improves the Biotechnology and Systems photosynthetic performance of eukaryotic algae. Using Chlamydomonas reinhardtii, we obtained Biology, University of experimental data on photosynthesis, metabolites, and proteins in CCM-induced and CCM- Kaiserslautern, Kaiserslautern,
    [Show full text]
  • Cryptophyte Farming by Symbiotic Ciliate Host Detected in Situ
    Cryptophyte farming by symbiotic ciliate host detected in situ Dajun Qiua, Liangmin Huanga, and Senjie Linb,1 aChinese Academy of Sciences Key Laboratory of Tropical Marine Bio-Resources and Ecology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou 510301, China; and bDepartment of Marine Sciences, University of Connecticut, Groton, CT 06340 Edited by David M. Karl, University of Hawaii, Honolulu, HI, and approved September 8, 2016 (received for review July 28, 2016) Protist–alga symbiosis is widespread in the ocean, but its character- as the causative species of the bloom, with no detectable crypto- istics and function in situ remain largely unexplored. Here we report phytes and hardly any other organisms present in the bloom water − the symbiosis of the ciliate Mesodinium rubrum with cryptophyte (Fig. 1B). At 1.03 × 106 cells L 1, M. rubrum abundance in the bloom cells during a red-tide bloom in Long Island Sound. In contrast to was over 100-fold higher than the annual peak in Long Island Sound the current notion that Mesodinium retains cryptophyte chloroplasts (15). Each Mesodinium cell harbored 20 to 30 cryptophyte cells (n = or organelles, our multiapproach analyses reveal that in this bloom 16), which packed the peripheral region of the M. rubrum cells (Fig. the endosymbiotic Teleaulax amphioxeia cells were intact and 1E), with complete cell structures, including cell membranes, nuclei, expressing genes of membrane transporters, nucleus-to-cytoplasm and chloroplasts (Fig. 1C). Taking advantage of the large cell size of RNA transporters, and all major metabolic pathways. Among the Mesodinium spp. (width, 20 to 23 μm; length, 25 to 26 μm), we most highly expressed were ammonium transporters in both organ- picked M.
    [Show full text]
  • JUDD W.S. Et. Al. (2002) Plant Systematics: a Phylogenetic Approach. Chapter 7. an Overview of Green
    UNCORRECTED PAGE PROOFS An Overview of Green Plant Phylogeny he word plant is commonly used to refer to any auto- trophic eukaryotic organism capable of converting light energy into chemical energy via the process of photosynthe- sis. More specifically, these organisms produce carbohydrates from carbon dioxide and water in the presence of chlorophyll inside of organelles called chloroplasts. Sometimes the term plant is extended to include autotrophic prokaryotic forms, especially the (eu)bacterial lineage known as the cyanobacteria (or blue- green algae). Many traditional botany textbooks even include the fungi, which differ dramatically in being heterotrophic eukaryotic organisms that enzymatically break down living or dead organic material and then absorb the simpler products. Fungi appear to be more closely related to animals, another lineage of heterotrophs characterized by eating other organisms and digesting them inter- nally. In this chapter we first briefly discuss the origin and evolution of several separately evolved plant lineages, both to acquaint you with these important branches of the tree of life and to help put the green plant lineage in broad phylogenetic perspective. We then focus attention on the evolution of green plants, emphasizing sev- eral critical transitions. Specifically, we concentrate on the origins of land plants (embryophytes), of vascular plants (tracheophytes), of 1 UNCORRECTED PAGE PROOFS 2 CHAPTER SEVEN seed plants (spermatophytes), and of flowering plants dons.” In some cases it is possible to abandon such (angiosperms). names entirely, but in others it is tempting to retain Although knowledge of fossil plants is critical to a them, either as common names for certain forms of orga- deep understanding of each of these shifts and some key nization (e.g., the “bryophytic” life cycle), or to refer to a fossils are mentioned, much of our discussion focuses on clade (e.g., applying “gymnosperms” to a hypothesized extant groups.
    [Show full text]
  • A Taxonomic Reassessment of Chlamydomonas Meslinii (Volvocales, Chlorophyceae) with a Description of Paludistella Gen.Nov
    Phytotaxa 432 (1): 065–080 ISSN 1179-3155 (print edition) https://www.mapress.com/j/pt/ PHYTOTAXA Copyright © 2020 Magnolia Press Article ISSN 1179-3163 (online edition) https://doi.org/10.11646/phytotaxa.432.1.6 A taxonomic reassessment of Chlamydomonas meslinii (Volvocales, Chlorophyceae) with a description of Paludistella gen.nov. HANI SUSANTI1,6, MASAKI YOSHIDA2, TAKESHI NAKAYAMA2, TAKASHI NAKADA3,4 & MAKOTO M. WATANABE5 1Life Science Innovation, School of Integrative and Global Major, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki, 305-8577, Japan. 2Faculty of Life and Environmental Sciences, University of Tsukuba, 1-1-1 Tennodai, Tsukuba 305-8577, Japan. 3Institute for Advanced Biosciences, Keio University, Tsuruoka, Yamagata, 997-0052, Japan. 4Systems Biology Program, Graduate School of Media and Governance, Keio University, Fujisawa, Kanagawa, 252-8520, Japan. 5Algae Biomass Energy System Development and Research Center, University of Tsukuba. 6Research Center for Biotechnology, Indonesian Institute of Sciences, Jl. Raya Bogor KM 46 Cibinong West Java, Indonesia. Corresponding author: [email protected] Abstract Chlamydomonas (Volvocales, Chlorophyceae) is a large polyphyletic genus that includes numerous species that should be classified into independent genera. The present study aimed to examine the authentic strain of Chlamydomonas meslinii and related strains based on morphological and molecular data. All the strains possessed an asteroid chloroplast with a central pyrenoid and hemispherical papilla; however, they were different based on cell and stigmata shapes. Molecular phylogenetic analyses based on 18S rDNA, atpB, and psaB indicated that the strains represented a distinct subclade in the clade Chloromonadinia. The secondary structure of ITS-2 supported the separation of the strains into four species.
    [Show full text]
  • A First Insight Into the Genome of Prototheca Wickerhamii, a Major
    Bakuła et al. BMC Genomics (2021) 22:168 https://doi.org/10.1186/s12864-021-07491-8 RESEARCH ARTICLE Open Access A first insight into the genome of Prototheca wickerhamii, a major causative agent of human protothecosis Zofia Bakuła1, Paweł Siedlecki2,3, Robert Gromadka4, Jan Gawor4, Agnieszka Gromadka3, Jan J. Pomorski5, Hanna Panagiotopoulou5 and Tomasz Jagielski1* Abstract Background: Colourless microalgae of the Prototheca genus are the only known plants that have consistently been implicated in a range of clinically relevant opportunistic infections in both animals and humans. The Prototheca algae are emerging pathogens, whose incidence has increased importantly over the past two decades. Prototheca wickerhamii is a major human pathogen, responsible for at least 115 cases worldwide. Although the algae are receiving more attention nowadays, there is still a substantial knowledge gap regarding their biology, and pathogenicity in particular. Here we report, for the first time, the complete nuclear genome, organelle genomes, and transcriptome of the P. wickerhamii type strain ATCC 16529. Results: The assembled genome size was of 16.7 Mbp, making it the smallest and most compact genome sequenced so far among the protothecans. Key features of the genome included a high overall GC content (64.5%), a high number (6081) and proportion (45.9%) of protein-coding genes, and a low repetitive sequence content (2.2%). The vast majority (90.6%) of the predicted genes were confirmed with the corresponding transcripts upon RNA-sequencing analysis. Most (93.2%) of the genes had their putative function assigned when searched against the InterProScan database. A fourth (23.3%) of the genes were annotated with an enzymatic activity possibly associated with the adaptation to the human host environment.
    [Show full text]
  • Genetic Diversity of Symbiotic Green Algae of Paramecium Bursaria Syngens Originating from Distant Geographical Locations
    plants Article Genetic Diversity of Symbiotic Green Algae of Paramecium bursaria Syngens Originating from Distant Geographical Locations Magdalena Greczek-Stachura 1, Patrycja Zagata Le´snicka 1, Sebastian Tarcz 2 , Maria Rautian 3 and Katarzyna Mozd˙ ze˙ ´n 1,* 1 Institute of Biology, Pedagogical University of Krakow, Podchor ˛azych˙ 2, 30-084 Kraków, Poland; [email protected] (M.G.-S.); [email protected] (P.Z.L.) 2 Institute of Systematics and Evolution of Animals, Polish Academy of Sciences, Sławkowska 17, 31-016 Krakow, Poland; [email protected] 3 Laboratory of Protistology and Experimental Zoology, Faculty of Biology and Soil Science, St. Petersburg State University, Universitetskaya nab. 7/9, 199034 Saint Petersburg, Russia; [email protected] * Correspondence: [email protected] Abstract: Paramecium bursaria (Ehrenberg 1831) is a ciliate species living in a symbiotic relationship with green algae. The aim of the study was to identify green algal symbionts of P. bursaria originating from distant geographical locations and to answer the question of whether the occurrence of en- dosymbiont taxa was correlated with a specific ciliate syngen (sexually separated sibling group). In a comparative analysis, we investigated 43 P. bursaria symbiont strains based on molecular features. Three DNA fragments were sequenced: two from the nuclear genomes—a fragment of the ITS1-5.8S rDNA-ITS2 region and a fragment of the gene encoding large subunit ribosomal RNA (28S rDNA), Citation: Greczek-Stachura, M.; as well as a fragment of the plastid genome comprising the 30rpl36-50infA genes. The analysis of two Le´snicka,P.Z.; Tarcz, S.; Rautian, M.; Mozd˙ ze´n,K.˙ Genetic Diversity of ribosomal sequences showed the presence of 29 haplotypes (haplotype diversity Hd = 0.98736 for Symbiotic Green Algae of Paramecium ITS1-5.8S rDNA-ITS2 and Hd = 0.908 for 28S rDNA) in the former two regions, and 36 haplotypes 0 0 bursaria Syngens Originating from in the 3 rpl36-5 infA gene fragment (Hd = 0.984).
    [Show full text]
  • The Green Puzzle Stichococcus (Trebouxiophyceae, Chlorophyta): New Generic and Species Concept Among This Widely Distributed Genus
    Phytotaxa 441 (2): 113–142 ISSN 1179-3155 (print edition) https://www.mapress.com/j/pt/ PHYTOTAXA Copyright © 2020 Magnolia Press Article ISSN 1179-3163 (online edition) https://doi.org/10.11646/phytotaxa.441.2.2 The green puzzle Stichococcus (Trebouxiophyceae, Chlorophyta): New generic and species concept among this widely distributed genus THOMAS PRÖSCHOLD1,3* & TATYANA DARIENKO2,4 1 University of Innsbruck, Research Department for Limnology, A-5310 Mondsee, Austria 2 University of Göttingen, Albrecht-von-Haller-Institute of Plant Sciences, Experimental Phycology and Sammlung für Algenkulturen, D-37073 Göttingen, Germany 3 [email protected]; http://orcid.org/0000-0002-7858-0434 4 [email protected]; http://orcid.org/0000-0002-1957-0076 *Correspondence author Abstract Phylogenetic analyses have revealed that the traditional order Prasiolales, which contains filamentous and pseudoparenchy- matous genera Prasiola and Rosenvingiella with complex life cycle, also contains taxa of more simple morphology such as coccoids like Pseudochlorella and Edaphochlorella or rod-like organisms like Stichococcus and Pseudostichococcus (called Prasiola clade of the Trebouxiophyceae). Recent studies have shown a high biodiversity among these organisms and questioned the traditional generic and species concept. We studied 34 strains assigned as Stichococcus, Pseudostichococcus, Diplosphaera and Desmocococcus. Phylogenetic analyses using a multigene approach revealed that these strains belong to eight independent lineages within the Prasiola clade of the Trebouxiophyceae. For testing if these lineages represent genera, we studied the secondary structures of SSU and ITS rDNA sequences to find genetic synapomorphies. The secondary struc- ture of the V9 region of SSU is diagnostic to support the proposal for separation of eight genera.
    [Show full text]
  • Green Appendix I
    Appendix I. Chromsome number and nuclear DNA content in species of Chlorophyta DNA amount Original Original Entry ref. for 1C 1C 2C 4C ref. for C- Standard number Species(a) 2n (b) 2n (Mbp)(c) (pg)(d) (pg)(d) (pg)(d) value(e) species(f) Method(g) Charophycean Green Algae CHARALES Characeae 1 Chara aspera Detharding ex Willdenow 28 44 7056 7.2* 14.4 28.8 44 Allium Fe 2 Chara contraria Kützing 56 44 19208 19.6* 39.2 78.4 44 Allium Fe 3 Chara fragilis Desvaux 56 44 18914 19.3* 38.6 77.2 44 Allium Fe 4a Chara tomentosa Linnaeus 28 44 7252 7.4* 14.8 29.6 44 Allium Fe 4b Chara tomentosa (male) 28 Kun 2001 7252 7.4* 14.8 29.6 Kun 2001 Chara MI:EB 4c Chara tomentsoa (female) 28 Kun 2001 6860 7.0* 14.0 28.0 Kun 2001 Chara MI:EB 5 Chara vulgaris Linnaeus 56 44 13230 13.5* 27 54 44 Allium Fe CHLOROKYBALES 6 Chlorokybus atmosphyticus Geitler 98 0.1 0.2* 0.4 43 COLEOCHAETALES Coleochaetaceae 7 Chaetosphaeridium globosum (Nordstedt) Klebahn 1.2* * Gallus MI:DAPI 8 Coleochaete nitellarum Jost 84 49 343 0.35 0.7 1.4* * Gallus MI:DAPI 9a Coleochaete orbicularis Pringsheim 48 49 98 0.1 0.20* 0.4 43 9b C. orbicularis 686 0.7 1.5 3.0* * Gallus MI:DAPI 10 Coleochaete scutata Brébisson 1287 1.3 2.7 5.5* * Gallus MI:DAPI DESMIDIALES1 Closteriaceae 11 Closterium ehrenbergii Meneghini ex Ralfs 60 19 1323 1.40* 2.70* 5.4 19 Mus MI:DAPI Desmidiaceae 12 Cosmarium cucumis Corda 44 39 1960 2.0 4.0* 8 28 Gallus MI:DAPI 13 Cosmarium subcostatum Nordstedt 10 16 539 0.6 1.1* 2.2 28 Gallus MI:DAPI 14 Desmidium swartzii (C.
    [Show full text]